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A B S T R A C T

Stiff biological materials (SBMs), such as nacre and bone, are composites that display remarkable toughness
enhancements over their primary constituents, which are brittle minerals. These enhancements are thought
to be a consequence of different mechanisms made possible by the SBMs’ internal lamellar architecture. One
such mechanism is the Cook–Gordon (crack-arrest-and-reinitiation) mechanism, whose operation manifests in
flexural tests as a sawtooth pattern in the force–displacement curves. The curves from flexural tests carried
out on marine sponge spicules, which also possess a lamellar architecture, also display a sawtooth-pattern,
suggesting the presence of the Cook–Gordon mechanism. Intriguingly, the spicules were recently found not
to display any significant toughness enhancement. To resolve this apparent contradiction, in the preceding
paper (Kochiyama et al., 2021), we put forward the hypothesis that the sawtooth pattern was due to the
spicules slipping at the tests’ supports. In this paper, we present a model for the spicule’s flexural tests
in which we allow for the possibility for the specimen to slip at the test’s supports. We model contact
between the specimen and the test’s supports using the Coulomb’s friction law. By choosing experimentally
reasonable values for the friction coefficient, we were able to get the model’s predictions to match experimental
measurements remarkably well. Additionally, on incorporating the spicules’ surface roughness into the model,
which we did by varying the friction coefficient along the spicule’s length, its predictions can also be made to
match the measured sawtooth patterns. We find that the sawtooth patterns in the model are due to slip type
instabilities, which further reinforces the hypothesis put forward in our preceding paper.
1. Introduction

Stiff biological materials (SBMs), such as nacre and bone, are natural
layered composites that are known for having remarkable fracture
toughness that can be orders of magnitude higher than that of the
brittle ceramics that dominates their composition (Jackson et al., 1988;
Currey, 1977; Sarikaya, 1994; Menig et al., 2000; Koester et al., 2008;
Wegst et al., 2015). The key to such enhancement in fracture toughness
lies in their lamellar architectures, which are the intricate arrange-
ments of ceramic and organic phases at the sub-micron scales (see
Fig. 1(A)& (B)). One way in which the lamellar architecture contributes
to the toughness enhancement is by supporting the operation of the
Cook–Gordon (crack-arrest-and-reinitiation) mechanism) (Cook et al.,
1964). In this mechanism, when a crack initiates in and propagates
through the ceramic phase, the organic phase, which separates one
region of the ceramic phase from another, can effectively act as a “trap”
and arrest the crack (Ming-Yuan and Hutchinson, 1989; Cook et al.,
1964). In flexural tests, the operation of the Cook–Gordon mechanism
reflects as a drop in the measured force as the crack advances, and
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then as the end of that force drop as the crack gets arrested (Clegg
et al., 1990). As such, when the Cook–Gordon mechanism operates in
layered materials, the measured force–displacement curve can have the
appearance of a sawtooth pattern (see Fig. 2(B)).

