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A B S T R A C T

In the design of structural materials, there is traditionally a tradeoff between achieving high
strength and achieving high toughness. Nature offers creative solutions to this problem in the
form of structural biomaterials (SBs), intelligent arrangements of mineral and organic phases
which possess greater strength and toughness than the constituents. The micro-architecture of
SBs like nacre and sea sponge spicules are characterized by weak organic interfaces between
brittle mineral phases. To better understand the toughening mechanisms in SBs requires
simulation techniques which can resolve arbitrary interface and bulk fracture patterns.

In this work, we present a modified regularization of Variational Fracture Theory (VFT)
that allows for simulation of fracture in materials and structures with weak interfaces. The
core of our approach is to widen the weak interfaces on a length scale proportional to that
of the diffuse damage field, and assign a reduced fracture toughness therein. We show that in
2D the modified regularized functionals 𝛤 -converge to that for sharp cracks. The resulting thin
weak interfaces have fracture toughness which depends on the bulk material fracture toughness,
the widened interface fracture toughness, and the ratio of the widened interface length scale
to the crack regularization length scale. We next apply our modified regularization within a
computer implementation of regularized VFT, which we term RVFTI. We assess the performance
of RVFTI in 2D by reproducing the effective interface fracture toughness predicted by the 𝛤 -
convergence theory and simulating crack trapping at a bi-material interface. We then use RVFTI
to study toughening in SB-inspired microarchitectures, namely layered materials and materials
with wavy interfaces.

. Introduction

In structural engineering, it is important for materials to possess both high strength and high toughness. However, in conventional
tructural materials such as steels and aluminum alloys, strength and toughness are in competition, as the mechanisms that enhance
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one can inhibit the other (Ritchie, 2011). Recent studies indicate that structural biomaterials (SBs) show both high strength and
toughness (Ritchie, 2011; Barthelat and Espinosa, 2007; Barthelat and Rabiei, 2011; Currey, 1977; Rabiei et al., 2012). Most such
SBs are heterogeneous in nature and consist of a mineral (stiff) phase and an organic (compliant) phase. Nacre is one such SB
where the mineral phase occupies > 95% of the volume fraction of the material (Barthelat and Rabiei, 2011). Due to the presence of
high volume fraction of the mineral phase, Aragonite (CaCO3), the bulk properties of nacre such as Young’s modulus and Poisson’s
ratio are almost identical to Aragonite. Hence, it is meaningful to compare the mechanical behavior of nacre to Aragonite. Nacre
obtains its high strength properties from Aragonite, and has a tensile strength of ≈ 170 MPa which is almost identical to that of
Aragonite (Jackson et al., 1988). However, the work of fracture in nacre can be as large as 1500 J∕m2, while that in Aragonite is
about 10 J∕m2 (Barthelat and Espinosa, 2007). Hence, SBs are ideal prototypical materials for understanding mechanisms which
enable high strength and toughness.

The micro-architectural arrangement of phases varies in different SBs, although the organic phase is often located at interfaces in
the mineral phase. Such an example is nacre, whose micro-architecture resembles a brick-and-mortar structure as seen in Fig. 1(a).
Here, the bricks consist of the mineral phase while the mortar is organic. However, in other SBs such as spicules in sea sponges,
some of the organic phase is also mixed with the mineral phase (Wang et al., 2010; Weaver et al., 2003; Neilson et al., 2014).
The micro-architecture of spicules resembles that of a lamellar structure, as seen in Fig. 1(b), where the mineral phase is arranged
concentrically and is separated by a nanometer-thin layer (approximately 35 nm Zlotnikov et al., 2013) of the organic phase.

Attempts to replicate these micro-architectural designs have been quite promising. As shown in Fig. 1(c), an alumina-based
composite mimicking the micro-architecture of nacre achieved higher peak stress and exhibited greater area under the stress–strain
curve, called the work of fracture (Tattersall and Tappin, 1966), when subjected to notched three-point bending experiments (Ritchie,
2011). The work of fracture is a useful measure of toughness in materials, as it quantifies the energy needed to be applied in order
to break the structure. It can be clearly seen that the alumina-based composite has higher strength and toughness than nacre.

The superior toughness properties of SBs, such as bone and nacre, are plotted in Fig. 1(d). From the figure, we see that bone
and nacre display higher toughness than either of their respective mineral and organic phases. Furthermore, the alumina-based
composite has even higher toughness than the SBs. This suggests that a comprehensive understanding of the failure mechanisms in
SBs can aid in designing materials with superior properties to those found in nature.

It has been postulated that higher toughness in SBs can be attributed to fracture mechanisms such as crack deflection and
crack arrest, which are shown in Fig. 1(b) (Weaver et al., 2010; Barthelat and Rabiei, 2011). However, insights into the underlying
toughening mechanisms such as the interplay of fracture mechanisms at different length scales and the operating extrinsic toughening
mechanisms (e.g., crack deflection and crack arrest) have not been studied adequately. Further, the effect of model parameters such
as the thickness of the interface, the ratio of fracture toughness of the phases, and the arrangement of the phases on the toughness
of the SBs is still unexplored. To address these gaps, we believe that computational models capable of modeling such complex
architectural designs can be used to conduct virtual experiments which can aid in engineering synthetic materials with both high
strength and toughness.

In recent years, researchers have performed experimental and analytical studies to explore mechanisms to increase toughness in
ceramic composites (Suresh, 1985; Clegg et al., 1990; Evans et al., 2001). Phenomena such as crack trapping and crack bridging due
elastic heterogeneities and their ability to enhance the toughness of materials have also been studied (Lange, 1970; Bower and Ortiz,
1991; Mower and Argon, 1995; Xu et al., 1998). A perturbation-based analysis was employed to shed light on the role of elastic
moduli on fracture toughness (Huajian, 1991). Studies predominantly using semi-analytical methods have investigated the toughness
of interfaces in the presence of elastic heterogeneities in semi-infinite geometries (Comninou, 1977; Cook and Erdogan, 1972; Delale
and Erdogan, 1988; He and Hutchinson, 1989; Hutchinson and Suo, 1991). However, these studies fall short in providing a complete
description of how toughness is enhanced in SBs for various reasons:

(1) The aforementioned numerical studies are limited to small extensions to the pre-defined crack in ceramic composites or SBs,
and therefore the influence of crack tortuosity on toughness is unclear.

(2) Fracture mechanisms such as crack bridging, crack deflection, and crack arrest are not well understood.
(3) SBs such as bone have a hierarchical architecture, and there are different fracture mechanisms operating at different length

scales. The aforementioned works do not study the contributions of different mechanisms to the bulk toughening.
(4) The influence of geometric features and micro-architecture on toughness is inadequately studied. Therefore, greater research

is needed to understand these micro-architectures and how they might enhance both strength and toughness.

Numerical methods featuring cohesive zone models have been used to study how toughness can be enhanced in the presence
of interfaces (Tvergaard and Hutchinson, 1996; Zavattieri et al., 2007). These studies are limited by the fact that cracks could only
grow along a set of pre-defined paths, and therefore instabilities such as crack jumps from the interface to the bulk could not be
simulated. Meanwhile, Begley and co-workers (Pro et al., 2015; Lim et al., 2016) simulated brick-and-mortar micro-architectures
using rigid bricks and cohesive interfaces. The problem was solved using Monte Carlo methods by prescribing displacements to the
bricks and iterating until a configuration with minimum energy is achieved.

Working in the broader realm of heterogeneous materials, Bourdin and Battacharya and collaborators (Hossain et al., 2014; Hsueh
et al., 2018; Brach et al., 2019; Brodnik et al., 2020, 2021) have investigated through computations using regularized variational
fracture theory (RVFT) (and in some cases with experiments) how the effective toughness of a specimen is affected by the presence
of elastic heterogeneities and fracture toughness heterogeneities. In particular, the simulations were able to capture crack tortuosity
which resulted from the geometry of the heterogeneities. These studies have generally focused on evaluating the effective fracture

toughness in domains with periodic arrangements of stiff and compliant materials subjected to Mode-I loading. Further, the effective
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Fig. 1. (a) SEM micrograph of nacre showing the brick-and-mortar micro-architecture. Figure reproduced from Ritchie (2011). (b) SEM micrograph of Monorhaphis
chuni (M.chuni) specimen subjected to a three point bend test. It is observed that the specimen before failure develops convoluted crack patterns due to crack
deflection and arrest at the interfaces. Figure reproduced from Weaver et al. (2010). (c) A comparison of the stress–strain response obtained by edge notched
three point bend testing of nacre and a synthetic composite made of 85 vol.% alumina indicates that the composite has both higher strength and toughness
as compared to nacre. Figure reproduced from Ritchie (2011). (d) A summary of fracture toughness properties of structural biomaterials, hybrid composites in
comparison to their respective constituents. Figure reproduced from Wegst et al. (2015).

fracture toughness is defined using the 𝐽 -integral, which is computed using the outermost boundary of the domain as the contour
of integration. Importantly, the length scales within the considered heterogeneous media were all comparable. In contrast, in SBs
such as nacre, the compliant interfaces are orders of magnitude thinner than the stiff bricks.

The core challenge for any potential numerical method to simulate crack evolution in SBs is capturing the complex crack
morphologies that have been demonstrated in experiments. Methods which represent the crack via sharp surfaces (or curves in
2D) face some difficulties with this task (Shen et al., 2017; Wan et al., 2019). Methods like the eXtended Finite Element Method
(XFEM) (Moës et al., 1999, 2002; Sukumar et al., 2015) require an explicit representation of the crack geometry (such as a surface
parameterization or a level set) to define enrichment functions. Crack growth is typically modeled via crack front (or crack tip in
2D) dynamics, for example with Griffith’s criterion (Griffith, 1921); additional criteria or models are needed to incorporate crack
branching and crack nucleation. Another class of sharp crack methods are based on cohesive zone models, such as Xu and Needleman
(1994), Camacho and Ortiz (1996). In these methods, cohesive zone separation laws are imposed on the faces (or edges in 2D)
between neighboring finite elements. This provides a unified framework for crack growth, crack nucleation, and crack branching,
because cracks may nucleate and grow between any elements. However, this method is limited as the crack patterns are heavily
mesh-dependent.

A family of models which can simulate complex crack morphologies uses phase fields to model fracture. With origins in
continuum damage theory (Peerlings et al., 1996), phase transformation theory (Karma et al., 2001), and variational fracture theory
(VFT) (Francfort and Marigo, 1998; Bourdin et al., 2000, 2008), these models replace sharp cracks with a diffuse damage field,
the evolution of which models crack growth. In the case of RVFT, the damage field (i.e. the cracks) evolves such that the total
energy (elastic plus fracture) of the system is minimized. Furthermore, the notion of 𝛤 -convergence (Ambrosio and Tortorelli,
1990) provides a rigorous mathematical connection between the phase-field approximations of RVFT (Bourdin et al., 2000) and
the original sharp-crack theory (Francfort and Larsen, 2003). Unlike sharp crack approaches, there are minimal prior restrictions
on the distribution of damage in the problem domain, which means that a wide variety of crack morphologies may be simulated
without mesh dependence, including crack branching and crack jumps across heterogeneities (Miehe et al., 2010b; Borden et al.,
2012; Hossain et al., 2014). While RVFT and phase field models present their own difficulties, for example requiring large amounts
3 
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of mesh refinement to adequately resolve the damage field, their ability to produce realistic and complex crack morphologies is
why we have chosen them as the basis of our approach for SBs.

Phase field models have been introduced to simulate fracture in the presence of weak interfaces. In Hansen-Dörr et al. (2019,
020), the interface, which is nominally a surface of co-dimension 1 embedded within the bulk material, is replaced by a region with
inite thickness. Within this region of finite thickness, the fracture toughness and/or elastic moduli are allowed to vary. In Hansen-
örr et al. (2019), the fracture toughness is assigned a constant value within the wide interface; in Hansen-Dörr et al. (2020),

he authors also explore smoother fracture toughness distributions and elastic moduli distributions. For the case of constant wide-
nterface fracture toughness, the authors derive relationships for the effective interface fracture toughness as a function of the bulk
oughness, the assigned wide-interface fracture toughness, the wide-interface thickness, and the damage field length scale. These
ormulas are assessed numerically through examples.

Approaches taken after (Hansen-Dörr et al., 2019, 2020) generally follow a similar approach. For example, in Yoshioka et al.
2021), the authors adopt the approach of a constant fracture toughness within the wide interface as in Hansen-Dörr et al. (2019).
n Zhou et al. (2022), the authors also assign constant fracture toughness within the wide interface; however, they also explore the
ase where the bulk fracture toughness is different on either side of the interface. Meanwhile, in Unnikrishna Pillai et al. (2023), a
aussian kernel is used to create a smooth variation in the fracture toughness.

In this work, we modify the traditional regularization process for VFT (recapitulated in Sections 3.1 and 3.2) to incorporate
aterials whose fracture toughness may differ along interfaces with zero thickness. Such cases are representative of atomically-thin

onding in adhesive contact, grain boundaries in polycrystalline materials, or interfaces whose thickness is much smaller than other
elevant problem dimensions (e.g., the organic phase in SBs). In our regularization approach, the interfaces are assigned finite (small)
idth, inside which the material has fracture toughness 𝑔𝑖, while the surrounding material has fracture toughness 𝑔𝑏. The interface
idth is chosen to scale proportionally with the fracture regularization length 𝜀, and is discussed further in Section 3.3. Under

uitable assumptions, we prove the 𝛤 -convergence result for arbitrary two-dimensional specimens in Section 4. A consequence of
his result is that we quantify the effective interface fracture toughness 𝑔int of the zero-thickness interface, which depends 𝑔𝑏, 𝑔𝑖,
nd the proportionality constant of the interface width to 𝜀. Returning to the problem of crack evolution in SBs, we implement our
odified regularization procedure within a phase-field model for irreversible, brittle fracture, see Section 5. In Section 6, we verify

hat the modified RVFT for interfaces (RVFTI) reproduces fracture toughness consistent with 𝑔int , and we explore crack kinking at
bi-material interface. We then use RVFTI to study toughening mechanisms in SB-inspired configurations in Section 7. Lastly, we

iscuss the main results and conclude this work in Section 8.
We remark that our approach resembles the work of Hansen-Dörr et al. (2019, 2020) in that we replace an infinitesimally-thin

nterface by one with finite thickness and assign a constant fracture toughness 𝑔𝑖 (that is different from 𝑔int) within. However, our
pproach is motivated by 𝛤 -convergence; that is, we introduce a regularization to the variational fracture problem in a material
ith weak interfaces and we prove under some mild assumptions that the regularization 𝛤 -converges to the original problem.

While the results in this work are particularized to two dimensional problems, we believe that the theory also applies in 3D.
hree dimensional RVFTI simulations have been performed, but we do not present these here.

. Mathematical preliminaries

.1. Notation

We let unbolded symbols such as 𝑥 and 𝑢 denote scalars or scalar-valued fields, while we let bold symbols such as 𝒙 and 𝒖 denote
vectors or vector-valued fields in R𝑛. We denote sequences with parentheses: (𝑎𝑛)𝑛 ∶= (𝑎1, 𝑎2, 𝑎3,…). Depending on context, | ⋅ | may
ndicate the absolute value of a scalar, the Euclidean norm of a vector, or the Frobenius norm of a tensor.

There are two important measures used in this manuscript. Further details on measure theory may be found in textbooks such
s Evans and Gariepy (2015). For any subset 𝐴 ⊆ R𝑛, we let 𝑛(𝐴) denote the 𝑛-dimensional Lebesgue measure of 𝐴 (which may be
nfinite). Integration with respect to this measure is written with the standard notation ∫ d𝒙. Next, for 𝐴 ⊆ R𝑛, we let 𝑚(𝐴) denote
he 𝑚-dimensional Hausdorff measure of 𝐴 (where 𝑚 may differ from 𝑛), which is defined in two steps. First, for any 𝛿 > 0,

𝑚
𝛿 (𝐴) = inf

{

𝛼𝑚
∞
∑

𝑖=1
diam(𝑈𝑖)𝑚 ∶ 𝐴 ⊆

∞
⋃

𝑖=1
𝑈𝑖, diam(𝑈𝑖) < 𝛿

}

, (1a)

here diam(𝑈 ) = sup𝒙,𝒚∈𝑈 |𝒙 − 𝒚| for any 𝑈 ⊂ R𝑛. Second, we take

𝑚(𝐴) = lim
𝛿→0

𝑚
𝛿 (𝐴) = sup

𝛿>0
𝑚

𝛿 (𝐴). (1b)

s in Evans and Gariepy (2015, Definition 2.1), we define 𝑚 with a scaling constant 𝛼𝑚 so that 1 coincides with the usual
efinition of arc length (𝛼1 = 1), 2 coincides with the usual definition of surface area, etc. Integration with respect to the Hausdorff
easure is written with the notation ∫ d𝑚(𝒙).

For any 𝐴 ⊂ R𝑛, we define dist(⋅, 𝐴) ∶ R𝑛 → R as the distance function to 𝐴. That is, for any 𝒙 ∈ R𝑛,

dist(𝒙, 𝐴) = inf
𝒛∈𝐴

|𝒙 − 𝒛|.

e let 𝜌(𝐴) ⊂ R𝑛 denote the 𝜌-neighborhood of 𝐴, or

 (𝐴) = 𝒙 ∈ R𝑛 ∶ dist(𝒙, 𝐴) < 𝜌 .
𝜌 { }

4 
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Let  be an open subset of R𝑛. For non-negative integer 𝑘, we let 𝐶𝑘(;R𝑚) denote the space of functions 𝒇 ∶  → R𝑚

hose derivatives up to order 𝑘 are continuous. The space 𝐶∞(;R𝑚) contains the functions with all derivatives continuous, while
∞
𝑐 (;R𝑚) ⊂ 𝐶∞(;R𝑚) are those functions which are compactly supported in . We let 𝐿2(;R𝑚) denote the space of functions

or which ∫ |𝒇 |2 d𝒙 < ∞ and 𝐻1(;R𝑚) ⊂ 𝐿2(;R𝑚) be the space of functions for which ∫ |∇𝒇 |2 d𝒙 < ∞, where the derivative is
efined in the distributional sense. Finally, let 𝐿∞(;R𝑚) be the space of functions which have finite essential supremum (roughly,
hich are bounded), ess sup𝒙∈ |𝒇 (𝒙)| < ∞. The usual norms on these spaces are denoted by ‖⋅‖𝐿2(;R𝑚), ‖⋅‖𝐻1(;R𝑚), and ‖⋅‖𝐿∞(;R𝑚),

espectively.
When referring to functions of time and space, e.g. 𝑓 (𝑡,𝒙), we will use the notation 𝑓 (𝑡) in place of 𝑓 (𝑡, ⋅) to refer to the function

valuated at time 𝑡.

. Theory

.1. Variational principle of fracture

The concept of fracture toughness in elastic, brittle materials stems from the seminal work of Griffith (1921). Griffith postulated
hat there was an energy cost to the creation of new crack surfaces, proportional to the new surface area, and that this cost must
e paid by releasing stored elastic energy in the body. With respect to an infinitesimal extension of a crack, Griffith’s criterion
tates that the stored energy release rate must be equal to a material constant. This notion implies a balance of energy during crack
rowth.

In Griffith’s original work, the material constant is twice the surface free energy of the bulk material, as the insertion of a crack
reates two free surfaces which are assumed to perfectly coincide in the undeformed configuration.3 In this work, we will refer to
riffith’s material constant as the ‘‘fracture toughness’’, accounting for the crack surface as a single surface instead of two identical
rack faces.4

Francfort and Marigo (1998) introduced variational fracture theory (VFT) as an extension of Griffith’s theory. Rather than
onsidering the energetics of a single crack tip, a key postulate of VFT is that the solid deforms and cracks to (globally) minimize
he total free energy, which is comprised of two parts: (i) the energy corresponding to elastic deformation and the work of applied
xternal forces; and (ii) the energy needed to produce the crack surfaces. Respectively, we call these the ‘‘elastic energy’’ and ‘‘surface
nergy’’. The relaxed conditions on the admissible cracks naturally allow for crack nucleation and the formation of other complex
orphologies (such as crack branching, merging, etc.) to be captured.

