Mechanics of Continua and Structures
Mathematica note is available here.
The tensor $\bs{\Omega}_t$ is called a (spatial) angular velocity tensor. In the following we will show that \(\bs{\Omega}\) is a skew-symmetric tensor.
\[\begin{align} \bs{R}(t)\bs{R}^{\textsf{T}}(t)&=\bs{I}\\ \dot{\bs{R}}(t)\bs{R}^{\textsf{T}}(t)+\bs{R}(t)\dot{\bs{R}}^{\textsf{T}}(t) &=0\\ \dot{\bs{R}}(t)\bs{R}^{\textsf{T}}(t)&=-\bs{R}(t)\dot{\bs{R}}^{\textsf{T}}(t)\\ \dot{\bs{R}}(t)\bs{R}^{\textsf{T}}(t)&=-\left(\dot{\bs{R}}(t)\bs{R}(t)\right)^{\textsf{T}} \end{align}\]Since \(\bs{\Omega}\) is skew, we can define the axial vector \(\bs{\omega}\) corresponding to \(\bs{\Omega}\) as follows:
\[\begin{align} \omega_i=-\frac{1}{2}\epsilon_{ijk}\Omega_{jk} \end{align}\]