Monn et al. recently showed that the presence of lamellar ar-
chitectures by itself does not necessarily guarantee the operation of
the Cook–Gordon mechanism (Monn et al., 2020). They demonstrated
this using the fiber-like glass skeletal elements, called spicules (see
Fig. 1(C)), of the marine sponge Euplectella aspergillum (𝐸𝑎.). The 𝐸𝑎.
spicules also have a lamellar architecture that resembles those in nacre
and bone. The architecture consists of alternating layers of glass and
organic phase laid out in a concentric manner, as shown in Fig. 1(D).
Monn et al. performed notched three-point bending tests on the spicules
and directly measured their fracture toughness in terms of the initiation
fracture toughness and the average crack growth resistance, and found
that the fracture toughness enhancement in them was negligible (Monn
et al., 2020). This implied that the Cook–Gordon mechanism either
operated to a negligible level or was absent in the spicules.
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Fig. 1. Lamellar architectures in biological materials. (A) The shell of Haliotis rufescens—the red abalone (image courtesy of John Varner). (B) The nacre from H. rufescens consists
of aragonite tablets assembled in a brick-and-mortar manner, where thin protein layers (not identifiable in the image) in-between the tablets function as the mortar (modified with
permission from Rabiei et al. (2012); copyright 2012 the Royal Society of Chemistry). Owing to such arrangement, nacre demonstrates a 1000-fold increase in fracture toughness
compared to that of the mineral aragonite. (C) The entire skeletal structure of a marine sponge Euplectella aspergillum is shown (modified from Monn et al. (2015); copyright 2015
National Academy of Sciences). The white arrow identifies the spicules, which are around 50 μm in diameter and can be several centimeters long. In some of our recent studies,
we performed three-point bending tests on these spicules (Monn and Kesari, 2017; Monn et al., 2020). (D) A scanning electron microscope (SEM) image of a E. aspergillum spicule’s
cross section shows lamellar architecture consisting of a cylindrical silica core surrounded by concentric silica layers (modified from Monn et al. (2015); copyright 2015 National
Academy of Sciences). Each of these concentric silica layers are separated from their adjacent layers or the silica core by a compliant organic layer whose thickness is roughly in
the 5–10 nm range (not identifiable in the SEM image) (Weaver et al., 2007).
Fig. 2. (A)(i) Typical schematic of a three-point bending test in its reference configuration and (ii) the deformed beam with midpoint displacement 𝑤0 under the action of some
midpoint force 𝐹 . The support span is 𝐿, and 𝐷, 𝐸, and 𝐼 = 𝜋𝐷4∕64 are the diameter, Young’s modulus, and the bending moment of inertia of the beam, respectively. (B) Thirty
eight scaled force–displacement curves from three-point bending tests carried out on E. aspergillum spicules and previously presented in Monn and Kesari (2017), Kochiyama et al.
(2021). The spicules respond linearly until a certain point, then, in most cases, start displaying the sawtooth pattern.
However, the implication that the Cook–Gordon mechanism op-
erates to an insignificant level during the failure of 𝐸𝑎. spicules in
flexural tests appears to contradict the observations made in Monn and
Kesari (Sarikaya et al., 2001; Levi et al., 1989; Monn and Kesari, 2017).
To be specific, in Monn and Kesari (2017) Monn and Kesari carried
out three-point bending tests on 𝐸𝑎. spicules. They observed sawtooth
patterns in the force–displacement curves from their tests, in which the
spicules were being loaded all the way until failure (see Fig. 2). As inti-
mated previously, sawtooth-patterns in layered materials are usually a
signature of the operation of the Cook–Gordon mechanism (Clegg et al.,
1990). Therefore, if the Cook–Gordon mechanism is indeed irrelevant
during the spicule’s failure as argued in Monn et al. there must be
alternative explanations for the appearance of the sawtooth patterns
observed in the force–displacements curves of Monn and Kesari.

In Part I of the current paper (Kochiyama et al., 2021), we at-
tempt to resolve the apparent contradiction by hypothesizing that
the sawtooth patterns, at least in the case of 𝐸𝑎. spicules, are solely
the consequence of the spicules slipping (see Fig. 3 B ) at the test’s
2

( )
supports, rather than of the operation of the Cook–Gordon mechanism.
We summarize our arguments from Part I of this paper in the following
few paragraphs.