Mathematically, the variational principle is stated as follows, see Fig. 2(a.i). We consider an elastic domain  ⊂ R𝑛5 which
is subjected to applied displacements 𝒖̂ on a portion of the boundary 𝜕𝑢 ⊆ 𝜕. Then, the crack set 𝛤 and displacement field 𝒖
minimize the energy

𝛱(𝒖, 𝛤 ) = ∫⧵𝛤
𝑊 (𝒙, 𝝐(𝒖)) d𝒙 + 𝑔𝑛−1(𝛤 ), (2)

where 𝑊 (𝒙, 𝝐) ≥ 0 is the strain energy density, 𝝐(𝒖) ∶= (∇𝒖 + ∇𝒖𝑇 )∕2 is the symmetrized displacement gradient (i.e., small-strain
tensor), and 𝑔 > 0 is the fracture toughness.

For simplicity, we assume an isotropic, linear elastic constitutive response

𝑊 (𝒙, 𝝐) = 1
2
𝜆(𝒙) tr[𝝐]2 + 𝜇(𝒙)|𝝐|2, (3)

where tr[⋅] is the trace of a tensor and | ⋅ | is the Frobenius norm of a tensor. The coefficients 𝜆 and 𝜇 are the Lamé parameters,
but we may also discuss the elastic behavior in terms of Young’s modulus 𝐸 and Poisson’s ratio 𝜈. We allow these (strictly positive)
coefficients to vary spatially to include situations like a crack along a bi-material interface, see Section 6.2.

An important question in the minimization of (2) is what are the admissible spaces for 𝒖 and 𝛤 . The rigorous answer to this
question is that 𝒖 should belong to the space of generalized special functions of bounded deformation, 𝐺𝑆𝐵𝐷(;R𝑛) (Ambrosio et al.,
1997, 2000). Imprecisely, this space contains all functions whose symmetrized distributional derivative is a measure composed of
two parts: the first is an integrable function (i.e. 𝝐(𝒖)) over , while the second corresponds to the jump in 𝒖 across its so-called
ump set 𝐽𝒖. We immediately identify the crack set 𝛤 with 𝐽𝒖. We refer the interested reader to Ambrosio et al. (1997, 2000) for
urther details.

Lastly, the global minimizers of (2) may not be physically or experimentally relevant. However, the computation of the global
inimizers of (2) is a valuable exercise for the following two reasons.

3 At smaller scales, this assumption may not be valid, as the surface roughness and fragmentation of material in between the crack faces can mean that the
urface areas do not exactly coincide.

4 Another common name for Griffith’s material constant is the ‘‘critical energy release rate’’, while ‘‘fracture toughness’’ is also used for a critical value of
he stress intensity factor around a crack tip. Since we do not refer to the critical stress intensity value in this work, we do not anticipate confusion in our
erminology.

5
 We predominantly consider the 𝑛 = 2 case but will also briefly explore the 𝑛 = 1 case.

5 
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Fig. 2. Schematic representation of the interface fracture problem and its regularization. (a.i) Original variational fracture problem with no weak interfaces,
crack set 𝛤 , and applied Dirichlet boundary conditions. (a.ii) Standard regularization approach for the problem in (a.i), which replaces the crack set by a
ontinuous damage field 𝑑 taking value between 0 and 1. The damage field has characteristic length scale 𝜀. The standard regularization 𝛤 -converges to the
riginal problem as 𝜀 → 0. (b.i) Variational fracture problem with a weak interface . (b.ii) Naive approach to regularize the problem in (b.i) using standard
egularization practices. The regularized problem has the same fracture toughness distribution 𝑔(𝒙) as that of the original problem. Because the weak interface
as zero measure, it is invisible to the damage field, and hence we do not recover the original problem as 𝜀 → 0. (c.i) Variational fracture problem with weak

interface . (c.ii) The modified regularization approach proposed in this work. We modify the fracture toughness distribution by widening the weak interface
by a factor of 2𝑚𝜀, and we assign a fracture toughness 𝑔𝑖 therein.

1. As mentioned in Francfort and Marigo (1998), local minimizers of the energy may be more experimentally relevant. However,
there are cases where the local and global minimizers coincide. For example, in a double cantilever beam (DCB) specimen
subjected to displacement-controlled loading, the elastic energy scales inversely with the cube of the crack length while the
fracture energy grows linearly with crack length. The result is that the total energy is convex with respect to crack length,
possessing a unique minimizer.

2. Numerical procedures aimed at solving the global minimization problem often follow a sequence of configurations that locally
minimize, which can also provide some insights into the fracture process.

.2. Regularization of the total energy

It is difficult to compute the minimizers of (2) because of the presence of both volumetric and surface energies. Borrowing
rom the ideas of image segmentation, Bourdin et al. (2000) introduced the following regularization, see Fig. 2(a.ii). We define a
calar-valued function 𝑑 and a length scale 𝜀. We then seek minimizers (𝒖, 𝑑) of the regularized energy

𝛱𝜀(𝒖, 𝑑) =
(

(1 − 𝑑)2 + 𝑘𝜀
)

𝑊 (𝒙, 𝝐(𝒖)) d𝒙 +
𝑔
(

𝑑2 + 𝜀|∇𝑑|2
)

d𝒙 (4)
∫ ∫ 2 𝜀
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over the admissible spaces 𝑢 =
{

𝒗 ∈ 𝐻1(;R𝑛) ∶ 𝒗 ≡ 𝒖̂ on 𝜕𝑢
}

and 𝑑 = 𝐻1(;R). In the previous equation, 𝑘𝜀 > 0 is a
arameter which is small compared with 𝜀.

We first note that the optimal 𝑑 must take value between 0 and 1. These limits may be interpreted as pristine and fully-damaged
aterial, respectively. Second, it has been shown (see Chambolle, 2005; Ambrosio and Tortorelli, 1992; Bourdin et al., 2008) that
is the 𝛤 -limit of 𝛱𝜀 as 𝜀 → 0. Consequently, the global minimizers of 𝛱𝜀 converge to those of 𝛱 , which provides a rational

pproach to approximate the minimizers of 𝛱 .

.3. Regularization with interfaces

In (2) and (4), we assumed a constant fracture toughness 𝑔 throughout the domain. However, it is possible to have spatial
ariation in fracture toughness throughout . In particular, suppose there exists a weak interface  ⊂ , which we assume to be a
imple, rectifiable curve (or finite collection of curves) with fracture toughness 𝑔int . Meanwhile, we suppose the remainder of the
omain ⧵ has uniform fracture toughness 𝑔𝑏 > 𝑔int . Under the original variational principle, cracks may form along this interface,
nd the surface energy will be less than if the same crack formed elsewhere in the domain. For this fracture toughness distribution,
he total energy is

𝛱(𝒖, 𝛤 ) = ∫⧵𝛤
𝑊 (𝒙, 𝝐(𝒖)) d𝒙 + 𝑔𝑏𝑛−1(𝛤 ⧵ ) + 𝑔int𝑛−1(𝛤 ∩ ). (5)

n the previous equation, another way to write the surface energy terms is

∫𝛤
𝑔(𝒙) d𝑛−1(𝒙), (6a)

here

𝑔(𝒙) =

{

𝑔int 𝒙 ∈ ,
𝑔𝑏 otherwise.

(6b)

Following the relationship between (2) and (4), and considering the expression for the surface energy in (6), we propose the
ollowing regularization of (5):

𝛱𝜀(𝒖, 𝑑) = ∫

(

(1 − 𝑑)2 + 𝑘𝜀
)

𝑊 (𝒙, 𝝐(𝒖)) d𝒙 + ∫
𝑔𝜀(𝒙)
2

(

𝑑2

𝜀
+ 𝜀|∇𝑑|2

)

d𝒙. (7a)

e are now faced with the question of what fracture toughness distribution 𝑔𝜀(𝒙) we should use in order to recover (5) in the
-limit. Some options are as follows:

1. We can use the fracture toughness distribution (6b) for the sharp-crack problem (see Fig. 2(b)), i.e.

𝑔𝜀(𝒙) = 𝑔(𝒙).

However, this approach faces a critical issue. Because 𝑔(𝒙) − 𝑔𝑏 is nonzero only when 𝒙 ∈ , and 𝑛() = 0, then the second
integral in (7a) is equal to that in (4). In other words, the damage field does not see the weak interface. Consequently, if we
take the 𝛤 -limit of 𝛱𝜀, the limiting 𝛱 will not have reduced fracture toughness at the interface.

2. In order for the damage field to be influenced by the weak interface, we must make the weak interface occupy a set with
finite measure. For example, we can widen the weak interfaces by some thickness 2𝑡 > 0:

𝑔𝜀(𝒙) =

{

𝑔int dist(𝒙,) ≤ 𝑡,
𝑔𝑏 otherwise,

where dist(𝒙,) is the distance between 𝒙 and the interfaces . This approach yields fracture toughness heterogeneities akin to
those explored in Hossain et al. (2014). However, this approach no longer models a weak interface with negligible thickness.
Hence, when we take the 𝛤 -limit of 𝛱𝜀, we no longer recover (5).

3. In order to recover thin weak interfaces, we must have 𝑡 shrink to zero along with 𝜀. Our approach is to set 𝑡 = 𝑚𝜀, where
𝑚 > 0, see Fig. 2(c). We define

𝑔𝜀(𝒙) =

{

𝑔𝑖 dist(𝒙,) ≤ 𝑚𝜀,
𝑔𝑏 otherwise,

(7b)

where 𝑔𝑖 is determined from 𝑔𝑏, 𝑔int , and 𝑚 using:

𝑔𝑖 =

√

(𝑔𝑏 − 𝑔int )2 + 4𝑔𝑏𝑔int tanh
2(𝑚) − (𝑔𝑏 − 𝑔int )

2 tanh(𝑚)
. (7c)

This equation for 𝑔𝑖 may seem arbitrary; however, as we will prove in Section 4, setting 𝑔𝑖 in this way allows us to precisely
recover the desired interface fracture toughness 𝑔 .
int
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For our proposed formulation, we remark that if we start with a regularized problem with widened interface 𝑔𝑖 the limiting
interface fracture toughness is given by

𝑔int = 𝑔𝑖

(

𝑔𝑏 + 𝑔𝑖 tanh(𝑚)
𝑔𝑖 + 𝑔𝑏 tanh(𝑚)

)

, (8)

which is the inverse of (7c). We observe from this formula that 𝑔int varies monotonically from 𝑔𝑏 when 𝑚 = 0 (zero-width interface)
to 𝑔𝑖 when 𝑚 = ∞ (the interface encapsulates the entire domain). Similarly, for a fixed 𝑚, (8) is a one-to-one function from 𝑔𝑖 to
𝑔int < 𝑔𝑏, meaning if we wish to model an interface with fracture toughness 𝑔int , we can always find a suitable 𝑔𝑖.

4. 𝜞 -Convergence proof for the interface toughness

In this section, we prove that the functional 𝛱𝜀 defined in (7) 𝛤 -converges to the functional 𝛱 in (5). Before formally stating
and proving this result, we present some technical details. Readers who are more interested in numerics and simulation examples
may skip this section and continue in Section 5.

4.1. Technical details

We take the problem domain  ⊂ R2 to be bounded and to have Lipschitz boundary. Meanwhile, the interface set  ⊂  is
assumed to be a finite union of rectifiable curves, (𝐼𝑖)𝑖. Specifically, for each 𝐼𝑖, we assume that the arc-length parameterization
𝜸𝑖 ∶ [0,1(𝐼𝑖)] → R2 is 𝐶2-continuous and injective. Furthermore, for 𝑗 ≠ 𝑖, we request that 𝐼𝑖 ∩ 𝐼𝑗 ⊂ {𝜸𝑖(0), 𝜸𝑖(1(𝐼𝑖))}, with an
identical condition holding for 𝐼𝑖 ∩ 𝜕. In other words, the individual curves comprising  may only intersect each other at their
endpoints and only the endpoints of 𝐼𝑖 are allowed to touch the domain boundary 𝜕. For each 𝑠 ∈ [0,1(𝐼𝑖)], we set 𝒕̂𝑖(𝑠) = 𝜸′𝑖(𝑠)
o be the unit tangent vector at 𝜸𝑖(𝑠), and we define the unit normal at the same point, 𝒏̂𝑖(𝑠), through 90◦ rotation of 𝒕̂𝑖(𝑠).6 We
ometimes abuse notation by writing 𝒕̂𝑖(𝒙) and 𝒏̂𝑖(𝒙) for 𝒙 ∈ 𝐼𝑖 instead of 𝒕̂𝑖(𝜸−1𝑖 (𝒙)) and 𝒏̂𝑖(𝜸−1𝑖 (𝒙)), respectively. For each curve, we
ay define the signed radius of curvature 𝑅𝑖 as

1
𝑅𝑖(𝑠)

= −𝜸′′𝑖 (𝑠) ⋅ 𝒏̂𝑖(𝑠). (9)

Because of the regularity of the interface curves, there must exist a minimum radius of curvature over all 𝑠 and over all curves,

𝑅min = min
𝑖

min
𝑠∈[0,1(𝐼𝑖)]

|𝑅𝑖(𝑠)|. (10)

Additionally, for each 𝐼𝑖, there exists 𝜌𝑖 > 0 such that the coordinate map

(𝑠, 𝑧) ↦ 𝜸𝑖(𝑠) + 𝑧𝒏̂𝑖(𝑠) (11)

on the domain [0,1(𝐼𝑖)] × (−𝜌𝑖, 𝜌𝑖) is a diffeomorphism (see Abate and Tovena (2012, Theorem 2.2.5)). The image of [0,1(𝐼𝑖)] ×
(−𝜌𝑖, 𝜌𝑖) under the map is called the tubular neighborhood of 𝐼𝑖. Moreover, it may be shown that 𝜌𝑖 ≤ min𝑠∈[0,1(𝐼𝑖)] |𝑅𝑖(𝑠)|.

We next discuss the admissible function spaces for 𝛱𝜀 and 𝛱 . For 𝛱𝜀, arguments (𝒖, 𝑑) belong to 𝐻1(;R2) × 𝐻1(;R). The
functional 𝛱 is defined over the set

 =
{

𝒖 ∈ 𝐿∞(;R2) ∶ 𝒖|⧵𝛤 ∈ 𝐻1( ⧵ 𝛤 ;R2), 𝛤 ∈ 
}

, (12)

where  is the set of all closed, 1-rectifiable subsets of . Note that each 𝒖 ∈  has a corresponding 𝛤 (the 𝛤 is not defined
eparately). For 𝒖 ∈ , we also request that 𝒖|⧵𝛤 be discontinuous across its corresponding 𝛤 , except possibly at a countable
umber of points in 𝛤 . In the parlance of 𝑆𝐵𝐷(;R2), we say that 𝛤 is the jump set of the function 𝒖. We note that  is slightly

more restrictive than 𝑆𝐵𝐷(;R2); however, this space is suitable for the sorts of crack topologies that are expected in practical
situations. We also remark that this set can be extended to functions whose crack set is not closed via the approximation results
of Chambolle (2004, Theorem 3).

4.2. Statement of the theorem

Theorem 1. Let (𝜀𝑛)𝑛 be a sequence of positive real numbers which converges to zero. Then the sequence of functionals (𝛱𝜀𝑛 )𝑛 𝛤 -converges
to 𝛱 . That is, for any 𝒖 ∈  (with corresponding set 𝛤 ), the following hold.

i. (𝛤 -lim inf) For any sequences (𝒖𝑛)𝑛 ⊂ 𝐻1(;R2) and (𝑑𝑛)𝑛 ⊂ 𝐻1(;R) such that 𝒖𝑛 → 𝒖 in 𝐿2(;R2), we have

lim inf
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛] ≥ 𝛱[𝒖, 𝛤 ]. (13)

ii. (𝛤 -lim sup) There exists sequences (𝒖𝑛)𝑛 ⊂ 𝐻1(;R2) and (𝑑𝑛)𝑛 ⊂ 𝐻1(;R) such that 𝒖𝑛 → 𝒖 in 𝐿2(;R2) and

lim sup
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛] ≤ 𝛱[𝒖, 𝛤 ]. (14)

In the following sections, we separately prove each of the two items in the above theorem.

6 More precisely, we may find an orthogonal transformation 𝑸 ∶ R2 → R2 such that 𝒗 ⋅ (𝑸𝒗) = 0 for any 𝒗 ∈ R2. Then, we set 𝒏̂𝑖(𝑠) = 𝑸𝒕̂𝑖(𝑠) for each
1
∈ [0, (𝐼𝑖)] and for each 𝑖.
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4.3. Proof of 𝛤 -lim inf

Before we prove Theorem 1(i), we require some preliminary results. For brevity, we leave the proofs to the appendices.
The first result concerns the portions of the tubular neighborhood of each 𝐼𝑖 which do not overlap with the tubular neighborhood

belonging to another 𝐼𝑗 or with 𝜕.

roposition 2. For any 𝜌 > 0, let 𝓁𝑖𝒙𝜌 be the segment of length 2𝜌, centered at point 𝒙 ∈ 𝐼𝑖 and orthogonal to 𝐼𝑖, i.e.,

𝓁𝑖𝒙𝜌 =
{

𝒙 + 𝑧𝒏̂𝑖(𝒙) ∶ 𝑧 ∈ (−𝜌, 𝜌)
}

.

or each 𝑖, define 𝐽𝑖 = 𝜕 ∪
(

⋃

𝑗≠𝑖 𝐼𝑗
)

∪ {𝜸𝑖(0), 𝜸𝑖(1(𝐼𝑖))}. Then, for

0 < 𝜌 < min
𝑖

{

min
{

𝜌𝑖, max
0≤𝑠≤1(𝐼𝑖)

dist(𝜸𝑖(𝑠), 𝐽𝑖)
3

}}

the sets (𝐴𝑖𝜌)𝑖 with

𝐴𝑖𝜌 ∶= 𝜸𝑖
(

{𝑠 ∈ [0,1(𝐼𝑖)] ∶ dist(𝜸𝑖(𝑠), 𝐽𝑖) > 3𝜌}
)

are nonempty and have the following properties.

1. For any 𝒙 ∈ 𝐴𝑖𝜌, 𝓁𝑖𝒙𝜌 ∩ 𝓁𝑗𝒚𝜌 = ∅ for any 𝒚 ∈ 𝐼𝑗 (including the case where 𝑗 = 𝑖 and 𝒚 ≠ 𝒙) and 𝓁𝑖𝒙𝜌 ∩ 𝜕 = ∅.
2. For any 𝒙 ∈ 𝐴𝑖𝜌 and 𝒚 ∈ 𝓁𝑖𝒙𝜌, dist(𝒚,) = dist(𝒚, 𝐼𝑖) = |𝒚 − 𝒙|.
3. As 𝜌 decreases to 0,

lim
𝜌→0+

1(𝐼𝑖 ⧵ 𝐴𝑖𝜌) = 0,

so that

lim
𝜌→0+

1(𝛤 ∩ 𝐴𝑖𝜌) = 1(𝛤 ∩ 𝐼𝑖).

The second result is a specialized 𝛤 -lim infresult for the one-dimensional domain  = (−𝜌, 𝜌) containing a crack at 𝑧 = 0.