In Kochiyama et al. (2021) we reported force–displacement mea-
surements from three-point bending tests that were carried out on 𝐸𝑎.
spicules in the simply-supported (SS) setup (see Fig. 2). Micrographs
of the spicules were taken in-situ via a microscope during the tests. By
conducting image analysis on those micrographs, it was demonstrated
that in the tests in which the force–displacement curve displayed a
sawtooth pattern, there were sudden jumps in the total length of the
spicule section lying between the test’s supports. This total length is
shown marked as 𝑆 in Fig. 3(B)(ii) .2. The jumps appear, e.g., as the
discontinuities in the green curve shown in Fig. 3(B)(iii). It was further
shown that the jumps and the force-drop events (which appear, e.g., as
the discontinuities in the blue curve in Fig. 3(B)(iii)) took place at
the exact same time instances. These observations imply one of the
following three scenarios: (i) the force-drop events are solely due to the
layer-fracture events associated with the Cook–Gordon mechanism, (ii)
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Fig. 3. Fixed-fixed setup and spicule slippage in simply-supported setup. (A)(i) shows the reference configuration of a spicule set up for a flexural test in a fixed-fixed setup; the
spicule ends are glued onto the test’s supports (adhesive shown in green). The yellow circles mark two spicule material particle that sit at the test’s supports in this configuration.
(A)(ii) shows the spicule in its deformed configuration as it is being tested with its ends glued to the test’s supports. The material particles that were at the test’s supports in
the reference configuration (yellow circles) are still at the test’s supports. (B)(i) shows a spicule in its reference configuration in the simply-supported setup. The yellow circles
mark two spicule material particle that sit at the test’s supports in this configuration. (B)(ii).1 shows a deformed spicule configuration in which the spicule has not undergone any
slipping at the supports; the material particles that were at the test’s supports in the reference configuration (yellow circles) are still at the test’s supports in this configuration as
well. This is the assumption made in standard beam theories, such as the Euler–Bernoulli beam theory, when they are used to model three point bending tests. (B)(ii).2 shows
a deformed configuration of the spicule in which the spicule has undergone slippage at the test’s supports. The material particles denoted by the yellow circles are no longer at
the test’s supports, but have slipped down into the trench. The parameter 𝑆 denotes the spicule’s total length, which is the length of the section of the spicule specimen lying
between the test’s supports. (B)(iii) shows the measured force 𝐹 (left axis) (for details of what we mean by force, 𝐹 , see Section 3) and the change in the total length, 𝛥𝑆 (right
axis), from a representative three point bending test carried out in the simply supported setup as a function of stage displacement, 𝑤𝑠, in blue and green, respectively. The vertical
dashed lines indicate the instances at which the drops in the force take place. As can be noted from the graphs, the jumps in the spicule’s total length take place at those very
same instances.
Source: (Modified from Kochiyama et al. (2021)).
they are due to a combination of layer-fracture events and slip-events,
or (iii) they are entirely due to the slip-events.

To determine which of the three scenarios is likely true, three-point
bending tests were carried out on the spicules again in the fixed-fixed
(FF) setup (see Fig. 3(A)). In the FF setup, the spicule’s ends are glued
to the test’s supports, which prevents the occurrence of any slip-events
at the test’s supports. None of the force–displacement curves from the
FF tests displayed a sawtooth pattern. Although this observation points
to scenario (iii) as being true, it is with the implicit assumption that
the operation of the Cook–Gordon mechanism would be unaffected
regardless of whether or not the spicule ends are free to slide and
rotate. Since such an assumption is not explicitly validated, additional
experiments were performed to gauge the likelihood of each of the
three scenarios in an alternative manner. To be specific, the three-
point bending tests were carried out on the spicules again in the SS
setup, but the spicules were only loaded until a few force drops that
are characteristic of the sawtooth-pattern were observed instead of
until complete failure. The specimens were then unloaded until they
3

regained their straight shape and the force on them almost vanished.
Finally, the spicules were loaded for the second time (re-loaded) until a
few force drops were again observed. If the sawtooth pattern observed
during the loading phase was due to the Cook–Gordon mechanism, then
the spicule’s stiffness (slope of the initial linear portion of the force–
displacement curve before the appearance of the force drops) from the
re-loading (second loading) phase should be different from that in the
loading (first loading) phase. However, the spicules’ stiffnesses in the
loading and the re-loading phases were found to be almost the same.
This observation implies that the force-drops in the loading phases are
not due to the Cook–Gordon mechanism, which leads us to conclude
that scenario (iii) is the one that is true.

In this paper, with the goal of further investigating our hypothesis,
we develop and study a mechanics model for the spicule’s SS bending
tests. A distinguishing feature of our model is that the test specimen is
allowed to slide at the test’s supports. In contrast, in the standard Euler–
Bernoulli (EB) model of the three point bending test, the specimen is
not allowed to slide at the test’s supports.
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Fig. 4. Representative SEM images of a few randomly selected E. aspergillum spicules that were taken after the spicules had been flexurally tested in a simply-supported setup.
Each spicule is identified by the label given to the flexural test (see Tables S1–S2 of Kochiyama et al. (2021) for detailed information pertaining to a given test) in which it was
used. (A) and (B) are two different images of the spicule from the test SS4. (C)–(F) are images of the spicules from the tests SS7, SS24, SS32, and SS34, respectively. The imaged
region in each spicule was chosen randomly. These images demonstrate how the spicules can have rough surfaces, as shown in (A)–(D), or relatively smooth surfaces, as shown
in (E)–(F).
Considering the geometry in the SS experiments (e.g., see Fig. 2), in
our model, the spicule’s displacements are taken to be two dimensional
in nature. The spicules are modeled as 1D continua considering their
high aspect ratios (length:diameter) of ≈ 25, and their bending behav-
ior is modeled using Euler’s elastica theory since they undergo large
displacements in the experiments. Any stretching behavior along their
axes are ignored. The contact at the test’s supports is modeled using the
Coulomb friction model. Scanning electron microscopy (SEM) revealed
that the spicules’ surfaces could have both smooth and rough regions.
By roughness, we are referring to the different types of imperfections,
including debris, scrapes and outer layer damage, that were observed
on the spicules’ surfaces (Fig. 4). We incorporate the spicules’ surface
roughness in our model by assuming that the coefficient of friction
between the spicule and the test’s supports varies depending on which
particular spicule cross-section is in contact with the supports. Specif-
ically, in the model it is assumed that the coefficient of friction varies
along the spicule’s length as

𝜇0
(

1 + 𝐴 cos
( 2𝜋𝑠
𝜆

− 𝜙
))

, (1.1)

where 𝑠 is the arc-length coordinate along the spicule’s axis (see
Fig. 3(B)(ii) .2), and we refer to the parameters 𝜇0, 𝐴, 𝜆, and 𝜙 as the
average value of coefficient of friction, the amplitude, the wavelength,
and the phase, respectively. In our problem, the static and kinetic coef-
ficients of friction are taken to have the same value. In Section 4.1, we
present the governing equations of our model. In Section 4.2, we semi-
analytically solve the governing equations to derive what we call our
4

model’s equilibrium force–displacement curve. Each point on that curve
corresponds to a static equilibrium configuration. Our model predicts
that any measured force–displacement point will lie on the equilibrium
curve. However, due to the finite stiffness of the loading apparatus,
not all the points on the equilibrium curve will be measured in an
experiment. Taking into account the stability of the equilibrium points
in Section 4.3, we provide an algorithm for numerically determining
our model’s prediction for the force–displacement curve that will be
measured in an SS experiment.

In Section 5, we compare the force–displacement curves predicted
by our models with the ones that were experimentally measured
in Monn and Kesari (2017), Kochiyama et al. (2021). We find that not
only do the predicted force–displacement curves capture the sawtooth
pattern, but they can also be made to quantitatively match the mea-
sured force–displacement remarkably well by appropriately choosing
the value of 𝜇0, 𝐴, 𝜆, and 𝜙. The sawtooth pattern in our model is
a direct consequence of the slip events at the supports. We find that
the values of 𝜇0, which were chosen to match our model’s prediction
with the experimental measurements as closely as possible, is quite
consistent with the values reported in literature for the coefficient of
friction between glass and steel (note that the contact in the spicule
SS experiments is between silica (spicule) and stainless steel (test’s
supports)).