Proposition 3 (One-dimensional 𝛤 -lim inf). Suppose 𝑢 ∈ 𝐿2((−𝜌, 𝜌);R), but 𝑢|(−𝛿,𝛿) ∉ 𝐻1((−𝛿, 𝛿);R) for any 0 < 𝛿 ≤ 𝜌. Let (𝑢𝑛)𝑛, (𝑑𝑛)𝑛 ⊂
1((−𝜌, 𝜌);R) be such that 𝑢𝑛 → 𝑢 in 𝐿2((−𝜌, 𝜌);R). Then, for any constant 𝐶 > 0,

lim inf
𝑛→∞

[

∫

𝜌

−𝜌
(1 − 𝑑𝑛)2𝐶(𝑢′𝑛)

2 d𝑧 + ∫

𝜌

−𝜌

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑2𝑛
𝜀𝑛

+ 𝜀𝑛(𝑑′𝑛)
2

)

d𝑧

]

≥ 𝑔int , (15a)

here

𝑔(𝑡) ∶=

{

𝑔𝑖 if |𝑡| ≤ 𝑚,
𝑔𝑏 otherwise.

(15b)

We remark that in our formulation (7b), 𝑔𝜀(𝒙) = 𝑔(dist(𝒙,)∕𝜀). With these results, we are now ready for the proof.

roof of Theorem 1(i).

1. Without loss of generality, assume that the sequences (𝒖𝑛, 𝑑𝑛)𝑛 are such that

lim inf
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛] < ∞.

Otherwise, it is trivial to bound the limit inferior from below by any finite value we choose. Also, without loss of generality,
we may assume that (𝜀𝑛)𝑛 is a strictly decreasing sequence.

2. Fix 𝜌 > 0 (which will be specified later) and consider the 𝜌-neighborhood of . We partition the domain into  ⧵𝜌() and
𝜌() ∩ , and we apply superadditivity of the limit inferior:

lim inf
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛] ≥ lim inf
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛, ⧵𝜌()] + lim inf
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛,𝜌() ∩ ], (16)

where for a subset 𝛺 ⊆  we define 𝛱𝜀[⋅, ⋅, 𝛺] to be the same as in (7a), but integrated over 𝛺 instead of . As 𝜀𝑛 → 0, we
will eventually have 𝑚𝜀𝑛 < 𝜌, so that 𝑚𝜀𝑛 () ⊂ 𝜌(). Going forward, we assume 𝑛 is sufficiently large so that this is the
case.

3. We consider separately each of the two terms on the right-hand-side of (16). For the first term, since we have cut out the
widened interfaces, 𝑔𝜀(𝒙) ≡ 𝑔𝑏 in ⧵𝜌(). In this domain, we may apply standard 𝛤 -convergence results such as Chambolle
(2004, Theorem 4):

lim inf
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛, ⧵𝜌()] ≥ 𝑊 (𝒙, 𝝐(𝒖)) d𝒙 + 𝑔𝑏1(𝛤 ⧵𝜌()).
∫⧵(𝛤∪𝜌())
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4. For the second term of (16), let us choose a subsequence (𝒖𝑛𝑘 , 𝑑𝑛𝑘 )𝑘 of (𝒖𝑛, 𝑑𝑛)𝑛 for which.

lim
𝑘→∞

𝛱𝜀𝑛𝑘
[𝒖𝑛𝑘 , 𝑑𝑛𝑘 ,𝜌() ∩ ] = lim inf

𝑛→∞
𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛,𝜌() ∩ ].

Going forward, we will abuse notation by referring to the subsequence as (𝒖𝑛, 𝑑𝑛)𝑛. Next, apply Proposition 2 to construct
the sets (𝐴𝑖𝜌)𝑖. We recall that each set 𝐴𝑖𝜌 contains all points 𝒙 ∈ 𝐼𝑖 such that the orthogonal segment 𝓁𝑖𝒙𝜌 ∶= {𝒙 +
𝑧𝒏̂𝑖(𝒙) ∶ 𝑧 ∈ (−𝜌, 𝜌)} does not intersect 𝜕 or any other orthogonal segment 𝓁𝑗𝒚𝜌 with 𝒚 ∈ 𝐼𝑗 (which includes 𝒚 ∈ 𝐼𝑖).
Let 𝑖𝜌 =

{

𝓁𝑖𝒙𝜌 ∶ 𝒙 ∈ 𝛤 ∩ 𝐴𝑖𝜌
}

⊂ 𝜌() ∩ . We assume that 𝜌 < 𝑅min is sufficiently small enough that each 𝐴𝑖𝜌 (and hence
𝑖𝜌) is not empty. By construction, 𝑖𝜌 ∩ 𝑗𝜌 = ∅ when 𝑖 ≠ 𝑗. Then, we trivially have

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛,𝜌() ∩ ] ≥ 𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛, (∪𝑖𝑖𝜌)] =
∑

𝑖
𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛, 𝑖𝜌].

5. We briefly discuss integration within each 𝑖𝜌. We use the coordinate map (11) defined for (𝑠, 𝑧) ∈ [0,1(𝐼𝑖)] × (−𝜌, 𝜌), which
has Jacobian

1 + 𝑧
𝑅𝑖(𝑠)

≥ 1 −
𝜌

𝑅min
> 0,

where the first inequality is a consequence of (10) and the second inequality is because 𝜌 is chosen to be smaller than 𝑅min.
Then, for any integrand 𝑓 (𝒙), going to coordinates gives

∫𝑖𝜌
𝑓 (𝒙) d𝒙 = ∫𝜸−1𝑖 (𝛤∩𝐴𝑖𝜌)

∫

𝜌

−𝜌
𝑓 (𝒙(𝑠, 𝑧))

(

1 + 𝑧
𝑅𝑖(𝑠)

)

d𝑧d𝑠.

Using the lower bound on the Jacobian, we have

∫𝑖𝜌
𝑓 (𝒙) d𝒙 ≥

(

1 −
𝜌

𝑅min

)

∫𝜸−1𝑖 (𝛤∩𝐴𝑖𝜌)
∫

𝜌

−𝜌
𝑓 (𝒙(𝑠, 𝑧)) d𝑧d𝑠.

In this way, we have transformed an integral over 𝑖𝜌 into an integral over the rectangles 𝜸−1𝑖 (𝛤 ∩ 𝐴𝑖𝜌) × (−𝜌, 𝜌).
6. As shorthand, let us denote the two functionals in (7a) as 𝛱𝑒

𝜀 and 𝛱𝑓
𝜀 , respectively, for the elastic and surface energy terms.

We may extend the normal vector 𝒏̂𝑖 away from 𝐼𝑖 and into 𝑖𝜌 through the coordinate map; abusing notation, we have
𝒏̂𝑖(𝒙(𝑠, 𝑧)) = 𝒏̂𝑖(𝑠). Then, for 𝛱𝑒

𝜀 we trivially have

𝛱𝑒
𝜀𝑛
[𝒖𝑛, 𝑑𝑛, 𝑖𝜌] ≥ ∫𝑖𝜌

(1 − 𝑑𝑛)2𝐶𝜆𝜇|𝒏̂𝑖 ⋅ ∇𝒖𝑛 ⋅ 𝒏̂𝑖|2 d𝒙,

were 𝐶𝜆𝜇 is a constant depending on the elastic moduli such that 𝑊 (𝒙, 𝝐(𝒖)) ≥ 𝐶𝜆𝜇|𝝐(𝒖)|2.7 In the above, we also used the
fact that |𝝐(𝒖)| ≥ |𝒗 ⋅ ∇𝒖 ⋅ 𝒗| for any unit vector 𝒗.

7. Following Step 5, we go to coordinates. Let us define the scalar function 𝑢𝑧𝑛(𝑠, 𝑧) = 𝒖𝑛(𝒙(𝑠, 𝑧)) ⋅ 𝒏̂𝑖(𝒙(𝑠, 𝑧)) and abuse notation
by writing 𝑑𝑛(𝑠, 𝑧) = 𝑑𝑛(𝒙(𝑠, 𝑧)). Then, 𝜕𝑢𝑧𝑛∕𝜕𝑧 = 𝒏̂𝑖 ⋅ ∇𝒖𝑛 ⋅ 𝒏̂𝑖, and so

𝛱𝑒
𝜀𝑛
[𝒖𝑛, 𝑑𝑛, 𝑖𝜌] ≥

(

1 −
𝜌

𝑅min

)

∫𝜸−1𝑖 (𝛤∩𝐴𝑖𝜌)
∫

𝜌

−𝜌
(1 − 𝑑𝑛)2𝐶𝜆𝜇

|

|

|

|

𝜕𝑢𝑧𝑛
𝜕𝑧

|

|

|

|

2
d𝑧d𝑠.

8. Similarly, for 𝛱𝑓
𝜀 , we note that |∇𝑑𝑛| ≥ |∇𝑑𝑛 ⋅ 𝒏̂𝑖| = |𝜕𝑑𝑛∕𝜕𝑧|, and so

𝛱𝑓
𝜀𝑛
[𝒖𝑛, 𝑑𝑛, 𝑖𝜌] ≥

(

1 −
𝜌

𝑅min

)

∫𝜸−1𝑖 (𝛤∩𝐴𝑖𝜌)
∫

𝜌

−𝜌

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑2𝑛
𝜀𝑛

+ 𝜀𝑛
|

|

|

|

𝜕𝑑𝑛
𝜕𝑧

|

|

|

|

2
)

d𝑧d𝑠.

In the previous inequality, we used the fact that 𝑔𝜀𝑛 (𝒙) = 𝑔(dist(𝒙,)∕𝜀𝑛), where 𝑔 is defined in (15b), and dist(𝒙,) is precisely
𝑧 for points in 𝑖𝜌 (see Proposition 2).

9. Let 𝛩 = 𝜸−1𝑖 (𝛤 ∩𝐴𝑖𝜌) × (−𝜌, 𝜌) be the parametric domain for (𝑠, 𝑟). Then, 𝑢𝑧𝑛, 𝑑𝑛 ∈ 𝐻1(𝛩;R) and 𝑢𝑧 ∶= 𝒖 ⋅ 𝒏̂𝑖 belongs to 𝐿2(𝛩;R).
We now apply two slicing results. First, by the slicing property of 𝐻1 functions (see Evans and Gariepy (2015, Theorem
4.21)), for almost-every 𝑠 ∈ 𝜸−1𝑖 (𝛤 ∩ 𝐴𝑖𝜌), the restrictions of 𝑢𝑧𝑛 and 𝑑𝑛8 to the segment {𝑠} × (−𝜌, 𝜌), which we call 𝑢𝑧𝑛|𝑠 and
𝑑𝑛|𝑠, respectively, belong to 𝐻1((−𝜌, 𝜌);R); moreover, (𝑢𝑧𝑛|𝑠)′ and (𝑑𝑛|𝑠)′ coincide for almost every 𝑧 ∈ (−𝜌, 𝜌) with 𝜕𝑢𝑧𝑛∕𝜕𝑧 and
𝜕𝑑𝑛∕𝜕𝑧. Second, via Fubini’s Theorem and Evans and Gariepy (2015, Theorem 1.21), there exists a subsequence (𝑢𝑧𝑛𝑘 , 𝑑𝑛𝑘 )𝑘
of (𝑢𝑧𝑛, 𝑑𝑛)𝑛 for which 𝑢𝑧𝑛𝑘 |𝑠 converges in 𝐿2((−𝜌, 𝜌);R) to 𝑢𝑧|𝑠 for almost every 𝑠 ∈ 𝜸−1𝑖 (𝛤 ∩ 𝐴𝑖𝜌). Moreover, because of the
assumptions on 𝒖 ∈ , we know that 𝑢𝑧|𝑠 must be discontinuous across the crack set, in particular 𝑧 = 0. Finally, as before,
we abuse notation and refer to the subsequence as (𝑢𝑧𝑛, 𝑑𝑛)𝑛.

7 The constant 𝐶𝜆𝜇 is precisely the minimum eigenvalue of the fourth-order elasticity tensor C, which is defined so that (3) is equivalent to 𝑊 (𝒙, 𝝐(𝒖)) =
1
2
𝝐(𝒖) ∶ (C(𝒙) ∶ 𝝐(𝒖)).

8 More precisely, there are representatives in the equivalence classes of 𝑢𝑧𝑛 and 𝑑𝑛 for which this property holds; however, we abuse notation and do not

distinguish between the representative and the equivalence class.

10 
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10. For almost every 𝑠 ∈ 𝜸−1𝑖 (𝛤 ∩ 𝐴𝑖𝜌), if we define

𝑓𝑛(𝑠) ∶= ∫

𝜌

−𝜌
(1 − 𝑑𝑛|𝑠)2𝐶𝜆𝜇((𝑢𝑧𝑛|𝑠)′)2 d𝑧 + ∫

𝜌

−𝜌

𝑔(𝑧∕𝜀𝑛)
2

(

(𝑑𝑛|𝑠)2

𝜀𝑛
+ 𝜀𝑛((𝑑𝑛|𝑠)′)2

)

d𝑧,

then by the one-dimensional 𝛤 -liminf result, Proposition 3, we have

lim inf
𝑛→∞

𝑓𝑛(𝑠) ≥ 𝑔int .

Applying Fatou’s lemma (and the sub-additivity of the lim inf), we have

lim inf
𝑛→∞ ∫𝜸−1𝑖 (𝛤∩𝐴𝑖𝜌)

𝑓𝑛(𝑠) d𝑠 ≥ ∫𝜸−1𝑖 (𝛤∩𝐴𝑖𝜌)
lim inf
𝑛→∞

𝑓𝑛(𝑠) d𝑠

≥ ∫𝜸−1𝑖 (𝛤∩𝐴𝑖𝜌)
𝑔int d𝑠

= 𝑔int1(𝛤 ∩ 𝐴𝑖𝜌).

11. By the choice of subsequences in Steps 4 and 9, we have that

lim inf
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛,𝜌() ∩ ] ≥
(

1 −
𝜌

𝑅min

)

𝑔int
∑

𝑖
1(𝛤 ∩ 𝐴𝑖𝜌).

12. Finally, we put together the estimates for  ⧵𝜌() and 𝜌() ∩ :

lim inf
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛] ≥ ∫⧵(𝛤∪𝜌())
𝑊 (𝒙, 𝝐(𝒖)) d𝒙 + 𝑔𝑏1(𝛤 ⧵𝜌()) +

(

1 −
𝜌

𝑅min

)

𝑔int
∑

𝑖
1(𝛤 ∩ 𝐴𝑖𝜌).

Since the left-hand-side is independent of 𝜌, we may shrink 𝜌 to zero. We proceed term by term:

(a) The strain energy density 𝑊 (⋅, 𝝐(𝒖)) belongs to 𝐿1( ⧵ 𝛤 ;R) and is non-negative. Thus, 2 𝑊 (⋅, 𝝐(𝒖)) is a measure on
subsets of  ⧵ 𝛤 (cf. Vol’pert and Hudjaev (1985, §3.2)). Because

⋃

𝜌>0
 ⧵ (𝛤 ∪𝜌) =  ⧵ (𝛤 ∪ ),

by continuity of measures on nested sets, we have

lim
𝜌→0+∫⧵(𝛤∪𝜌())

𝑊 (𝒙, 𝝐(𝒖)) d𝒙 = ∫⧵(𝛤∪)
𝑊 (𝒙, 𝝐(𝒖)) d𝒙 = ∫⧵𝛤

𝑊 (𝒙, 𝝐(𝒖)) d𝒙.

For the last equality, we used the fact that any function 𝑓 ∈ 𝐿1( ⧵ (𝛤 ∪ );R) also belongs to 𝐿1( ⧵ 𝛤 ;R), since
2() = 0 and we may arbitrarily define values for 𝑓 along  without changing the integral.

(b) Similarly, for the nesting sets (𝛤 ⧵𝜌())𝜌, continuity of the Hausdorff measure gives

lim
𝜌→0+

1(𝛤 ⧵𝜌()) = 1(𝛤 ⧵ ).

(c) Since 𝑅min is independent of 𝜌,

lim
𝜌→0+

(

1 −
𝜌

𝑅min

)

= 1.

(d) Finally, by construction of 𝐴𝑖𝜌, we have

lim
𝜌→0+

∑

𝑖
1(𝛤 ∩ 𝐴𝑖𝜌) =

∑

𝑖
1(𝛤 ∩ 𝐼𝑖) = 1(𝛤 ∩ ).

Hence

lim inf
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛] ≥ ∫⧵𝛤
𝑊 (𝒙, 𝝐(𝒖)) d𝒙 + 𝑔𝑏1(𝛤 ⧵ ) + 𝑔int1(𝛤 ∩ ).

as desired. □

4.4. Proof of 𝛤 -lim sup

Next, we prove Theorem 1(ii). We require a preliminary result for this step, the proof of which is left to the appendices, which
concerns the arc length of the boundary of the 𝜌-neighborhood of a 𝐶2 curve.

Proposition 4. For any 𝐼𝑖, let 0 ≤ 𝑠1 < 𝑠2 ≤ 1(𝐼𝑖). Then, for 𝜌 < 𝑅min,

1(𝜕𝜌(𝜸𝑖([𝑠1, 𝑠2]))) ≤ 4𝜋𝜌 + 2
(

1 +
𝜌

)

1(𝜸𝑖([𝑠1, 𝑠2]))
𝑅min

11 
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We are now ready for the proof. Throughout this proof, we make use of the 𝛤 -convergence proof of Chambolle (2004, Theorem
4) for domains with constant fracture toughness.

Proof of Theorem 1(ii).

1. Without loss of generality, we assume that for each 𝐼𝑖, the set 𝛤 ∩ 𝐼𝑖 may be decomposed into the images of 𝐽𝑖 disjoint closed
intervals contained in [0,1(𝐼𝑖)], (𝜸𝑖([𝑠𝑗1, 𝑠𝑗2]))

𝐽𝑖
𝑗=1.

9 Let (𝛤𝑗 )𝑗 be the collection of all the subsets over all 𝐼𝑖, and let 𝐽 =
∑

𝑖 𝐽𝑖 be
the total number of subsets. Because the subsets are disjoint for each 𝐼𝑖, while 𝐼𝑖 and 𝐼𝑗 may intersect only at their endpoints,
1(𝛤 ∩ ) =

∑

𝑗 1(𝛤𝑗 ).
2. Construct a sequence (𝛼𝑛)𝑛 converging to 0 such that 𝛼𝑛 = 𝑜(𝜀𝑛), ensuring 𝑘𝜀𝑛 = 𝑜(𝛼𝑛) as in Chambolle (2004, Theorem 4).
3. We now construct the recovery sequences (𝒖𝑛)𝑛 and (𝑑𝑛)𝑛. As in Chambolle (2004, Theorem 4), define

𝒖𝑛(𝒙) =
⎧

⎪

⎨

⎪

⎩

𝟎 dist(𝒙, 𝛤 ) < 𝛼𝑛∕2,
(

2dist(𝒙,𝛤 )
𝛼𝑛

− 1
)

𝒖(𝒙) 𝛼𝑛∕2 ≤ dist(𝒙, 𝛤 ) < 𝛼𝑛,

𝒖(𝒙) otherwise.

By the regularity of the distance function, it is straightforward to show that 𝒖𝑛 ∈ 𝐻1(;R2) and ‖𝒖𝑛−𝒖‖𝐿2(;R2) → 0 as 𝑛 → ∞.
Moreover, since |𝒖𝑛(𝒙)| ≤ |𝒖(𝒙)| for almost every 𝒙 ∈ , we have ‖𝒖𝑛‖𝐿∞(;R2) ≤ ‖𝒖‖𝐿∞(;R2).

4. Next, let

𝑑𝑛(𝑡) =

⎧

⎪

⎨

⎪

⎩

exp
(

𝛼𝑛−|𝑡|
2𝜀𝑛

)

|𝑡| ≥ 𝛼𝑛
1 |𝑡| < 𝛼𝑛.

We remark that the function 𝑑𝑛(dist(𝒙, 𝛤 ⧵)) is precisely that used in the recovery sequence by Chambolle. Here, we will use
this function around the bulk (i.e., non-interfacial) cracks.