Since the sawtooth pattern in our model is a direct consequence of
slip events, the good match between our model’s predictions and the
experimental measurements supports our hypothesis that the sawtooth
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Fig. 5. An illustration of the simply-supported setup. (A) Schematic of the experimental setup used in our recent study (Kochiyama et al., 2021) for testing spicules in a
simply-supported setup. The mechanical testing stage consisted of a stainless steel plate with a 𝐿 μm wide trench, where the trench edges served as the test’s supports. The loading
device consisted of a wedge attached to a cantilever; to ensure that the cantilever’s right end remained fixed in space during the experiment, the right end was encastered into a
rigid aluminum frame (not shown in the schematic) that was independent of all the other testing structures. (B) Schematic of a simply-supported spicule in our experiment, which
is being deformed under some applied load. The loading of the spicules was achieved by displacing the mechanical testing stage by 𝑤𝑠 μm (𝒘𝑠 = −𝑤𝑠 ê2) as shown, where the
mechanical testing stage was mounted onto a three-axis motorized translation stage (not shown in the schematic) to enable precise control of its motion. As a result, the midpoint
of the spicule is deflected by 𝑤0 μm (𝒘0 = 𝑤0 ê2) and the free end of the cantilever is deflected by 𝑤𝑐 μm (𝒘𝑐 = −𝑤𝑐 ê2). For more details on the experiments see Section 3.
patterns in the experiments of Monn and Kesari are solely a conse-
quence of the slip instabilities that take place at the trench’s edges.
However, the modeling results we put forward in this paper do not
conclusively prove our hypothesis. This is because we were unable to
check the reasonableness of the values we chose for the parameters 𝐴
and 𝜆 while we were comparing our model to the experiments. We
discuss this limitation of our current work in the concluding section of
this paper, Section 6, where we also discuss a potential future direction
for addressing this limitation.

We begin by discussing some mathematical notions that are needed
for the development of our model. Following that we recapitulate
the experimental setup of the SS bending tests in Section 3 before
presenting our model in Section 4.

2. Mathematical preliminaries

The mathematical notions that we use in this paper are discussed
in Kochiyama et al. (Section 2.1, 2021). However, for the readers’
convenience, we briefly review some of those notions in this section.

We assume that our experiments take place in the three dimensional
physical point space  , and take E to be a three dimensional, oriented,
Hilbert space, such that  is E’s principle homogeneous space. We
introduce vectors ê1, ê2, and ê3, as shown in Fig. 5(C), to form a basis
for E. We denote the dot product between any two vectors 𝒖 and 𝒗
as 𝒖⋅𝒗, where by definition 𝒖⋅𝒗 ∈ R, and R is the set of all real numbers.
The vectors ê1, ê2, and ê3 are orthonormal. This can be expressed
by stating that ê𝑖 ⋅ ê𝑗 = 𝛿𝑖𝑗 , where 𝑖, 𝑗 ∈ (1, 2, 3), and the Kronecker
delta symbol 𝛿𝑖𝑗 is defined as having a value of unity if 𝑖 = 𝑗 and zero
otherwise.

Following Rahaman et al. (2020), we consider vectors to carry units
with them if they belong to a physical vector space. For instance,
we take that ê𝑖, 𝑖 ∈ (1, 2, 3), carry the units of μm (micrometers).
The magnitude/norm of the vector 𝒖 is denoted as ‖𝒖‖ = (𝒖 ⋅ 𝒖)1∕2.
The norm ‖𝒖‖ is non-dimensional, or to be more precise, ‖𝒖‖ ∈ R≥0,
where R≥0 is the set of non-negative real numbers.

Following Rahaman et al. (2020) and Deng and Kesari (2021), we
model force as a linear map from E into the one dimensional vector
space whose elements carry units of energy. Let the forces f̂𝑖, 𝑖 ∈ (1, 2, 3),
be defined such that f̂𝑖

(

ê𝑗
)

= 𝛿𝑖𝑗 nJ
(

10−9 Joules
)

, where f̂𝑖 is a milli-
newton of force acting in the ê𝑖 direction. The set of all forces can
be made into a vector space F by defining the addition between two
forces u and v to be the force w such that w(𝒙) = u(𝒙) + v(𝒙) for
all 𝒙 ∈ E. Let F be the linear map from E to F such that F

(

ê𝑖
)

= f̂𝑖.
Then, defining the dot product between forces u and v to be the dot
product in E between the vectors F−1(u) and F−1(v), where F−1 is the
inverse of F, the space F can be made into a Hilbert space. It can be
shown that

(

f̂
)

provides an orthonormal basis for F.
5

𝑖 𝑖∈(1,2,3)
3. A brief review of the simply supported, three-point bending
experiments from Part I

In this section we briefly recall the set-up of the simply-supported
(SS) experiments mentioned in Section 1.

A trench of width 𝐿 μm was cut into a stainless steel mechanical
testing stage (MTS) (see Fig. 5(C). The non-dimensional trench width 𝐿
was 1278 ± 3 (mean ± standard deviation) in the experiments. Spicules
were placed across the trench with their lengths parallel to the ê1
direction so that initially, the spicule’s cross-sections were normal to ê1.
The trench’s edges, which run parallel to the ê3 direction, served as the
test’s supports. A cantilever with a wedge attached to it was positioned
over the spicule. The wedge’s triangular faces were normal to the ê3
direction with the triangle’s base normal to the −ê2 direction and facing
away from the spicule, and the triangle’s apex facing the spicule. At
the beginning of the experiment, the wedge’s apex (shown marked in
Fig. 5(C)) was just above the spicule’s midpoint, i.e., over the spicule
cross-section that lay midway across the trench. The cantilever and the
wedge were made of either steel or aluminum.

The loading phase of the tests were conducted by moving the MTS in
the −ê2 direction at a rate of 1 μm∕𝑠. The MTS was driven by a DC servo
motor, whose motion was controlled through a PID algorithm. The
stage was moved in 2 μm increments. During the increment, the stage’s
velocity was maintained between 50 and 200 μm∕𝑠. Thus, each stage
increment took anywhere between 10 and 40 ms. After each increment,
the stage was held motionless so that there was a 2100 ms time interval
between the starting points of any two consecutive increments. Each
data point that we report was calculated using the average value of the
sensor readings collected over the last 100 ms of each of those time
intervals.

We denote an arbitrary time instance during the experiment as 𝜏 ms,
where 𝜏 ∈ [0, 𝜏∗]. The time 𝜏 = 0 corresponds to the instance at
which the spicule first makes contact with the wedge’s apex, and the
time 𝜏 = 𝜏∗ > 0 corresponds to the instance when the spicule fails.
We express the MTS’s displacement as −𝑤𝑠(𝜏)ê2. Here, 𝑤𝑠(𝜏) ∈ R is a
known non-dimensional quantity since the stage’s displacement was an
input in our experiment.

As the stage moved upwards (−ê2 direction) the spicule made
contact with the wedge’s apex and got deflected into the trench, while
the cantilever got deflected away from the trench. We express the
cantilever’s wedge’s motion as −𝑤𝑐 (𝜏)ê2 (compare Fig. 5(C) and (D)).
Here, 𝑤𝑐 (𝜏) is the non-dimensional cantilever displacement, which is
defined as the dot product between −ê2 and the wedge’s displacement
vector at the time instance 𝜏. We denote the spicule’s midpoint deflec-
tion, or simply displacement, as 𝑤0(𝜏)ê2, where 𝑤0(𝜏) ∈ R is the dot
product between ê2 and the displacement vector of the centroid of the
spicule’s cross-section that is directly underneath the wedge’s apex. It
can be shown that the quantities 𝑤𝑠(𝜏), 𝑤𝑐 (𝜏), and 𝑤0(𝜏) are related as

𝑤 (𝜏) = 𝑤 (𝜏) +𝑤 (𝜏). (3.1)
𝑠 𝑐 0
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In terms of

�̂�𝑠(𝜏) ∶=
𝑤𝑠(𝜏)
𝐿

, (3.2a)

�̂�𝑐 (𝜏) ∶=
𝑤𝑐 (𝜏)
𝐿

, (3.2b)

�̂�0(𝜏) ∶=
𝑤0(𝜏)
𝐿

, (3.2c)

q. (3.1) reads

̂ 𝑠(𝜏) = �̂�𝑐 (𝜏) + �̂�0(𝜏). (3.3)

Let 𝑭 (𝜏) be the force acting on the spicule’s midpoint. We assume
hat the wedge’s apex only applies force in the ±ê2 directions. This

allows us to express

𝑭 (𝜏) = 𝐹 (𝜏)f̂2, (3.4)

where 𝐹 (𝜏) ∈ R is a non-dimensional quantity. We model the cantilever
as a linear spring that is oriented in the ê2 direction and having a
stiffness of k𝑐 = 𝑘𝑐 mN∕μm. From this model, it follows that

𝐹 (𝜏) = 𝑘𝑐𝑤𝑐 (𝜏). (3.5a)