5. Around the interface cracks, we require another damage profile 𝑑. Let 𝜌 > 0 and define

𝑑𝑛(𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 |𝑡| ≥ 𝜌,

2𝑔𝑖 sinh
(

|𝑡|−𝜌
𝜀𝑛

)

(𝑔𝑏 + 𝑔𝑖) sinh
(

𝛼𝑛−𝜌
𝜀𝑛

)

+ (𝑔𝑖 − 𝑔𝑏) sinh
(

𝛼𝑛−2𝑚𝜀𝑛+𝜌
𝜀𝑛

) 𝑚𝜀𝑛 ≤ |𝑡| < 𝜌,

(𝑔𝑏 + 𝑔𝑖) sinh
(

|𝑡|−𝜌
𝜀𝑛

)

+ (𝑔𝑖 − 𝑔𝑏) sinh
(

|𝑡|−2𝑚𝜀𝑛+𝜌
𝜀𝑛

)

(𝑔𝑏 + 𝑔𝑖) sinh
(

𝛼𝑛−𝜌
𝜀𝑛

)

+ (𝑔𝑖 − 𝑔𝑏) sinh
(

𝛼𝑛−2𝑚𝜀𝑛+𝜌
𝜀𝑛

) 𝛼𝑛 ≤ |𝑡| < 𝑚𝜀𝑛,

1 |𝑡| < 𝛼𝑛.

In the prior equation, we have assumed that 𝛼𝑛 < 𝑚𝜀𝑛 < 𝜌. Because 𝛼𝑛 = 𝑜(𝜀𝑛), we can always choose 𝑛 sufficiently large so
that this is the case. The function 𝑑𝑛(𝑡) is computed by minimizing

𝛱
𝑓
𝜀𝑛
[𝑑] = ∫

𝜌

−𝜌

𝑔(𝑡∕𝜀𝑛)
2

(

𝑑2

𝜀𝑛
+ 𝜀𝑛(𝑑′)2

)

d𝑡

over the set

𝛼𝑛𝜌𝑛 ∶=
{

𝑑 ∈ 𝐻1((−𝜌, 𝜌);R) ∶ 𝑑(𝑡) = 1 for 𝑡 ∈ [−𝛼𝑛, 𝛼𝑛], 𝑑(±𝜌) = 0
}

,

and extending the minimizer by 0 outside of the interval [−𝜌, 𝜌] (compare with the proof of Proposition 3). By construction,

lim
𝑛→∞

𝛱
𝑓
𝜀𝑛
[𝑑𝑛] = 𝑔int .

6. Finally, we build 𝑑𝑛 as the point-wise maximum of 𝑑𝑛 and 𝑑𝑛:

𝑑𝑛(𝒙) = max
{

𝑑𝑛(dist(𝒙, 𝛤 ⧵𝜌())), 𝑑𝑛(dist(𝒙, 𝛤 ∩ ))
}

,

where 𝜌 is chosen to be the same as in the previous step. Just like the constituent functions, we remark that 0 ≤ 𝑑𝑛 ≤ 1.
Moreover, 𝑑𝑛(𝒙) = 1 whenever 𝒙 ∈ 𝛼𝑛 (𝛤 ). Importantly, 𝑑𝑛 is Lipschitz continuous (as it is the point-wise maximum of the

9 This assumption is not terribly restrictive, see Proposition 8. For any 𝜂 > 0, we can cover 𝛤 ∩ 𝐼𝑖 by 𝑁𝑖𝜂 pairwise disjoint, simply connected, closed subsets
𝐴𝑗 )𝑗 so that

(𝛤 ∩ 𝐼𝑖) ≤
𝑁𝑖𝜂
∑

𝑗=1
1(𝐴𝑗 ) ≤ (𝛤 ∩ 𝐼𝑖) + 𝜂.

e then proceed through the proof with this new set, and take 𝜂 → 0+ at the end.
12 
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compositions of the Lipschitz functions 𝑑𝑛 and 𝑑𝑛 with the respective distance functions). Hence, by Rademacher’s Theorem,
𝑑𝑛 ∈ 𝐻1(;R). Going forward, we will abuse notation by writing 𝑑𝑛(dist(𝒙, 𝛤 ⧵𝜌())) as 𝑑𝑛(𝒙), with similar abuse of notation
for 𝑑𝑛(𝒙).

7. Now, we show that the sequences (𝒖𝑛)𝑛 and (𝑑𝑛)𝑛 are indeed recovery sequences. As in the proof of Theorem 1(i), we let 𝛱𝑒
𝜀

and 𝛱𝑓
𝜀 be the two functionals in (7). Then, for the elastic energy

𝛱𝑒
𝜀𝑛
[𝒖𝑛, 𝑑𝑛] = 𝛱𝑒

𝜀𝑛
[𝒖, 𝑑𝑛, ⧵𝛼𝑛 (𝛤 )] +𝛱𝑒

𝜀𝑛
[𝒖𝑛, 1, ∩𝛼𝑛 (𝛤 )],

where we have used that 𝒖𝑛 ≡ 𝒖 in  ⧵𝛼𝑛 (𝛤 ) and the fact that 𝑑𝑛 ≡ 1 in 𝛼𝑛 (𝛤 ).
8. For the first term,

𝛱𝑒
𝜀𝑛
[𝒖, 𝑑𝑛, ⧵𝛼𝑛 (𝛤 )] ≤ (1 + 𝑘𝜀𝑛 )∫⧵𝛼𝑛 (𝛤 )

𝑊 (𝒙, 𝝐(𝒖)) d𝒙 ≤ (1 + 𝑘𝜀𝑛 )∫⧵𝛤
𝑊 (𝒙, 𝝐(𝒖)) d𝒙,

where the first inequality follows from the bounds on 𝑑𝑛 (so that (1 − 𝑑𝑛)2 ≤ 1) and the second inequality follows from
integrating a non-negative function over nested domains. Taking the limit as 𝑛 → ∞, we get

lim sup
𝑛→∞

𝛱𝑒
𝜀𝑛
[𝒖, 𝑑𝑛, ⧵𝛼𝑛 (𝛤 )] ≤ ∫⧵𝛤

𝑊 (𝒙, 𝝐(𝒖)) d𝒙.

9. Meanwhile, for the second term, we first note that

∇𝒖𝑛(𝒙) =
(

2dist(𝒙, 𝛤 )
𝛼𝑛

− 1
)

∇𝒖(𝒙) + 2
𝛼𝑛

𝒖(𝒙)⊗ ∇dist(𝒙, 𝛤 )

when 𝒙 ∈ 𝛼𝑛 (𝛤 ) ⧵𝛼𝑛∕2(𝛤 ). Because 𝑊 (𝒙, 𝝐(𝒖)) is a quadratic function of ∇𝒖, we must have that10

𝑊 (𝒙, 𝝐(𝒖𝑛)) ≤ 2
(

2dist(𝒙, 𝛤 )
𝛼𝑛

− 1
)2

𝑊 (𝒙, 𝝐(𝒖)) + 2𝐶1
4
𝛼2𝑛

‖𝒖‖2
𝐿∞(;R2)

,

where the constant 𝐶1 depends on the elastic properties of the bulk material. In computing the previous constant, we used
that |∇dist(𝒙, 𝛤 )| = 1 almost everywhere in , so that |𝒖 ⊗ ∇dist(𝒙, 𝛤 )| ≤ ‖𝒖‖𝐿∞(;R2). Hence, also noting that the prefactor
2dist(𝒙, 𝛤 )∕𝛼𝑛 − 1 ≤ 1,

𝛱𝑒
𝜀𝑛
[𝒖𝑛, 1, ∩𝛼𝑛 (𝛤 )] ≤ 2𝑘𝜀𝑛 ∫∩𝛼𝑛 (𝛤 )⧵𝛼𝑛∕2(𝛤 )

𝑊 (𝒙, 𝝐(𝒖)) d𝒙

+ 8𝐶1

𝑘𝜀𝑛‖𝒖‖
2
𝐿∞(;R2)

𝛼2𝑛
2( ∩𝛼𝑛 (𝛤 ) ⧵𝛼𝑛∕2(𝛤 )),

≤ 2𝑘𝜀𝑛 ∫∩𝛼𝑛 (𝛤 )
𝑊 (𝒙, 𝝐(𝒖)) d𝒙 + 8𝐶1

𝑘𝜀𝑛‖𝒖‖
2
𝐿∞(;R2)

𝛼2𝑛
2(𝛼𝑛 (𝛤 )).

10. To bound 2(𝛼𝑛 (𝛤 )), we appeal to the Minkowski content:

lim
𝛼→0+

2(𝛼(𝛤 ))
2𝛼

which coincides with 1(𝛤 ) for closed, rectifiable subsets of R2 (Federer, 1996, Theorem 3.2.39). From the fact that this is
a convergent, non-negative sequence when evaluated on (𝛼𝑛)𝑛, we observe that there must exist a constant 𝐶2 > 0 such that

2(𝛼𝑛 (𝛤 )) ≤ 2𝛼𝑛𝐶2

holds for all 𝑛. Hence,

𝛱𝑒
𝜀𝑛
[𝒖𝑛, 1, ∩𝛼𝑛 (𝛤 )] ≤ 2𝑘𝜀𝑛 ∫∩𝛼𝑛 (𝛤 )

𝑊 (𝒙, 𝝐(𝒖)) d𝒙 + 16𝐶1𝐶2

𝑘𝜀𝑛‖𝒖‖
2
𝐿∞(;R2)

𝛼𝑛
.

The first term must shrink to zero, because  ∩ 𝛼𝑛 (𝛤 ) ⊆ , 0 ≤ ∫ 𝑊 (𝒙, 𝝐(𝒖)) d𝒙 < ∞, and 𝑘𝜀𝑛 → 0 as 𝑛 → ∞. The second
term must also shrink to zero since we have selected (𝛼𝑛)𝑛 so that 𝑘𝜀𝑛 = 𝑜(𝛼𝑛). Hence,

lim sup
𝑛→∞

𝛱𝑒
𝜀𝑛
[𝒖𝑛, 1, ∩𝛼𝑛 (𝛤 )] = 0.

10 𝑊 (𝒙, 𝝐(𝒖)) may be shown to have the form ∇𝒖 ∶ C̃(𝒙) ∶ ∇𝒖, where the symmetric, fourth-order tensor C̃(𝒙) is bounded and has nonnegative components.
or such quadratic forms, if ∇𝒖 = 𝑼 1 + 𝑼 2, then

(𝑼 1 + 𝑼 2) ∶ C̃(𝒙) ∶ (𝑼 1 + 𝑼 2) ≤ 2𝑼 1 ∶ C̃(𝒙) ∶ 𝑼 1 + 2𝑼 2 ∶ C̃(𝒙) ∶ 𝑼 2 .

oting that 𝑼 1 = 𝑓 (𝒙)∇𝒖 gives 2𝑼 1 ∶ C̃(𝒙) ∶ 𝑼 1 = 2𝑓 (𝒙)2𝑊 (𝒙, 𝝐(𝒖)). Meanwhile, by the boundedness of C̃(𝒙), there exists a constant 𝐶1 > 0 such that
̃ 2
𝑼 2 ∶ C(𝒙) ∶ 𝑼 2 ≤ 𝐶1|𝑼 2| .

13 
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11. Next, we turn to the surface energy. Define the set

𝐴𝑛 =
{

𝒙 ∈  ∶ 𝑑𝑛(𝒙) = 𝑑𝑛(𝒙)
}

.

Then

𝛱𝑓
𝜀𝑛
[𝒖𝑛, 𝑑𝑛,] = 𝛱𝑓

𝜀𝑛
[𝒖𝑛, 𝑑𝑛, ⧵ 𝐴𝑛] +𝛱𝑓

𝜀𝑛
[𝒖𝑛, 𝑑𝑛, 𝐴𝑛].

12. For integration on  ⧵ 𝐴𝑛, we use the fact that 𝑔𝜀(𝒙) ≤ 𝑔𝑏 for any 𝒙 ∈ , while  ⧵ 𝐴𝑛 ⊆ , and so

𝛱𝑓
𝜀𝑛
[𝒖𝑛, 𝑑𝑛, ⧵ 𝐴𝑛] ≤ ∫⧵𝐴𝑛

𝑔𝑏
2

(

𝑑2𝑛
𝜀𝑛

+ 𝜀𝑛|∇𝑑𝑛|2
)

d𝒙 ≤ ∫
𝑔𝑏
2

(

𝑑2𝑛
𝜀𝑛

+ 𝜀𝑛|∇𝑑𝑛|2
)

d𝒙.

The set 𝛤 ⧵𝜌() is closed and rectifiable. Hence, the integral on the right is simply the one that results from Chambolle’s
construction for the crack set 𝛤 ⧵𝜌(). Repeating his steps, we get

lim sup
𝑛→∞

𝛱𝑓
𝜀𝑛
[𝒖𝑛, 𝑑𝑛, ⧵ 𝐴𝑛] ≤ lim sup

𝑛→∞ ∫
𝑔𝑏
2

(

𝑑2𝑛
𝜀𝑛

+ 𝜀𝑛|∇𝑑𝑛|2
)

d𝒙 ≤ 𝑔𝑏1(𝛤 ⧵𝜌()).

13. For integration on 𝐴𝑛, we consider the subsets (𝐴𝑛𝑗 )𝑗 , where

𝐴𝑛𝑗 =
{

𝒙 ∈ 𝐴𝑛 ∶ 𝑑𝑛(𝒙) = 𝑑𝑛𝑗 (𝒙)
}

,

where we use the shorthand 𝑑𝑛𝑗 (𝒙) ∶= 𝑑𝑛(dist(𝒙, 𝛤𝑗 )). We recall that the simply connected pieces (𝛤𝑗 )𝑗 which compose 𝛤 ∩ 
were defined in Step 1. Then, because these subsets might overlap (in particular, if 𝑑𝑛𝑗 (𝒙) = 𝑑𝑛𝑘(𝒙) = 1 for some 𝑗 ≠ 𝑘),

𝛱𝑓
𝜀𝑛
[𝒖𝑛, 𝑑𝑛, 𝐴𝑛] ≤

𝐽
∑

𝑗=1
𝛱𝑓

𝜀𝑛
[𝒖𝑛, 𝑑𝑛𝑗 , 𝐴𝑛𝑗 ]

Additionally, because 𝑑𝑛𝑗 (𝒙) = 0 for 𝒙 ∉ 𝜌(𝛤𝑗 ), we have 𝐴𝑛𝑗 ⊆ 𝜌(𝛤𝑗 ), and so for each 𝑗

𝛱𝑓
𝜀𝑛
[𝒖𝑛, 𝑑𝑛𝑗 , 𝐴𝑛𝑗 ] ≤ 𝛱𝑓

𝜀𝑛
[𝒖𝑛, 𝑑𝑛𝑗 ,𝜌(𝛤𝑗 )] = ∫𝜌(𝛤𝑗 )

𝑔𝜀𝑛 (𝒙)
2

⎛

⎜

⎜

⎝

𝑑
2
𝑛𝑗

𝜀𝑛
+ 𝜀𝑛|∇𝑑𝑛𝑗 |2

⎞

⎟

⎟

⎠

d𝒙.

Finally, because dist(𝒙, 𝛤𝑗 ) ≥ dist(𝒙,), we have 𝑔𝜀(𝒙) = 𝑔(dist(𝒙,)∕𝜀) ≤ 𝑔(dist(𝒙, 𝛤𝑗 )∕𝜀), and so

∫𝜌(𝛤𝑗 )

𝑔𝜀𝑛 (𝒙)
2

⎛

⎜

⎜

⎝

𝑑
2
𝑛𝑗

𝜀𝑛
+ 𝜀𝑛|∇𝑑𝑛𝑗 |2

⎞

⎟

⎟

⎠

d𝒙 ≤ ∫𝜌(𝛤𝑗 )

𝑔(dist(𝒙, 𝛤𝑗 )∕𝜀𝑛)
2

⎛

⎜

⎜

⎝

𝑑
2
𝑛𝑗

𝜀𝑛
+ 𝜀𝑛|∇𝑑𝑛𝑗 |2

⎞

⎟

⎟

⎠

d𝒙.

14. Let 𝑧 = dist(𝒙, 𝛤𝑗 ). Then 𝑑𝑛𝑗 (𝒙) = 𝑑𝑛(𝑧). Meanwhile, ∇𝑑𝑛𝑗 (𝒙) = 𝑑
′
𝑛(𝑧)∇dist(𝒙, 𝛤𝑗 ), where we recall that |∇dist(𝒙, 𝛤𝑗 )| = 1 almost

everywhere, and so |∇𝑑𝑛𝑗 (𝒙)|2 = (𝑑
′
𝑛(𝑧))

2 almost everywhere. Hence, the above integrand depends only on 𝑧, the distance to
𝛤𝑗 . Via integration over level sets of the distance function (Evans and Gariepy, 2015, Theorem 3.11), this may be written as

∫𝜌(𝛤𝑗 )

𝑔(dist(𝒙, 𝛤𝑗 )∕𝜀𝑛)
2

⎛

⎜

⎜

⎝

𝑑
2
𝑛𝑗

𝜀𝑛
+ 𝜀𝑛|∇𝑑𝑛𝑗 |2

⎞

⎟

⎟

⎠

d𝒙 = ∫

𝜌

0

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑𝑛(𝑧)2

𝜀𝑛
+ 𝜀𝑛(𝑑

′
𝑛(𝑧))

2

)

1(𝜕𝑧(𝛤𝑗 )) d𝑧.

Using Proposition 4, we may bound

∫

𝜌

0

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑𝑛(𝑧)2

𝜀𝑛
+ 𝜀𝑛(𝑑

′
𝑛(𝑧))

2

)

1(𝜕𝑧(𝛤𝑗 )) d𝑧

≤
(

4𝜋𝜌 + 2
(

1 +
𝜌

𝑅min

)

1(𝛤𝑗 )
)

∫

𝜌

0

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑𝑛(𝑧)2

𝜀𝑛
+ 𝜀𝑛(𝑑

′
𝑛(𝑧))

2

)

d𝑧.

The integral on the right is precisely that which is minimized by our choice of 𝑑𝑛. Hence,

lim
𝑛→∞∫

𝜌

0

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑𝑛(𝑧)2

𝜀𝑛
+ 𝜀𝑛(𝑑

′
𝑛(𝑧))

2

)

d𝑧 =
𝑔int
2

.

As a shorthand, let 𝑔 ∕2 be the above integral for integer 𝑛, so that lim 𝑔 = 𝑔 .
𝑛 𝑛→∞ 𝑛 int

14 
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15. Putting together the bounds for the integrals over each set 𝐴𝑛𝑗 , we conclude that

lim sup
𝑛→∞

𝛱𝑓
𝜀𝑛
[𝒖𝑛, 𝑑𝑛, 𝐴𝑛] ≤ lim

𝑛→∞

𝐽
∑

𝑗=1

𝑔𝑛
2

(

4𝜋𝜌 + 2
(

1 +
𝜌

𝑅min

)

1(𝛤𝑗 )
)

= lim
𝑛→∞

𝑔𝑛

(

2𝜋𝐽𝜌 +
(

1 +
𝜌

𝑅min

) 𝐽
∑

𝑗=1
1(𝛤𝑗 )

)

= 𝑔int

(

2𝜋𝐽𝜌 +
(

1 +
𝜌

𝑅min

)

1(𝛤 ∩ )
)

.

16. Finally, putting together Steps 8, 10, 12, and 15 yields

lim sup
𝑛→∞

𝛱𝜀𝑛 [𝒖𝑛, 𝑑𝑛] ≤ ∫⧵𝛤
𝑊 (𝒙, 𝝐(𝒖)) d𝒙 + 𝑔𝑏1(𝛤 ⧵𝜌()) + 𝑔int

(

2𝜋𝐽𝜌 +
(

1 +
𝜌

𝑅min

)

1(𝛤 ∩ )
)

.

Since 𝜌 > 0 is arbitrary, we may take it to zero to yield the conclusion. In particular, for the second term, we note that
⋃

𝜌>0
𝛤 ⧵𝜌() = 𝛤 ⧵ 

and so by continuity of measures on nested sets

lim
𝜌→0+

1(𝛤 ⧵𝜌()) = 1(𝛤 ⧵ ). □

. Numerical implementation

The model and analysis of the previous sections does not address crack evolution in response to time-varying external loads.
ather, the variational principle itself is general, providing a framework to study problems with interfaces. In the following sections,
e apply our approach to problems featuring crack growth in order to study toughening mechanisms in SBs. While a crack growth
odel is not part of our theoretical framework, for concreteness we summarize the approach used in the computations. For further
etails of the model and method, we refer the reader to Vijaykumar (2019).

.1. Evolution via local stationary points

We suppose that the applied displacements vary with time 𝑡 (i.e., 𝒖̂ = 𝒖̂(𝑡)). Then, at time 𝑡, we seek (𝒖(𝑡), 𝑑(𝑡)) to be stationary
oints of the functional 𝛱𝜀. That is, recalling the admissible function spaces

𝑢(𝑡) =
{

𝒗 ∈ 𝐻1(;R2) ∶ 𝒗(𝒙) = 𝒖̂(𝑡,𝒙) for 𝒙 ∈ 𝜕𝑢
}

(17a)

𝑑 = 𝐻1(;R), (17b)

nd defining test spaces

𝑢 =
{

𝒗 ∈ 𝐻1(;R2) ∶ 𝒗 ≡ 𝟎 on 𝜕𝑢
}

(18a)

𝑑 = 𝑑 , (18b)

t time 𝑡 we seek (𝒖(𝑡), 𝑑(𝑡)) ∈ 𝑢(𝑡) ×𝑑 which satisfy

0 = ∫

(

(1 − 𝑑)2 + 𝑘𝜀
) 𝜕𝑊 (𝒙, 𝝐(𝒖))

𝜕𝝐
∶ 𝝐(𝒗) d𝒙

+ ∫

{[

𝑔𝜀(𝒙)𝑑
𝜀

− 2(1 − 𝑑)𝑊 (𝒙, 𝝐(𝒖))
]

𝜙 + 𝑔𝜀(𝒙)𝜀∇𝑑 ⋅ ∇𝜙
}

d𝒙
(19)

for any (𝒗, 𝜙) ∈ 𝑢 × 𝑑 .
We remark that stationarity of 𝛱𝜀 is a very different condition from global minimality (Bourdin et al., 2008). Moreover, a

consequence of 𝛤 -convergence is that global minimizers of 𝛱𝜀 will converge to those of 𝛱 as 𝜀 → 0 (Dal Maso, 1993); in general,
this result does not hold for local minimizers or stationary points.

5.2. Discretization and solution procedure

We partition the time interval of interest [0, 𝑇 ] into 𝑁 steps: 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇 . For simplicity, we assume a fixed time step
𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 for any 𝑛. We seek functions (𝒖𝑛, 𝑑𝑛) which approximate (𝒖(𝑡𝑛), 𝑑(𝑡𝑛)). We spatially discretize the stationarity equation
using the Finite Element Method (e.g., Hughes, 2000) with bilinear quadrilateral (Q1) finite elements. In other words, we partition
 into a mesh  ℎ of non-overlapping quadrilaterals with maximum diameter ℎ; the admissible and test functions are those that
are continuous and whose restriction to any quadrilateral 𝐸 ∈  ℎ are bilinear. We let  ℎ

𝑢 (𝑡𝑛) denote the admissible finite element
ℎ
function space for 𝒖 at 𝑡𝑛, and we use similar notation for the other function spaces. We construct our mesh  to conform to the

15 
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boundaries of the widened interface (i.e., the 𝑚𝜀-neighborhood of ). This ensures that the restriction of 𝑔𝜀(𝒙) to each quadrilateral
is a constant (either 𝑔𝑏 or 𝑔𝑖).

We define (𝒖𝑛, 𝑑𝑛) ∈  ℎ
𝑢 (𝑡𝑛) ×  ℎ

𝑑 to be the functions satisfying (19) for any (𝒗, 𝜙) ∈ ℎ
𝑢 × ℎ

𝑑 . Choosing a set of basis functions
or the finite element spaces results in a finite-dimensional system of nonlinear equations. We solve these equations monolithically
simultaneously for both 𝒖𝑛 and 𝑑𝑛) using Newton–Raphson iteration in Abaqus (2012). Instead of a monolithic scheme, we could
ave staggered the solution of 𝒖𝑛 and 𝑑𝑛 (the so-called ‘‘Alternate Minimization’’ approach Bourdin et al., 2000) to take advantage
f the biconvexity of 𝛱𝜀.

.3. Modifications to the equations

Motivated by physical modeling considerations, we make three modifications to (19) before use in the examples. First, the
revious equations do not distinguish energetically between open cracks and interpenetrated cracks, a symmetry also present in
lassical fracture mechanics without contact. Hence, cracks may nucleate and grow in regions under compression. To combat this,
everal approaches have been proposed in the literature (cf. the review Ambati et al., 2015). These approaches split the strain energy
ensity 𝑊 into positive and negative parts (corresponding to tensile and compressive strains and/or stresses), and only the positive
art is degraded by the damage. That is, we replace

(

(1 − 𝑑)2 + 𝑘𝜀
)

𝑊 (𝒙, 𝝐) →
(

(1 − 𝑑)2 + 𝑘𝜀
)

𝑊 +(𝒙, 𝝐) +𝑊 −(𝒙, 𝝐).

n this work, we adopt the spectral split of Miehe et al. (2010b). For the isotropic, linear elastic constitutive response, the forms of
± are

𝑊 ±(𝒙, 𝝐) = 1
2
𝜆(𝒙)⟨𝜖1 + 𝜖2⟩± + 𝜇(𝒙)

(

⟨𝜖1⟩
2
± + ⟨𝜖2⟩

2
±
)

here 𝜖1 and 𝜖2 are the principal strains of the tensor 𝝐, and ⟨𝜖⟩+ = max{0, 𝜖} while ⟨𝜖⟩− = min{0, 𝜖}.
Second, we impose irreversibility on the crack evolution. We remark that this condition was part of the original VFT (Francfort

nd Marigo, 1998) and RVFT (Bourdin et al., 2000), though it may not be applicable for all engineering situations (i.e., crack
ealing). In RVFT, this condition is 𝑑(𝑡1,𝒙) ≥ 𝑑(𝑡2,𝒙) for any 𝑡1 ≥ 𝑡2 and 𝒙 ∈ . Numerically, this condition can be enforced via
nequality constraint (𝑑𝑛+1(𝒙) ≥ 𝑑𝑛(𝒙) for 𝒙 ∈ ) (Bourdin et al., 2000). We instead adopt the approach of Miehe et al. (2010a),
hich replaces the strain energy density 𝑊 + in the damage-field portion of (19) with a history variable

𝖧(𝑡,𝒙) = max
𝑠∈[0,𝑡)

𝑊 +(𝒙, 𝝐(𝒖(𝑠))).

n the time-discrete case, this variable is

𝖧(𝑡𝑛,𝒙) = max
0≤𝑚<𝑛

𝑊 +(𝒙, 𝝐(𝒖𝑚)).

In the formulation in Section 3, we have neglected inertial effects, i.e. we have assumed that the deformation is static. When
e introduce time-varying external loading, we maintain the assumption of negligible inertia, which is referred to as quasi-static
ehavior. Hence, time 𝑡 only acts to parameterize the external loads and does not need to correspond to physical time. Rather 𝑡 can
e replaced by any increasing load parameter. As a consequence of neglecting inertia, numerical instabilities can arise when the
amage field evolves rapidly from one time step to another, for example in the case of catastrophic crack propagation, where the
rack may grow large distances in very small intervals of time. In particular, conventional methods to solve (19) such as Newton
teration can fail to find solutions because (𝒖𝑛+1, 𝑑𝑛+1) is ‘‘far’’ from (𝒖𝑛, 𝑑𝑛). To mitigate these numerical instabilities, as the final
odification, when seeking 𝑑𝑛+1 we add to the damage field Eq. (19) a viscous damping term of the form 𝜂

2𝛥𝑡

(

𝑑−𝑑𝑛
𝛥𝑡

)

|

|

|

𝑑−𝑑𝑛
𝛥𝑡

|

|

|

𝜙, where
> 0 (Miehe et al., 2010a). This term may be derived by adding the cubic penalty 𝜂

6 |𝑑̇|
3 to the modified energy (7), introducing

he finite time difference 𝑑̇(𝑡𝑛+1) ≈
𝑑−𝑑𝑛
𝛥𝑡 , and taking the variation with respect to 𝑑.

In summary, the modified version of (19) incorporating the above three changes is as follows. At time 𝑡𝑛+1, we seek (𝒖, 𝑑) ∈
 ℎ

𝑢 (𝑡𝑛+1) × ℎ
𝑑 which satisfy

0 = ∫

[

(

(1 − 𝑑)2 + 𝑘𝜀
) 𝜕𝑊 +(𝒙, 𝝐(𝒖))

𝜕𝝐
+

𝜕𝑊 −(𝒙, 𝝐(𝒖))
𝜕𝝐

]

∶ 𝝐(𝒗) d𝒙

+ ∫

{[

𝑔𝜀(𝒙)𝑑
𝜀

− 2(1 − 𝑑)𝖧(𝑡𝑛+1,𝒙) +
𝜂
2𝛥𝑡

(

𝑑 − 𝑑𝑛
𝛥𝑡

)

|

|

|

|

𝑑 − 𝑑𝑛
𝛥𝑡

|

|

|

|

]

𝜙 + 𝑔𝜀(𝒙)𝜀∇𝑑 ⋅ ∇𝜙
}

d𝒙
(20)

or any (𝒗, 𝜙) ∈ ℎ
𝑢 × ℎ

𝑑 . We denote the solution to (20) as (𝒖𝑛+1, 𝑑𝑛+1).

. Numerical verification

In this section, we assess the implementation of the modified RVFT for interfaces (RVFTI) in Section 5 and, in particular, how
t relates to the theory of Section 3.3. The verification provided in this section is two-fold:

(1) In standard RVFT, it has been shown that crack initiation occurs when the energy release rate is equal to the constant fracture
toughness 𝑔 (Kuhn and Müller, 2010). We show for RVFTI that crack initiation occurs when the energy release rate is equal
to 𝑔 in (8).
int
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(2) We study the problem of the kinking of a crack at the bi-material interface subjected to far-field loading. We compare the
computationally-observed kink angles against those predicted by the semi-analytical solutions of He and Hutchinson (1989).
We also study the ability of RVFTI to predict crack trapping by the interface, which we also compare with He and Hutchinson
(1989).

6.1. Crack initiation fracture toughness for the interface model

We first study a single edge notch (SEN) specimen under plane strain conditions with Young’s modulus 𝐸 and Poisson’s ratio 𝜈.
The bulk fracture toughness is 𝑔𝑏, and we set the fracture toughness in the widened interface as 𝑔𝑖. The specimen has width 𝑏, while
the initial notch has length 𝑎. We take the interface thickness to be 2𝑚𝜀. The specimen is depicted in Fig. 3(a).

We prescribe along the boundary of the specimen the asymptotic mode I displacement field with prescribed stress intensity factor
∞
𝐼 (see Anderson, 2005)

𝑢𝑥(𝒙) = 𝐾∞
𝐼 𝑢𝐼𝑥(𝒙) =

𝐾∞
𝐼

2𝜇

√

𝑟
2𝜋

cos
( 𝜃
2

)

(3 − 4𝜈 − cos(𝜃)), (21a)

𝑢𝑦(𝒙) = 𝐾∞
𝐼 𝑢𝐼𝑦 (𝒙) =

𝐾∞
𝐼

2𝜇

√

𝑟
2𝜋

sin
( 𝜃
2

)

(3 − 4𝜈 − cos(𝜃)), (21b)

here 𝑟 and 𝜃 are the usual polar coordinates associated with the point 𝒙 ∈ R2. Under plane strain conditions, the energy release
ate  is related to 𝐾∞

𝐼 via  = (1 − 𝜈2)(𝐾∞
𝐼 )2∕𝐸.

From Griffith’s criterion (Griffith, 1921), crack growth occurs when the energy release rate at the crack tip is equal to the fracture
oughness of the material, i.e.  = 𝑔int . Hence, from a simulation we may estimate the interface fracture toughness, denoted by 𝑔ℎint ,
sing the relationship

𝑔ℎint =
1 − 𝜈2

𝐸
(𝐾∞

𝐼,cr )
2, (22)

where 𝐾∞
𝐼,cr is the critical value of the prescribed mode I stress intensity factor at which the crack initiates.

In our computations, 𝑏 = 100 mm, 𝑎 = 𝑏∕4, and we took the height of the SEN specimen to be 100𝑏. The material has shear modulus
𝜇 = 22 × 103 MPa and Poisson’s ratio 𝜈 = 1∕4. For the damage field, we set 𝜀 = 𝑏∕500, 𝑘𝜀 = 0, and we vary 𝑚 ∈ {0.1, 0.2, 0.3, 0.4, 0.5},
𝑖 ∈ {1, 5} N∕mm, and 𝑔𝑏∕𝑔𝑖 ∈ {2, 5, 20}.

For the finite-width notch, we initialize the damage field by setting 𝑑 = 1 in the rectangle −𝑎 ≤ 𝑥 ≤ 0 and −ℎ ≤ 𝑦 ≤ ℎ, where
= 𝑏∕1000 is the half-width of the notch. We estimate 𝐾∞

𝐼,cr for the above parameter combinations by slowly incrementing the
arameter 𝐾∞

𝐼 from zero until the first node ahead of the notch (at 𝑥 = 0) attains a damage value of 𝑑 = 0.99. These values of 𝐾∞
𝐼,cr

re then used to estimate 𝑔ℎint in (22).
In Fig. 3(b), we compare the analytical expression for the ratio 𝑔int∕𝑔𝑏 of (8) against the numerically computed value 𝑔ℎint∕𝑔𝑏. The

hick line with unit slope corresponds to one-to-one equivalence. We observe good agreement between 𝑔ℎint and 𝑔int , and the error
etween the two is within 0.065𝑔𝑏. Additionally the precise values of 𝑔𝑖 and 𝑔𝑏 had minimal impact on 𝑔ℎint∕𝑔𝑏, which is consistent
ith (8). Hence, we conclude that the numerically obtained values for interface fracture toughness are largely consistent with their
nalytical counterparts.

For the cases where 𝑚 = 0.2 and 𝑔𝑖 = 1 N∕mm, we also ran simulations with variable 𝜀. We show the computed values of 𝑔ℎint∕𝑔𝑏
ersus 𝜀 in Fig. 3(c). All simulations results in this subfigure were computed on a single mesh with ℎ ≈ 0.01 mm. We observe that as
decreases, the value of 𝑔ℎint gets closer to the exact value 𝑔int . Because of the differences between RVFTI in Section 5 and the theory

n Section 4, and several other differences, it is not guaranteed that the numerical simulations should converge under 𝜀 refinement.
or these reasons, we find the results in Fig. 3(c) especially remarkable.

.2. Kinking of a crack at a bi-material interface

We benchmark RVFTI by comparing against kink angle predictions made by He and Hutchinson (1989) for a semi-infinite crack
long the interface between two materials and subjected to far-field loading. The geometry of the crack is illustrated in Fig. 4, where
semi-infinite crack is present along the interface of material 1 and 2. The shear modulus and Poisson’s ratio of materials 1 and 2

re (𝜇1, 𝜈1) and (𝜇2, 𝜈2), respectively.
He and Hutchinson assume that a new crack grows from the tip of the semi-infinite crack along a fixed direction. In this section,

he original semi-infinite crack is termed the interface crack and the new crack segment is termed the kinked crack. The angle that
he kinked crack makes with respect to the interface (measured clockwise from the 𝑥-axis) is called the kink angle 𝜔 and its length
s denoted as 𝑎.

The domain is loaded at infinity so that the interface crack (without the kink) is under a state of mode I and mode II stress
ntensity; these remote stress intensity factors are denoted 𝐾1 and 𝐾2, respectively. Following He and Hutchinson (1989), the mode
ixity is described using a non-dimensional parameter called the phase angle 𝛾 = arctan(𝐾2∕𝐾1). The parameter 𝛾 indicates whether

he loading is mode I or mode II dominant; 𝛾 = 0 under pure mode I loading, while 𝛾 = 𝜋∕2 for pure mode II loading, and 𝛾 < 𝜋∕4
resp. 𝛾 > 𝜋∕4) for mode I (resp. mode II) dominant loading. Expressions for the asymptotic mode I and mode II displacement fields

n the vicinity of the interface crack in terms of 𝐾1 and 𝐾2 will be described later.
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Fig. 3. (a) Schematic of SEN specimen subjected to the asymptotic mode I displacement field along the boundary. The specimen has width 𝑏, the initial notch
has length 𝑎 = 𝑏∕4, and the interface thickness is 2𝑚𝜀. (b) Comparison between the theoretical interface fracture toughness, 𝑔int∕𝑔𝑏, and that computed from the
simulations, 𝑔ℎint∕𝑔𝑏, for 𝑚 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, 𝜀 = 𝑏∕500, 𝑔𝑖 ∈ {1, 5} N∕mm and 𝑔𝑏∕𝑔𝑖 ∈ {2, 5, 20}. (c) Variation in the computed value of 𝑔ℎint∕𝑔𝑏 versus 𝜀 for
he cases where 𝑚 = 0.2 and 𝑔𝑖 = 1 N∕mm.

Fig. 4. Semi-infinite crack along a bi-material interface. (a) Schematic of the geometry, showing a crack along the interface between materials 1 (gray) and
2 (brown), which has kinked by an angle 𝜔 (defined clockwise) into material 2. The far-field loading is characterized by stress intensity factors 𝐾1 and 𝐾2
with stress intensity phase angle 𝛾 = arctan(𝐾2∕𝐾1). The kink length 𝑎 is assumed to be very small compared to any other relevant problem dimensions. (b)
Quadrilateral mesh used in the finite element computations. The computational domain has radius 𝑅0 = 1000 mm and finite-width notch. (c) Closeup of the
notch tip, showing the notch radius 𝑟0 = 𝑅0∕2000, and the wide interface with width 2𝑚𝜀 = 𝑟0∕5.

For the bi-material problem studied in He and Hutchinson (1989), it had been shown that the kink angle depends on two non-

dimensional material parameters called the Dundurs mismatch parameters 𝛼 and 𝛽 (Dundurs, 1969), which depend as follows on
the four material moduli:

𝛼 ∶=
𝜇1

(

1 − 𝜈2
)

− 𝜇2
(

1 − 𝜈1
)

( ) ( ) , (23a)

𝜇1 1 − 𝜈2 + 𝜇2 1 − 𝜈1
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𝛽 ∶= 1
2

(

𝜇1
(

1 − 2𝜈2
)

− 𝜇2
(

1 − 2𝜈1
)

𝜇1
(

1 − 𝜈2
)

+ 𝜇2
(

1 − 𝜈1
)

)

. (23b)

The parameter 𝛼 can be interpreted as a relative measure of stiffness; 𝛼 = 1 when material 1 is rigid and 𝛼 = −1 when material 2 is
rigid. Physical interpretation for 𝛽 is unclear. In this work we choose 𝛽 = 0 because for the case of 𝛽 ≠ 0 it has been shown that the
interface crack faces interpenetrate (Comninou, 1977; Rice, 1988; Anderson, 1988), which is unphysical.

The mode I and II stress intensity factors of the kinked crack are denoted by 𝐾𝐼 and 𝐾𝐼𝐼 , respectively. They may be related to
the remote stress intensity factors, 𝐾1 and 𝐾2, for the case of 𝛽 = 0, as given in He and Hutchinson (1989),

𝐾𝐼 + 𝑖𝐾𝐼𝐼 =
(

𝑐 (𝜔, 𝛼) + 𝑑 (𝜔, 𝛼)
)

𝐾1 + 𝑖
(

𝑐 (𝜔, 𝛼) − 𝑑 (𝜔, 𝛼)
)

𝐾2, (24)

where 𝑖 =
√

−1. The functions 𝑐 and 𝑑 are complex-valued in terms of 𝜔 and 𝛼, and the symbol ( ̄ ) denotes the complex conjugate.

6.2.1. Analytical results
The procedure employed in He and Hutchinson (1989) to predict the kink angle for a given loading 𝛾 and 𝛼 (and particularized

to 𝛽 = 0) is briefly reviewed. For a given loading 𝛾, the interface crack is assumed to have kinked by an angle 𝜔, forming an extended
crack of length 𝑎. The kinked crack surfaces are free of traction. In He and Hutchinson (1989), the kinked crack is considered to
be a distribution of edge dislocations. To enforce traction free conditions on the kinked crack segment, the stress fields from the
interface crack and the distribution of edge dislocations are superimposed and set to zero. This leads to a singular integral equation
which is solved numerically using Chebyshev polynomials. The complex valued functions 𝑐 and 𝑑 are tabulated for different values
f 𝜔. The energy release rate , given by

 = 𝑞−2 0
[

|𝑐|2 + |𝑑|2 + 2ℜ
(

𝑐𝑑𝑒2𝑖𝛾
)]

, (25)

s computed as a function of 𝜔, where | ⋅| denotes the magnitude of a complex number. In this equation, the symbol 𝑞 ∶=
√

1∕(1 + 𝛼),
the symbol 0 is the energy release rate of the interface crack and the symbol ℜ(⋅) is the real part of complex number. A crack
ropagation criterion is necessary to specify the kink angle 𝜔. In He and Hutchinson (1989), the crack is assumed to kink in the
irection that maximizes  for a given 𝛼 and 𝛾. This condition is called the maximum energy release rate (MER) criterion. The optimal
ink angle is denoted by 𝜔̂. For a given 𝛾 and 𝛼, the kink angle 𝜔̂ can be computed by setting 𝑑∕𝑑𝜔|𝜔=𝜔̂ = 0 for 𝑑2∕𝑑𝜔2

|𝜔=𝜔̂ < 0.
To compute 𝜔̂ from (25), the functional form of the complex valued functions 𝑐(𝜔, 𝛼) and 𝑑(𝜔, 𝛼) are necessary. No analytical

olution exists, so one would need to solve the singular integral equation as in He and Hutchinson (1989) and tabulate the coefficients
or 𝑐(𝜔, 𝛼) and 𝑑(𝜔, 𝛼). To circumvent this issue, Veljkovic (2005) proposed closed form approximations to the complex valued
unctions 𝑐(𝜔, 𝛼) and 𝑑(𝜔, 𝛼), given as

𝑐(𝜔, 𝛼) ≈ 1
2

√

1
1 + 𝛼

(

𝑒−
𝑖𝜔
2 + 𝑒−

3𝑖𝜔
2
)

, (26a)

𝑑(𝜔, 𝛼) ≈ 1
4

√

1
1 − 𝛼

(

𝑒−
𝑖𝜔
2 − 𝑒

3𝑖𝜔
2
)

. (26b)

We reiterate that the prior expressions are specialized for the case of 𝛽 = 0.
We evaluate the accuracy of the approximate functions given in (26) by computing the kink angles for the cases of 𝛼 =

0, 0.25, 0.5} and comparing them to those computed with the tabulated data provided in He and Hutchinson (1989). In Fig. 5(a),
e plot the computed kink angles as a function of phase angle 𝛾 using the tabulated data of He and Hutchinson (1989) and the
pproximate functions (Veljkovic, 2005) for 𝛼 = 0. The tabulated data and approximate functions produce similar kink angles 𝜔̂,
articularly at low 𝛾. We also plot the kink angles for 𝛼 = 0.25 and 0.5 in Figs. 5(b) and (c), respectively. The values of 𝜔̂ computed
sing the approximate functions of Veljkovic (2005) are less accurate for 𝛼 = 0.5 than for 𝛼 = 0 or 𝛼 = 0.25. Thus, we can conclude

that the approximate closed form solutions for 𝑐(𝜔, 𝛼) and 𝑑(𝜔, 𝛼) given in (26) should not be used for 𝛼 > 0.5.

6.2.2. Simulations with RVFTI
To benchmark RVFTI, we propose to compute the kink angles for an interface crack for 𝛼 = {0, 0.25, 0.5} and 0 ≤ 𝛾 ≤ 𝜋∕4. We

consider a circular domain as shown in Fig. 4(b), where the interface crack is modeled as a notch whose length is equal to that of
the radius 𝑅0 = 1000 mm. The region above the notch is material 1 and the region below the notch is material 2. An enlarged view
of the notch root is shown in Fig. 4(c), along with a local polar coordinate system attached to the notch tip. Contrary to polar angle
𝜃, we measure kink angle 𝜔̂ clockwise with respect to the 𝑥-axis. The notch root radius is 𝑟0 = 𝑅0∕2000. For the phase-field model,
we select 𝜀 = 𝑟0 and 𝑘𝜀 = 2.5 × 10−4, while the widened interface ahead of the notch has width 𝑚𝜀 = 𝑟0∕10 = 𝑅0∕20000.

We set 𝜇1 = 1000 MPa and 𝜈1 = 0.3 for material 1, while the elastic parameters for material 2 are determined from 𝛽 = 0 and
𝛼 ∈ {0, 0.25, 0.5}. We assign to both materials an identical bulk fracture toughness 𝑔𝑏, while the widened interface has fracture
toughness 𝑔𝑖. The values of 𝑔𝑏 and 𝑔𝑖 are chosen to ensure that the crack will always kink into material 2 (see He and Hutchinson,
1989 for details).

Along the outer boundary (at 𝑟 = 𝑅0, a sufficient distance from the notch tip), the domain is subjected to the asymptotic
displacement fields for an interface crack. With 𝛽 = 0, these may be written in complex notation as

𝑢𝑥 + 𝑖𝑢𝑦 =
|𝐾|

√

𝑅0
√

1
(

(

3 − 4𝜈1
)

𝑒𝑖
(

𝜃
2 −𝛾

)

− 𝑒−𝑖
(

𝜃
2 +𝛾

)

− 𝑖 sin 𝜃 𝑒𝑖
(

𝜃
2 +𝛾

))

, (27a)

𝜇1 8𝜋
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Fig. 5. Theoretical and computed kink angles 𝜔̂ versus mode mixity 𝛾 = tan(𝐾2∕𝐾1) for a crack at a bi-material interface with Dundurs mismatch parameters
𝛽 = 0 and (a) 𝛼 = 0, (b) 𝛼 = 0.25, and (c) 𝛼 = 0.5. The black circles show the theoretical angles computed from (25) using tabulated values of 𝑐(𝜔, 𝛼) and 𝑑(𝜔, 𝛼)
from He and Hutchinson (1989). The red lines show the theoretical angles computing using approximations of 𝑐(𝜔, 𝛼) and 𝑑(𝜔, 𝛼) in (26). The blue circles are
the kink angles observed in the simulations using RVFTI.

Fig. 6. Variation of the far-field stress components versus polar angle 𝜃. The red circles show the data obtained from a simulation using RVFTI with 𝛼 = 0.25
nd 𝛾 = 𝜋∕12. The black lines are the analytical formula in (28).

or material 1, and

𝑢𝑥 + 𝑖𝑢𝑦 =
|𝐾|

√

𝑅0

𝜇2

√

1
8𝜋

(

(

3 − 4𝜈2
)

𝑒𝑖
(

𝜃
2 −𝛾

)

− 𝑒−𝑖
(

𝜃
2 +𝛾

)

− 𝑖 sin 𝜃 𝑒𝑖
(

𝜃
2 +𝛾

))

(27b)

or material 2, where |𝐾| =
√

𝐾2
1 +𝐾2

2 . The individual displacement components 𝑢𝑥 or 𝑢𝑦 are extracted from (27) as the real
or imaginary parts of the previous equations, respectively. In our simulations, for each 𝛾, we slowly increase the stress intensity
magnitude |𝐾| until a crack nucleates at the notch tip and grows into material 2.

The presence of a non-zero notch root radius and the phase-field length scale 𝜀 slightly alters the stress field around the crack
tip. However, by choosing these dimensions to be small compared with 𝑅0, the alteration to the stress field should be minor. As
a check, we compare the resulting stresses on the outer boundary (at 𝑟 = 𝑅0) with the analytical expressions, which are given for
𝛽 = 0 in the following form:

𝜎11 + 𝜎22 =
|𝐾|

√

𝑅0

1
√

2𝜋

(

𝑒−𝑖
(

𝜃
2 +𝛾

)

+ 𝑒𝑖
(

𝜃
2 +𝛾

))

, (28a)

𝜎11 − 𝜎22 + 2𝑖𝜎12 =
|𝐾|

√

𝑅0

𝑒𝑖𝜃
√

2𝜋

(

𝑒𝑖
(

𝜃
2 +𝛾

)

cos 𝜃 − 𝑒−𝑖
(

𝜃
2 +𝛾

))

. (28b)

he individual stress components may be computed by extracting the real and imaginary components in (28), though we omit
hese expressions for brevity. In Fig. 6, we plot the analytical stress components as well as those computed from the finite element
imulations, and we observe close agreement between the two.

We show example contour plots of the damage field 𝑑 from the RVFTI simulations in Fig. 7, corresponding to the cases with
= 0.25 and 𝛾 = 𝜋∕12 and 𝜋∕6. We also show how the kink angle 𝜔̂ is measured from the damage field. The final kink angles are

resented in Fig. 5, alongside the theoretical predictions of He and Hutchinson (1989). Despite our use of a finite-radius notch and
he subtle ambiguity of measuring kink angles from 𝑑, it can be seen that the kink angles compare reasonably well to the analytical
alues.

.2.3. Crack trapping at the interface
We now consider the same semi-infinite crack at the bi-material interface, but we examine the conditions under which the crack
ould continue to grow along the interface, rather than kinking into material 2, see Fig. 8(a). In this situation, despite possible
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Fig. 7. Contour maps of the damage field computed using RVFTI for the crack at a bi-material interface. The simulations were for 𝛼 = 0.25 and (a) 𝛾 = 𝜋∕12
and (b) 𝛾 = 𝜋∕6. The crack set is taken where the material is fully-damaged, 𝑑 = 1, and the kink angle 𝜔̂ is measured clockwise from the 𝑥-axis.

Fig. 8. Investigation of crack trapping at a bi-material interface. (a) Visual representation of crack kinking and crack trapping at a bi-material interface. (b)
Simulation results using RVFTI for mode mixity 𝛾 = 3𝜋∕20, and varying the Dundurs mismatch parameter 𝛼 and the fracture toughness ratio 𝑔𝑏∕𝑔int . Circles
denote simulations where kinking out of the interface was observed, while crosses correspond to simulations where the crack remained trapped at the interface.
The solid black curve shows the ratio ∗∕0, computed using the approximations of Veljkovic (2005). From the theory of He and Hutchinson (1989), crack
trapping is expected whenever 𝑔𝑏∕𝑔int > ∗∕0 (above the black curve), while kinking occurs otherwise.

shear loading, the interface ‘‘traps’’ the crack. The possibility of crack trapping is considered in He and Hutchinson (1989), where
the authors state that as long as the material fracture toughness (𝑔𝑏) is sufficiently larger than the interface fracture toughness (𝑔int),
the crack will remain trapped at the interface. The authors make the condition more precise: if 𝛾 is fixed, but the loading intensity is
slowly increased, then by Griffith’s criterion and the condition of maximum energy release, the crack will grow in the first direction
which reaches (𝜔) = 𝑔(𝜔), where 𝑔(𝜔) equals 𝑔int when 𝜔 = 0 and 𝑔𝑏 otherwise. From (25), there emerges two cases. First, if the
crack were to kink into material 2, then ∗ = max𝜔 (𝜔) = 𝑔𝑏, while 0 < 𝑔int . In words, there exists a non-zero potential kink angle
for which  reaches the fracture toughness 𝑔𝑏, while there is insufficient driving force for the crack to continue along the interface.
The second case is the opposite, wherein 0 = 𝑔int , but ∗ < 𝑔𝑏. These two cases may be checked simultaneously by comparing the
ratios ∗∕0 and 𝑔𝑏∕𝑔int ; the kinking and trapping cases correspond to ∗∕0 > 𝑔𝑏∕𝑔int and ∗∕0 < 𝑔𝑏∕𝑔int , respectively.

We assess the prior condition using RVFTI. For these simulations, we use the same domain and boundary conditions as before;
however we use a wider weak interface with 𝑚𝜀 = 2𝑟0 = 𝑅0∕1000. We also select 𝑘𝜀 ∈ [10−6, 10−3]. We fix 𝛾 = 3𝜋∕20 and vary
𝛼 ∈ [0, 0.5]. We choose 𝑔𝑖 = 0.4 N∕mm, and we select 𝑔𝑏 so that 𝑔𝑏∕𝑔int ∈ [1, 2.6], a range which encompasses the predicted values of
∗∕0.

In Fig. 8(b), we show the results of our computations, indicating for which combinations of 𝛼 and 𝑔𝑏∕𝑔int the crack is trapped
versus kinks. Using the expressions of Veljkovic (2005) for the functions 𝑐(𝜔, 𝛼) and 𝑑(𝜔, 𝛼), we also plot the variation of ∗∕0
with respect to 𝛼. The points above (resp. below) this curve are those for which 𝑔𝑏∕𝑔int > ∗∕0 (resp. 𝑔𝑏∕𝑔int < ∗∕0), which
indicates trapping (resp. kinking) according to the theory of He and Hutchinson (1989). We observe some quantitative disagreement
between the simulations and theory. Notably, there are data points for which the crack kinks despite the theory predicting trapping.
Nonetheless, there is qualitative agreement between the theoretical and computational boundaries between the trapping and kinking
regimes.
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7. Numerical simulations of toughness enhancement

In this section, we use RVFTI to investigate toughness enhancement in materials with weak interfaces. In particular, we study
wo-dimensional analogues of micro-architectural designs in SBs and ceramic composites to gain insights into the mechanisms which
nhance toughness. Two specimens with specific micro-architectural designs are considered in this section:

(1) a three-point bending in a multi-layered composite, where the bulk material has weak interfaces aligned perpendicular to
the fracture growth direction, and

(2) a single edge notch (SEN) geometry with a sinusoidal interface aligned with the crack growth direction.

.1. Multi-layered specimen

The motivation to study multi-layered composites comes from the micro-architecture of spicules. As previously noted, spicules
ave a three-dimensional micro-architecture where the bulk material (mineral phase) is arranged in concentric layers separated by
nterfaces (organic phase).

Multi-layered geometries, which can be considered two-dimensional analogues of spicules, have been studied extensively in the
ontext of ceramics (Clegg et al., 1990). Clegg et al. (1990) conducted experiments on SiC, which was made into thin sheets and
oated with graphite forming weak interfaces. The sheets were then pressed together to form a layered micro-architecture which
an be seen in Fig. 9(a.ii). The work of fracture for the layered SiC-graphite material, which was notched and tested under three
oint bending, was found to be 4625 J∕m2, while that of monolithic SiC was 62 J∕m2. As seen in Fig. 9(a.ii), the fracture surface

of the layered material showed crack deflection into the weak interfaces. Meanwhile, the load–displacement response in Fig. 9(a.i)
indicates that the ceramic composite did not catastrophically fail once the peak load was reached; rather, the material failed in a
sequence of catastrophic steps beyond the peak load. From these experiments, it is unclear whether crack deflection was the only
toughness-enhancing mechanism. Furthermore, any correlation between the crack path and the observed step-like features in the
load–displacement response was not well investigated. We aim to address these points using RVFTI.

We consider the three-point bending specimen shown in Fig. 9(b), where the bulk material contains a number of weak interfaces
that are aligned parallel to the span of the geometry. These interfaces are roughly uniformly-spaced along the vertical direction of
the specimen. For the purpose of RVFTI, we take 𝜀 = 0.025 mm, and we widen the interfaces to have total thickness 2𝑚𝜀 = 0.05 mm.
We set 𝑘𝜀 ∈ [0, 5×10−4]. The bulk material has fracture toughness 𝑔𝑏 = 0.5 N∕mm. Meanwhile, we select the fracture toughness in the
widened interfaces to be 𝑔𝑖 = 0.05 N∕mm, a factor of ten smaller than 𝑔𝑏. Via (8), the effective interface fracture toughness is around
𝑔int ≈ 0.125𝑔𝑏. The V-notch is oriented perpendicular to the interfaces and the geometry is subjected to displacement-controlled
three-point bending loads applied at the midpoint of the top surface. We note that the elastic properties are uniform throughout the
composite (here, we take 𝜇 = 8000 MPa and 𝜈 = 0.3); only the toughness is varied in the widened interfaces.

Fig. 9(c) shows the effect of the number of layers on the load–displacement response. We observe that the geometry with zero
interfaces (i.e., with uniform toughness 𝑔𝑏) reaches a peak load and fails in a brittle manner, as shown by the almost vertical
reduction in load after the peak is reached. However, in the specimen with one interface, the load–displacement curve shows a
step-like feature after the peak load is reached similar to that seen by Clegg et al. (1990). We examine this further for the specimen
with three interfaces, with the final crack path shown in Fig. 9(d). In Fig. 9(e), we show six stages of the evolution of the crack
path, labeled A–F; the corresponding points in the load–displacement curve are indicated with black dots in Fig. 9(c). The peak load
is reached at A, when the specimen fractures and grows up to the first weak interface at B. Between B and C, the crack deflects into
the first weak interface. The crack then grows up to the second weak interface at D and is trapped in the second weak interface
until E. Finally, the crack grows to the third interface at F, where it remains trapped until the simulation is terminated.

Observing the experimental and simulated load–displacement curves in Fig. 9, one might expect that the vertical sections of the
curve would coincide with rapid crack growth in the bulk material, while the flat parts of the steps would correspond to stable
crack growth within the weak interfaces. In contrast to our expectation, points B and D (when the crack first reaches an interface)
are not at the bottom of the steps of the load–displacement curve. Rather, the load continues to drop even as the crack deflects into
the interface. While this behavior may be an artifact of the simulation, the experiments of Clegg et al. (1990) do not use high-speed
video recordings, and hence do not rule out the possibility of unstable growth of the deflected cracks within the weak layers. We
believe this to be an interesting phenomenon which requires further experimental and numerical investigation.

We also remark that the load–displacement curve is flatter and longer on subsequent steps (between B–C and D–E, and beyond
F). These features are also present in the load–displacement curve for SiC-graphite, Fig. 9(a.i). The increase in step flatness parallels
the increase in system compliance as the crack grows. A possible interpretation for the increase in step length comes from beam
bending theory. In beam bending theory, the maximum bending stress is proportional to both the applied displacement and the
height of the beam. As the crack grows upward and deflects along a weak interface, the effective height of the beam decreases as
the bottom layers of the beam are delaminated. Hence, if a vertical crack will nucleate when a critical stress is reached, then the
necessary displacement must increase as the height is reduced. Finally, with respect to the remaining beam height, the thickness of
a single layer represents an increasing fraction as the number of layers is reduced, thereby resulting in longer steps.

We lastly compute the work of fracture (i.e. the area under the load–displacement curves) for the multi-layered specimens.
Respectively, for zero, one, two, three, and four interfaces the work of fracture is 1250, 1950, 2330, 2240, and 2110 J∕m2. The work
of fracture increases from zero to two interfaces, but then decreases for three and four interfaces. This suggests that there may be an
optimal number of interfaces for toughness enhancement, though further work is needed to understand how this number depends

on design choices such as the material parameters, interface spacing, and specimen geometry.
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Fig. 9. Toughening in a multi-layered specimen. (a.i) Load–deflection response of a SiC-graphite composite (Clegg et al., 1990). (a.ii) Final fracture surface
in SiC-graphite composite (Clegg et al., 1990). (b) Geometry and loading of a micro-architecture with layers. The bulk material has fracture toughness 𝑔𝑏,
while the widened interfaces are assigned fracture toughness 𝑔𝑖. The geometry has a V-notch and is subjected to three point bending loading conditions. (c)
Load–displacement response for the layered micro-architecture specimen with zero to four interfaces. (d) Final crack path for the specimen with three interfaces.
(e) Evolution of the crack path. The labels A–F in the panels of (e) coincide with the points of the load–displacement curve in (c).

7.2. Wavy interface

We demonstrated in the previous example how the presence of weak interfaces can enhance toughness via crack deflection
and arrest. We next explore how the shape of the interface can also enhance toughness, which plays an important role in some
SBs. For example, rams have wavy interfaces in their skull called suture joints that have been experimentally shown to enhance
toughness (Jaslow, 1990). Suture joints which enhance toughness are also found in the beaks of woodpeckers (Lee et al., 2014).
There have been experimental studies to determine the role of wavy, weak interfaces in enhancing toughness (Mirkhalaf et al.,
2014; Lin et al., 2014), and several models have been used to understand this process (Zavattieri et al., 2007; Li et al., 2011, 2013).
However, the role of other geometric factors, such as the amplitude of waviness, on toughness enhancement, is not well understood
because the aforementioned models do not predict the crack path.
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In this section, we review how interface geometry affects the toughness of the structure by computing the work of fracture for
ingle edge notch (SEN) specimens with straight and wavy interfaces, depicted in Fig. 10(a). The notch has radius 0.01 mm and

length 0.1 mm. For the wavy interface specimen, the interface is initially straight ahead of the notch so that the crack initiation load
is identical to that of the straight interface specimen. After the straight portion, the wavy interface is sinusoidal with wavelength
and amplitude 𝛬 = 𝐴 = 0.0625 mm. The specimens have the same elastic parameters as the previous example, 𝜇 = 8000 MPa and
𝜈 = 0.3. The bulk material has fracture toughness 𝑔𝑏 = 0.5 N∕mm, and we select a wide-interface fracture toughness 𝑔𝑖 = 𝑔𝑏∕100.
or RVFTI, 𝜀 = 0.004 mm, 𝑘𝜀 = 5 × 10−5, and we widen the interfaces by an amount 2𝑚𝜀 = 0.004 mm. From these parameters, we
ompute 𝑔int ≈ 0.02𝑔𝑏. The specimens are subjected to vertical displacement on the top surface of the domain.

The load–displacement response for both the specimens is shown in Fig. 10(b). The wavy interface specimen shows a higher
ork of fracture than the straight interface specimen. When the interface is straight, the crack propagates along the interface (see
ig. 10(c)). However, when the interface is wavy, the crack path becomes more complicated (see Fig. 10(d)).

Similar to the crack evolution in the multi-layered specimens, one might expect the crack to exhibit unstable growth between
egments of the sinusoidal interface, followed by interludes of stable growth or trapping along the interface. However, the
imulations show a more complicated behavior with three regimes. In Fig. 10(e), we show snapshots of a portion of the crack
volution as it grows between two segments of the weak interface corresponding to load steps A–E. The corresponding points in the
oad–displacement curve are shown in Fig. 10(b). From A to B, the crack is trapped along a segment of the weak interface. From
-C, the crack breaks out of the interface and grows in a stable fashion until the crack tip is roughly halfway between segments
f the weak interface. From C-D, the crack growth becomes unstable and the crack rapidly grows to the next segment of the weak
nterface, where it is trapped until E and the cycle continues. This crack growth behavior is highly nontrivial, featuring growth
long the interface and in the bulk material, as well as stable and unstable propagation, which highlights the ability of RVFTI to
apture a wide variety of crack growth phenomena.

There are other interesting observations during the crack growth process. Cracks nucleate in the weak interface even before the
ain crack intersects it (see load step C in Fig. 10(e)). These daughter cracks form at the peaks and troughs of the weak interface and

mmediately ahead of the main crack. The effective interface fracture toughness is weaker than the bulk material (by approximately
factor of 1∕50), so cracks nucleate due to the tensile stresses which are present ahead of main crack. This phenomenon is similar

o the Cook-Gordon mechanism (Cook and Gordon, 1964), where the stress field of a crack approaching perpendicularly to a weak
nterface causes the nucleation of daughter cracks along said interface.

Lastly, like with the number of interfaces in the previous example, there is further room to explore how the amplitude 𝐴 and
avelength 𝛬 of the wavy interface can be chosen to optimize the work of fracture.

. Discussion and conclusions

In this work, we presented a modified regularization of VFT to incorporate weak interfaces. Our goal was to model SBs, which
re composites primarily made of a stiff mineral phase and interfaces composed of a compliant organic phase. In SBs, the interface
hickness is several orders of magnitude smaller than that of the stiff mineral phase, and it is infeasible to resolve numerically across
he interface. We note that our procedure may also be applied to problems with zero-thickness (atomically-thin) interfaces, such as
rain boundaries or adhesive contact between dissimilar media.

In our modified regularization approach, we widened the weak interfaces by 2𝑚𝜀, where 𝜀 is the regularization length scale for
FT, and set the fracture toughness inside to a value 𝑔𝑖 < 𝑔𝑏, where 𝑔𝑏 is the fracture toughness of the surrounding material. In

his way, the interfaces had reduced toughness, and the thickness of the interface decreased to 0 along with 𝜀. We presented an
nalytical expression for the effective interface fracture toughness 𝑔int in the limit of vanishing thickness of the interface, which
epended on 𝑚, 𝑔𝑏, and 𝑔𝑖. Notably, one was able to select 𝑚 and 𝑔𝑖 to achieve any desired value for the interface toughness 𝑔int .
e then proved a 𝛤 -convergence result for two-dimensional domains with weak interfaces.
The regularization approach in this work is an important step towards modeling interface fracture and the complex crack patterns

hat form in SBs. In particular, we derived an effective fracture toughness for interfaces in a material with homogeneous 𝑔𝑏. In SBs
uch as spicules, the organic phase is mixed with the mineral phase, which may cause the fracture toughness 𝑔𝑏 to vary within the
ineral phase. Future work is needed to determine how the effective interface fracture toughness depends on local variation in 𝑔𝑏.

urther, even under constant 𝑔𝑏, one may wish to model interfaces with varying toughness (i.e. 𝑔int (𝒙)); it is interesting to explore
hether the approach in this paper may accommodate such behavior, perhaps through appropriate selection of 𝑔𝑖 or 𝑚.

We applied the modified regularization approach within a numerical implementation of VFT, which we termed RVFTI. While
dditional work is needed to connect the numerical model with the theory, we demonstrated that RVFTI reproduced the expected
nterface fracture toughness predicted by the theory. RVFTI was also used to study two toughening mechanisms in SBs due to the
resence of layered microarchitectures and wavy interfaces. For the layered microarchitecture, we observed the ‘‘stepped’’ load–
isplacement curves present in experiments (Clegg et al., 1990), which corresponded in the simulations to crack arrest and deflection
t the weak interfaces. Meanwhile, for the wavy interface specimen, bulk crack growth was impeded by both crack arrest and
eflection, as well as the formation of daughter cracks. In both cases, more exhaustive parameter studies may be performed to
xplore which configurations achieve ‘‘optimal’’ toughness.
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Fig. 10. The effect of interface shape on specimen toughness. (a) Geometry and loading for the (a.i) straight and (a.ii) wavy interface specimens. (b) Load–
displacement curves for the two specimens. Step-like features are seen in the wavy interface specimen’s load–displacement response, see inset. (c) Final damage
field for the straight interface specimen. (d) Final damage field for the wavy interface specimen. (e) Zoomed view for a portion of the damage field evolution
in the wavy specimen. The labels A–E in subfigure (e) coincide with the black points in the load–displacement curve in subfigure (b).
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ppendix A. Additional mathematical results

roposition 5 (Properties of the Distance Function). Let 𝐴 ⊂ R𝑛 be a bounded domain. Then dist(𝒙, 𝐴) ∶ R𝑛 → R is a Lipschitz continuous
function with Lipschitz constant 1. Moreover, dist(𝒙, 𝐴) = dist(𝒙, 𝐴).

roof.

1. Let 𝒚 ∈ R𝑛. Then dist(𝒙, {𝒚}) = |𝒙 − 𝒚| ∶ R𝑛 → R is Lipschitz continuous with constant 1.

(a) For any 𝒙, 𝒛 ∈ R𝑛, we apply the reverse triangle inequality
|

|

|

dist(𝒙, {𝒚}) − dist(𝒛, {𝒚})||
|

= |

|

|

|𝒙 − 𝒚| − |𝒛 − 𝒚|||
|

≤ |(𝒙 − 𝒚) − (𝒛 − 𝒚)| = |𝒙 − 𝒛|.

2. The function dist(𝒙, 𝐴) ∶ R𝑛 → R is Lipschitz continuous with constant 1.

(a) Fix 𝒙 ∈ R𝑛. Via Step 1 the function dist(𝒛, {𝒙}) ∶ 𝐴 → R is Lipschitz continuous over a compact set. Hence, it has a
minimum, which it achieves at some point 𝒂 ∈ 𝐴. Thus, dist(𝒙, 𝐴) = |𝒙 − 𝒂|.

(b) Then, for any 𝒙, 𝒚 ∈ R𝑛:

dist(𝒚, 𝐴) − dist(𝒙, 𝐴) = inf
𝒛∈𝐴

|𝒚 − 𝒛| − |𝒙 − 𝒂| ≤ |𝒚 − 𝒂| − |𝒙 − 𝒂| ≤ |𝒚 − 𝒙|,

where the last inequality results from the reverse triangle inequality.
(c) We may repeat item (a) for 𝒚; we define its closest point in 𝐴 to be 𝒃. Then,

dist(𝒙, 𝐴) − dist(𝒚, 𝐴) = inf
𝒛∈𝐴

|𝒙 − 𝒛| − |𝒚 − 𝒃| ≤ |𝒙 − 𝒃| − |𝒚 − 𝒃| ≤ |𝒙 − 𝒚|.

(d) Combining the two inequalities gives the desired conclusion.
|

|

|

dist(𝒙, 𝐴) − dist(𝒚, 𝐴)||
|

≤ |𝒙 − 𝒚|.

3. Finally, we prove dist(𝒙, 𝐴) = dist(𝒙, 𝐴).

(a) For any 𝒙 ∈ R𝑛, let 𝒂 ∈ 𝐴 be a closest point (i.e. dist(𝒙, 𝐴) = |𝒙 − 𝒂|).
(b) There is a sequence (𝒂𝑛)𝑛 ⊂ 𝐴 which converges to 𝒂.
(c) Because 𝐴 ⊇ 𝐴, we must have dist(𝒙, 𝐴) ≤ dist(𝒙, 𝐴).
(d) For any 𝑛, we have

|𝒙 − 𝒂| = dist(𝒙, 𝐴) ≤ dist(𝒙, 𝐴) = inf
𝒛∈𝐴

|𝒙 − 𝒛| ≤ |𝒙 − 𝒂𝑛| ≤ |𝒙 − 𝒂| + |𝒂 − 𝒂𝑛|.

(e) Since |𝒂 − 𝒂𝑛| can be made arbitrarily small as 𝑛 → ∞, we have by the squeeze lemma

|𝒙 − 𝒂| ≤ dist(𝒙, 𝐴) ≤ |𝒙 − 𝒂|.

which gives the conclusion. □

Here, we present some mathematical results related to the Hausdorff measure of curves and subsets of curves, which are used
in the proofs in Section 4. The first result shows an equivalence between the Hausdorff measure and the arc length of a curve.

Proposition 6 (Hausdorff Measure and Arc-Length). Let 𝜸 ∶ [𝑎, 𝑏] → R2 be a continuous, injective, rectifiable curve with length 𝐿. Then,
if 𝛤 ∶= 𝜸([𝑎, 𝑏]),

1 1
 (𝛤 ) =  (𝜸((𝑎, 𝑏))) = 𝐿.
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Proof. The proof may be found in an equivalent result (Edgar, 2008, Theorem 6.3.8). □

The next result concerns the Hausdorff measure of subsets of curves.

Proposition 7 (Hausdorff Measure of Subsets of Curves). Let 𝜸 ∶ [0, 𝐿] → R2 be an injective, 𝐶1-continuous function such that |𝜸′(𝑠)| = 1
for almost every 𝑠 ∈ [0, 𝐿]. This is an arc-length parameterization of the curve 𝜸([0, 𝐿]). Then, for any 𝐴 ⊆ [0, 𝐿],

1(𝜸(𝐴)) = 1(𝐴).

Proof.

1. We recapitulate (Evans and Gariepy, 2015, Theorem 1.8). For any Radon measure 𝜇 (such as the Lebesgue measure),

𝜇(𝐴) = inf{𝜇(𝑈 ) ∶ 𝐴 ⊆ 𝑈, 𝑈 open}.

2. Any open set 𝑈 ⊂ R may be written as a countable union of pairwise-disjoint open intervals (𝐼𝑘)𝑘.
3. Combining Steps 1 and 2,

1(𝐴) = inf

{ ∞
∑

𝑘=1
1(𝐼𝑘) ∶ 𝐴 ⊆

∞
⋃

𝑘=1
𝐼𝑘, 𝐼𝑘 pairwise-disjoint

}

.

Without issue, we may restrict these sets to lie within the interval [0, 𝐿] (i.e. redefine 𝐼𝑘 ← 𝐼𝑘 ∩ [0, 𝐿]).
4. Next, let us take an infimizing sequence of open sets (𝑈𝑗 )𝑗 . Then, we have

1(𝑈𝑗 ) → 1(𝐴).

Moreover, 1(𝑈𝑗 ⧵ 𝐴) → 0.
5. By Evans and Gariepy (2015, Theorem 2.8), we have

1(𝜸(𝑈𝑗 ⧵ 𝐴)) ≤ 𝐿𝑖𝑝(𝜸)1(𝑈𝑗 ⧵ 𝐴) → 0,

where 𝐿𝑖𝑝(𝜸) is the Lipschitz constant for 𝜸 (here equal to 1). This means

1(𝜸(𝑈𝑗 )) → 1(𝜸(𝐴)).

Moreover, applying Proposition 6 to each pairwise-disjoint interval 𝐼𝑗𝑘 in 𝑈𝑗 ,

1(𝜸(𝑈𝑗 )) =
∞
∑

𝑘=1
1(𝜸(𝐼𝑗𝑘)) =

∞
∑

𝑘=1
1(𝐼𝑗𝑘) = 1(𝑈𝑗 ).

Hence, taking the limit as 𝑗 → ∞ of both sides, we reach the conclusion

1(𝜸(𝐴)) = 1(𝐴). □

The final result concerns covering closed subsets of a rectifiable curve by a finite number of pairwise disjoint, closed,
simply-connected subsets.

Proposition 8. Let 𝜸 ∶ [0, 𝐿] → R be as in Proposition 7, and let 𝐴 ⊂ 𝜸([0, 𝐿]) be closed or 1-almost closed (i.e. 1(𝐴∕𝐴) = 0). Then,
for any 𝜂 > 0, there exists a finite cover of 𝐴 by pairwise disjoint sets (𝐴𝑖)

𝑁𝜂
𝑖=1 such that each 𝐴𝑖 is the image of [𝑎𝑖, 𝑏𝑖] ⊆ [0, 𝐿] under 𝜸, and

1(𝐴) = 1(𝐴) ≤ 1
⎛

⎜

⎜

⎝

𝑁𝜂
⋃

𝑖=1
𝐴𝑖

⎞

⎟

⎟

⎠

=
𝑁𝜂
∑

𝑖=1
1(𝐴𝑖) < 1(𝐴) + 𝜂.

Proof.

1. If 𝐴 is 1-almost closed, then 1(𝐴) = 1(𝐴), and so the result is unchanged. Going forward, we assume 𝐴 is closed.
2. Let 𝐵 ∶= 𝜸−1𝑖 (𝐴). By Proposition 7, we have

1(𝐴) = 1(𝐵).

3. Because 𝜸 is a continuous function and 𝐴 is closed, 𝐵 must also be closed.
4. As in the proof of Proposition 7, for any 𝜂 > 0, we may find an open set 𝑈 ⊃ 𝐵 such that

1(𝑈 ) = 1(𝐵) + 𝜂.

Again, this is an open subset of R, and hence can be expressed as a countable union of pairwise-disjoint open intervals (𝑈𝑖)∞𝑖=1.
Again, without issue, we may restrict these sets to the domain [0, 𝐿] (the domain of 𝜸).
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5. The set (𝑈𝑖)∞𝑖=1 is a cover of 𝐵. Meanwhile, 𝐵 is a closed and bounded subset of R, and hence is compact. Thus, there exists
a finite subcover consisting of pairwise-disjoint open intervals (𝑈𝑖)

𝑀𝜂
𝑖=1 (we have not relabeled in 𝑖) such that

𝐵 ⊂
𝑀𝜂
⋃

𝑖=1
𝑈𝑖

and hence

1(𝐵) ≤
𝑀𝜂
∑

𝑖=1
1(𝑈𝑖) <

∞
∑

𝑖=1
1(𝑈𝑖) = 1(𝑈 ) = 1(𝐵) + 𝜀.

6. For each 𝑖, we may write 𝑈𝑖 = (𝑎𝑖, 𝑏𝑖), and 𝑈𝑖 = [𝑎𝑖, 𝑏𝑖]. We have 1(𝑈𝑖) = 1(𝑈𝑖) = 𝑏𝑖 − 𝑎𝑖.
7. For any 𝑖 ≠ 𝑗, if 𝑈𝑖 ∩𝑈𝑗 ≠ ∅, then these sets must overlap at one of the endpoints (since the open sets are disjoint). Hence, we

can define 𝑉𝑖 = 𝑈𝑖 ∪ 𝑈𝑗 = [min(𝑎𝑖, 𝑎𝑗 ),max(𝑏𝑖, 𝑏𝑗 )], and we have 1(𝑉𝑖) = 1(𝑈𝑖) + 1(𝑈𝑗 ) = max(𝑏𝑖, 𝑏𝑗 ) − min(𝑎𝑖, 𝑎𝑗 ). Repeating
this way, we end up with a finite set (𝑉𝑖)

𝑁𝜂
𝑖=1 of closed, pairwise disjoint intervals (with 𝑁𝜂 ≤ 𝑀𝜂) such that

𝑁𝜂
∑

𝑖=1
1(𝑉𝑖) =

𝑀𝜂
∑

𝑗=1
1(𝑈𝑗 ) =

𝑀𝜂
∑

𝑗=1
1(𝑈𝑗 ) < 1(𝐵) + 𝜂.

8. Set 𝐴𝑖 ∶= 𝜸(𝑉𝑖). Then

𝐴 ⊂
𝑁𝜂
⋃

𝑖=1
𝐴𝑖.

We remark that since the closed intervals (𝑉𝑖)𝑖 are pairwise disjoint, then so too must be the sets (𝐴𝑖)𝑖. Thus,

1(𝐴) ≤ 1
⎛

⎜

⎜

⎝

𝑁𝜂
⋃

𝑖=1
𝐴𝑖

⎞

⎟

⎟

⎠

=
𝑁𝜂
∑

𝑖=1
1(𝐴𝑖).

9. Finally, by Proposition 7,

1(𝐴) ≤
𝑁𝜂
∑

𝑖=1
1(𝐴𝑖) =

𝑁𝜂
∑

𝑖=1
1(𝑉𝑖) < 1(𝐵) + 𝜂 = 1(𝐴) + 𝜂. □

ppendix B. Proof of preliminary results

Here, we present the proofs for the preliminary results in Sections 4.3 and 4.4.

roof of Proposition 2.

1. As the composition of two continuous functions (the distance function to 𝐽𝑖 and 𝜸𝑖), the function dist(𝜸𝑖(⋅), 𝐽𝑖) ∶ [0,1(𝐼𝑖)] → R
is also continuous. Moreover, it is defined over the compact set [0,1(𝐼𝑖)] and so it achieves its maximum.

2. By assumption on  (cf. Section 4.1), an interface curve only intersects other interface curves (or the domain boundary) at
its endpoints. Hence, max𝑠∈[0,1(𝐼𝑖)] dist(𝜸𝑖(𝑠), 𝐽𝑖) > 0. Thus,

{𝑠 ∈ [0,1(𝐼𝑖)] ∶ dist(𝜸𝑖(𝑠), 𝐽𝑖) > 3𝜌}

is nonempty whenever 3𝜌 < max𝑠∈[0,1(𝐼𝑖)] dist(𝜸𝑖(𝑠), 𝐽𝑖); hence 𝐴𝑖𝜌 is also nonempty.
3. We prove Property 1 in the Proposition. For this step, let 𝒙 ∈ 𝐴𝑖𝜌.

(a) Let 𝒚 ∈ 𝐼𝑗 for 𝑗 ≠ 𝑖. Suppose 𝓁𝑖𝒙𝜌 ∩ 𝓁𝑖𝒚𝜌 ≠ ∅, and let 𝒛 ∈ 𝓁𝑖𝒙𝜌 ∩ 𝓁𝑖𝒚𝜌. Then, via the triangle inequality

|𝒙 − 𝒚| ≤ |𝒙 − 𝒛| + |𝒛 − 𝒚| ≤ 2𝜌.

However, 𝒚 ∈ 𝐽𝑖, and so

|𝒙 − 𝒚| ≥ dist(𝒙, 𝐽𝑖) > 3𝜌,

which yields the contradiction 3𝜌 < 2𝜌. Hence, 𝓁𝑖𝒙𝜌 ∩ 𝓁𝑖𝒚𝜌 = ∅.
(b) A similar sequence of steps may be used to show that 𝓁𝑖𝒙𝜌 ∩ 𝜕 = ∅.
(c) Let 𝒚 ∈ 𝐼𝑖 with 𝒙 ≠ 𝒚. Suppose 𝓁𝑖𝒙𝜌 ∩ 𝓁𝑖𝒚𝜌 ≠ ∅, and let 𝒛 ∈ 𝓁𝑖𝒙𝜌 ∩ 𝓁𝑖𝒚𝜌. Under the coordinate map (11), we have

𝒛 = 𝜸𝑖(𝑠𝒙) + |𝒛 − 𝒙|𝒏̂𝑖(𝑠𝒙) = 𝜸𝑖(𝑠𝒚) + |𝒛 − 𝒚|𝒏̂𝑖(𝑠𝒚)

where 𝑠𝒙 = 𝜸−1𝑖 (𝒙) and 𝑠𝒚 = 𝜸−1𝑖 (𝒚). However, since 𝑠𝒙 ≠ 𝑠𝒚 and |𝒛−𝒙|, |𝒛− 𝒚| < 𝜌 < 𝜌𝑖, this implies that the coordinate

map is not injective, which contradicts the existence of the tubular neighborhood. Hence, 𝓁𝑖𝒙𝜌 ∩ 𝓁𝑖𝒚𝜌 = ∅.
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4. We next prove Property 2 in the Proposition. Let 𝒚 ∈ 𝓁𝑖𝒙𝜌 for some 𝒙 ∈ 𝐴𝑖𝜌. Because ∪𝑗≠𝑖𝐼𝑗 ⊂ 𝐽𝑖, dist(𝒚,∪𝑗≠𝑖𝐼𝑗 ) ≥ dist(𝒚, 𝐽𝑖) >
dist(𝒙, 𝐽𝑖) − |𝒚 − 𝒙| > 2𝜌. Meanwhile dist(𝒚, 𝐼𝑖) < |𝒚 − 𝒙| < 𝜌, and so we must have

dist(𝒚,) = dist(𝒚, 𝐼𝑖).

Next, suppose there exists 𝒛 ∈ 𝐼𝑖 (with 𝒛 ≠ 𝒙) such that dist(𝒚, 𝐼𝑖) = |𝒚 − 𝒛|. From the previous argument, we know
𝒛 ∉ {𝜸𝑖(0), 𝜸𝑖(1(𝐼𝑖))} ⊂ 𝐽𝑖. Hence, 𝜸−1𝑖 (𝒛) =∶ 𝑠𝒛 ∈ (0,1(𝐼𝑖)). As a minimizer of the distance function in the interior of
the interval [0,1(𝐼𝑖)], 𝑠𝒛 must also be a stationary point of the function |𝒚 − 𝜸𝑖(𝑠)|2∕2. However, this means that

(𝒚 − 𝜸𝑖(𝑠𝒛)) ⋅ 𝜸′𝑖(𝑠𝒛) = (𝒚 − 𝒛) ⋅ 𝒕̂𝑖(𝑠𝒛) = 0.

Thus, 𝒚 ∈ 𝓁𝑖𝒛𝜌 or 𝓁𝑖𝒙𝜌 ∩ 𝓁𝑖𝒛𝜌 ≠ ∅, which contradicts 1. Hence, 𝒛 = 𝒙, and so

dist(𝒚, 𝐼𝑖) = |𝒚 − 𝒙|.

5. Finally, we prove Property 3 in the Proposition.

(a) We may show

𝐼𝑖 ⧵ 𝐴𝑖𝜌 = 𝜸𝑖
(

{𝑠 ∈ [0,1(𝐼𝑖)] ∶ dist(𝜸𝑖(𝑠), 𝐽𝑖) ≤ 3𝜌}
)

.

(b) Applying Proposition 7,

1(𝐼𝑖 ⧵ 𝐴𝑖𝜌) = 1({𝑠 ∈ [0,1(𝐼𝑖)] ∶ dist(𝜸𝑖(𝑠), 𝐽𝑖) ≤ 3𝜌}).

(c) Via continuity of measures on nesting sets,

lim
𝜌→0+

1({𝑠 ∈ [0,1(𝐼𝑖)] ∶ dist(𝜸𝑖(𝑠), 𝐽𝑖) ≤ 3𝜌}) = 1

(

⋂

𝜌>0
{𝑠 ∈ [0,1(𝐼𝑖)] ∶ dist(𝜸𝑖(𝑠), 𝐽𝑖) ≤ 3𝜌}

)

= 1({𝑠 ∈ [0,1(𝐼𝑖)] ∶ dist(𝜸𝑖(𝑠), 𝐽𝑖) = 0}).

(d) By construction of , the interface curve 𝐼𝑖 may only intersect another interface curve 𝐼𝑗 or the domain boundary at
its endpoints. Hence

{𝑠 ∈ [0,1(𝐼𝑖)] ∶ dist(𝜸𝑖(𝑠), 𝐽𝑖) = 0} = {0,1(𝐼𝑖)},

which is a set with only two elements, and so

1({𝑠 ∈ [0,1(𝐼𝑖)] ∶ dist(𝜸𝑖(𝑠), 𝐽𝑖) = 0}) = 0.

(e) Hence,

lim
𝜌→0+

1(𝐼𝑖 ⧵ 𝐴𝑖𝜌) = 0.

(f) Finally,

1(𝛤 ∩ 𝐴𝑖𝜌) = 1(𝛤 ∩ 𝐼𝑖) −1(𝛤 ∩ (𝐼𝑖 ⧵ 𝐴𝑖𝜌)).

Because 1(𝛤 ∩ (𝐼𝑖 ⧵ 𝐴𝑖𝜌)) ≤ 1(𝐼𝑖 ⧵ 𝐴𝑖𝜌), which shrinks to zero as 𝜌 → 0+, we have

lim
𝜌→0+

1(𝛤 ∩ 𝐴𝑖𝜌) = 1(𝛤 ∩ 𝐼𝑖). □

We next prove Proposition 3. Our proof strategy mirrors existing proof strategies for 𝛤 -lim inf results for domains with
homogeneous fracture toughness 𝑔, for example (Braides, 2002, Theorem 8.1).

Proof of Proposition 3.

1. Let us denote the functional in (15a) as 𝛱𝜀𝑛 . Without loss of generality, we may assume that lim inf𝑛→∞ 𝛱𝜀𝑛 [𝑢𝑛, 𝑑𝑛] < ∞.
Otherwise, the result is trivial to show.

2. Take a subsequence (𝑢𝑛𝑘 , 𝑑𝑛𝑘 )𝑘 of (𝑢𝑛, 𝑑𝑛)𝑛 so that

lim
𝑘→∞

𝛱𝜀𝑛 [𝑢𝑛𝑘 , 𝑑𝑛𝑘 ] = lim inf
𝑛→∞

𝛱𝜀𝑛 [𝑢𝑛, 𝑑𝑛].

Going forward, we abuse notation by referring to the subsequence as (𝑢𝑛, 𝑑𝑛)𝑛.
3. Because lim𝑛→∞ 𝛱𝜀𝑛 [𝑢𝑛, 𝑑𝑛] < ∞, then there must be a constant 𝑀 < ∞ such that 𝛱𝜀𝑛 [𝑢𝑛, 𝑑𝑛] < 𝑀 . In particular, the same

bound holds for the elastic energy:

0 ≤
𝜌
(1 − 𝑑𝑛)2𝐶(𝑢′𝑛)

2 d𝑧 ≤ 𝑀 < ∞.
∫−𝜌
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4. Via the Sobolev Embedding Theorem (Adams and Fournier, 2003), 𝐻1((−𝜌, 𝜌);R) ↪ 𝐶0([−𝜌, 𝜌];R), so that 𝑢𝑛 and 𝑑𝑛 have
continuous representatives in their equivalence classes. In particular, these representative functions are bounded on [−𝜌, 𝜌].
Going forward, where it is necessary we will abuse notation and let 𝑢𝑛 and 𝑑𝑛 to refer to the continuous representatives in
the original equivalence classes.

5. Pick 0 < 𝛿 < 𝜌. Using the uniform bound for the elastic energy and the continuity (and boundedness) of the function (1−𝑑𝑛)2,
we trivially have

𝑀 ≥ ∫

𝛿

−𝛿
(1 − 𝑑𝑛)2𝐶(𝑢′𝑛)

2 d𝑧 ≥ 𝐶 min
[−𝛿,𝛿]

(1 − 𝑑𝑛)2 ∫

𝛿

−𝛿
(𝑢′𝑛)

2 d𝑧.

6. Take a subsequence (𝑢𝑛𝑘 , 𝑑𝑛𝑘 )𝑘 of (𝑢𝑛, 𝑑𝑛)𝑛 such that

lim
𝑘→∞

(

min
[−𝛿,𝛿]

(1 − 𝑑𝑛𝑘 )
2
)

= lim inf
𝑛→∞

(

min
[−𝛿,𝛿]

(1 − 𝑑𝑛)2
)

and define this limit to be 𝑚𝛿 , which must be non-negative. As before, we abuse notation by referring to the new subsequence
as (𝑢𝑛, 𝑑𝑛)𝑛.

7. Suppose 𝑚𝛿 > 0. There must exist an index 𝑁 such that, for all 𝑛 > 𝑁 , we have

min
[−𝛿,𝛿]

(1 − 𝑑𝑛)2 > 𝑚𝛿∕2.

This implies

∫

𝛿

−𝛿
(𝑢′𝑛)

2 d𝑧 ≤ max
{

max
1≤𝑘≤𝑁 ∫

𝛿

−𝛿
(𝑢′𝑘)

2 d𝑧, 2𝑀
𝐶𝑚𝛿

}

,

or that (𝑢′𝑛)𝑛 is a bounded sequence in 𝐿2((−𝛿, 𝛿);R). By weak compactness in 𝐿2((−𝛿, 𝛿);R) (Evans and Gariepy, 2015, Theorem
1.42), there is a subsequence (𝑢′𝑛𝑘 )𝑘 of (𝑢′𝑛)𝑛 such that 𝑢′𝑛𝑘 ⇀ 𝑓 ∈ 𝐿2((−𝛿, 𝛿);R) as 𝑘 → ∞. That is, for any 𝑣 ∈ 𝐿2((−𝛿, 𝛿);R),
we have

∫

𝛿

−𝛿
𝑢′𝑛𝑘𝑣 d𝑧 → ∫

𝛿

−𝛿
𝑓𝑣 d𝑧.

If we restrict our attention to 𝑣 ∈ 𝐶∞
𝑐 ((−𝛿, 𝛿);R), then applying integration by parts gives

∫

𝛿

−𝛿
𝑢′𝑛𝑘𝑣 d𝑧 = −∫

𝛿

−𝛿
𝑢𝑛𝑣

′ d𝑧.

Using strong convergence of 𝑢𝑛𝑘 to 𝑢 in 𝐿2((−𝛿, 𝛿);R), we also have

−∫

𝛿

−𝛿
𝑢𝑛𝑘𝑣

′ d𝑧 → −∫

𝛿

−𝛿
𝑢𝑣′ d𝑧.

If we combine the weak convergence of 𝑢′𝑛𝑘 to 𝑓 and the strong convergence of 𝑢𝑛𝑘 to 𝑢, we arrive at

∫

𝛿

−𝛿
𝑓𝑣 d𝑧 = −∫

𝛿

−𝛿
𝑢𝑣′ d𝑧,

which holds for any 𝑣 ∈ 𝐶∞
𝑐 ((−𝛿, 𝛿);R). However, the previous equation is precisely the definition of the weak derivative of

𝑢, which implies that 𝑢 ∈ 𝐻1((−𝛿, 𝛿);R). This contradicts the assumptions on 𝑢 in the proposition statement.
8. Hence,

lim
𝑛→∞

(

min
[−𝛿,𝛿]

(1 − 𝑑𝑛)2
)

= 0.

Thus, there must exist (𝑧𝑛)𝑛 ⊂ [−𝛿, 𝛿] so that 𝑑𝑛(𝑧𝑛) → 1.
9. For each 𝑛, define

𝑛 =
{

𝑑 ∈ 𝐻1((−𝜌, 𝜌);R) ∶ 𝑑(𝑧𝑛) = 𝑑𝑛(𝑧𝑛)
}

.

We have

𝛱𝜀𝑛 (𝑢𝑛, 𝑑𝑛) ≥ ∫

𝜌

−𝜌

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑2𝑛
𝜀𝑛

+ 𝜀𝑛(𝑑′𝑛)
2

)

d𝑧 ≥ inf
𝑑∈𝑛 ∫

𝜌

−𝜌

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑2

𝜀𝑛
+ 𝜀𝑛(𝑑′)2

)

d𝑧.

10. Any 𝑑 ∈ 𝑛 may be written as 𝑑 = 𝑑𝑛(𝑧𝑛)𝑑, where 𝑑 ∈ ̃𝑛 =
{

𝑑 ∈ 𝐻1((−𝜌, 𝜌);R) ∶ 𝑑(𝑧𝑛) = 1
}

. Moreover,

inf
𝑑∈𝑛 ∫

𝜌

−𝜌

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑2

𝜀𝑛
+ 𝜀𝑛(𝑑′)2

)

d𝑧 =
(

𝑑𝑛(𝑧𝑛)
)2 inf

𝑑∈̃𝑛 ∫

𝜌

−𝜌

𝑔(𝑧∕𝜀𝑛)
2

(

𝑑2

𝜀𝑛
+ 𝜀𝑛(𝑑′)2

)

d𝑧.

11. As a shorthand, let us define 𝑓 (𝜀𝑛, 𝑧𝑛, 𝜌) to be the infimum on the right hand side of the previous equation. From the
Euler–Lagrange equations, one may directly compute 𝑓 (𝜀𝑛, ⋅, 𝜌) and show that it is continuous on [−𝛿, 𝛿] and hence admits a
minimum. Then,

𝛱 (𝑢 , 𝑑 ) ≥
(

𝑑 (𝑧 )
)2 𝑓 (𝜀 , 𝑧 , 𝜌) ≥

(

𝑑 (𝑧 )
)2 min 𝑓 (𝜀 , 𝑧, 𝜌).
𝜀𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑧∈[−𝛿,𝛿] 𝑛
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12. We take the limits of both sides of the previous equation as 𝑛 → ∞:

lim
𝑛→∞

𝛱𝜀𝑛 (𝑢𝑛, 𝑑𝑛) ≥ lim
𝑛→∞

(

(

𝑑𝑛(𝑧𝑛)
)2 min

𝑧∈[−𝛿,𝛿]
𝑓 (𝜀𝑛, 𝑧, 𝜌)

)

.

Via Step 8, we have that lim𝑛→∞ 𝑑𝑛(𝑧𝑛) = 1. We may show that

lim
𝑛→∞

(

min
𝑧∈[−𝛿,𝛿]

𝑓 (𝜀𝑛, 𝑧, 𝜌)
)

= 𝑔int .

Combining these limits, and recalling that the subsequences were chosen in Step 2 and Step 6 so that lim𝑛→∞ 𝛱𝜀𝑛 (𝑢𝑛, 𝑑𝑛) is
precisely the original limit inferior in (15a), we reach the desired conclusion. □

Finally, we prove Proposition 4.

roof of Proposition 4.

1. Let 𝐴 ∶= 𝜸𝑖([𝑠0, 𝑠1]). We claim that 𝜕𝜌(𝐴) is a subset of the union of four sets: the boundaries of 𝜌-neighborhoods of 𝜸𝑖(𝑠0)
and 𝜸𝑖(𝑠1) (i.e. circles with radius 𝜌 about the two endpoints) and the images of [𝑠0, 𝑠1] under the maps

𝒚±(𝑠) = 𝜸𝑖(𝑠) ± 𝜌𝒏̂𝑖(𝑠).

Proof of the claim:

(a) For any 𝒙 ∈ 𝜕𝜌(𝐴), let the closest point projection onto 𝐴 be 𝝅𝐴(𝒙). We note that this may not be unique depending
on the value of 𝜌. Let 𝑠 = 𝜸−1𝑖 (𝝅𝐴(𝒙)).

(b) If 𝑠 = 𝑠0 or 𝑠1, then we trivially have that 𝒙 ∈ 𝜕𝜌(𝜸𝑖(𝑠0)) or 𝜕𝜌(𝜸𝑖(𝑠1)).
(c) If 𝑠 ∈ (𝑠0, 𝑠1), then 𝒙 − 𝜸𝑖(𝑠) must be orthogonal to 𝒕̂𝑖(𝑠). Hence, it can be written as 𝜸𝑖(𝑠) ± 𝜌𝒏̂𝑖(𝑠).

We next bound the length of each of the four sets.
2. Each circle has circumference 2𝜋𝜌.
3. Meanwhile, the arc lengths of the other two sets are computed using

∫

𝑠1

𝑠0
|𝒚′±(𝑠)| d𝑠.

We may directly compute the derivatives of 𝒚±:11

𝒚′±(𝑠) =
(

1 ±
𝜌

𝑅𝑖(𝑠)

)

𝒕̂𝑖(𝑠).

Thus,

∫

𝑠1

𝑠0
|𝒚′±(𝑠)| d𝑠 = ∫

𝑠1

𝑠0

|

|

|

|

1 ±
𝜌

𝑅𝑖(𝑠)
|

|

|

|

d𝑠 ≤ ∫

𝑠1

𝑠0

(

1 +
𝜌

𝑅min

)

d𝑠 ≤
(

1 +
𝜌

𝑅min

)

(𝑠1 − 𝑠0).

4. Since 𝑠1 − 𝑠0 = 1(𝐴), we can put together the estimates for the four pieces to yield the conclusion. □
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