We measured 𝑘𝑐 independently, using a procedure unrelated to the SS
experiments, and found it to vary from 86.4 to 90.1 (see Tables S1–S2
of Kochiyama et al. (2021)). The constitutive law expressed by (3.5a)
can alternately be written as

𝐹 (𝜏) = �̂�𝑐�̂�𝑐 (𝜏), (3.5b)

where

𝐹 (𝜏) ∶=
𝐹 (𝜏)𝐿2

𝐸𝐼
, (3.6a)

�̂�𝑐 ∶=
𝑘𝑐𝐿3

𝐸𝐼
, (3.6b)

𝐸 mN∕μm2 is the spicule specimen’s Young’s modulus, and 𝐼 μm4 is the
picule specimen’s bending moment of inertia.

In each experiment, we measured the function R≥0 ∋ 𝜏 ↦ 𝑤𝑐 (𝜏) ∈ R.
Since we knew 𝑘𝑐 , on account of (3.2b) and (3.5b), this was tantamount
to measuring the function 𝜏 ↦ 𝐹 (𝜏). Additionally, since we know 𝑤𝑠(⋅),
sing the measured 𝑤𝑐 (⋅) along with (3.2a), (3.2b), and (3.3), we can
onstruct 𝜏 ↦ �̂�0(𝜏). We call the map
𝛾m
↦

(

�̂�0(𝜏), 𝐹 (𝜏)
)

, (3.7)

he measured force–displacement curve.

. Theory

The goal of the model we develop in this section is to provide a
rediction for the measured force–displacement curves in the loading
hase of the SS experiments.

.1. Equations governing the spicule’s equilibrium configurations

We denote the total length of the spicule specimen lying between
he supports in the deformed configuration 𝑆 μm (see Fig. 3(B)(ii) .1).

e take our problem to be completely symmetric about the trench’s
id-plane. For a given total spicule length, 𝑆, we define a spicule’s

quilibrium configuration to be a kinematically admissible spicule de-
ormation map and a spicule-trench edge contact force. The map should
e such that the net force and the moment vanish on every one of
he spicule’s material regions; the contact force should be such that it
atisfies the prescribed contact constitutive law between the spicule and
6

he trench.
.1.1. Euler’s elastica theory
We assume the spicule to be inextensible. Thus, 𝑆 denotes the

otal length of the spicule specimen lying between the supports in
ts reference configuration as well. We call the length of the spicule-
ection lying between a spicule material particle on the spicule’s central
xis and the spicule cross-section contacting the trench’s left edge the
article’s arc-length coordinate 𝑠 ∈ (0, 𝑆) (see Fig. 3(B) . (ii) .2). When

there is no risk of confusion, we will henceforth be referring to a spicule
material particle lying on the spicule’s central axis simply as a spicule
material particle. We call

̂ ∶= 𝑠∕𝑆, (4.1)

the particle’s scaled arc-length coordinate. We identify a spicule mate-
rial particle with either its arc-length or scaled arc-length coordinate.

As mentioned before, we assume that our problem is completely
symmetric about the trench’s mid-plane, i.e., the plane perpendicular
to ê1 and containing the point (𝐿∕2, 0, 0). Therefore, the spicule’s de-
formed shape can be described using the (scaled) deformation mapping

�̂�(⋅) ∶ (0, 1∕2) → E, (4.2a)

here

̂ (⋅) =
𝜶 (⋅)
𝐿

, (4.2b)

and 𝜶 (𝜉) is the position vector of the spicule material particle whose
arc-length coordinate is 𝜉𝑆.

We can define a Frenet–Serret frame (Forsyth, 1912) corresponding
to the curve �̂�(⋅) at each spicule material particle. The unit tangent and
normal vectors in that frame at the material particle �̂� can be computed
as

ê𝑡 (�̂�) = �̂�′ (�̂�) ∕‖�̂�′ (�̂�) ‖, (4.3a)

ê𝑛 (�̂�) = ê′
𝑡 (�̂�) ∕‖ê

′
𝑡 (�̂�) ‖, (4.3b)

espectively, where �̂�′ (⋅) is the derivative of �̂� (⋅), and ê′
𝑡 (⋅) is the

erivative of ê𝑡 (⋅). Using the definition of 𝑠, Eqs. (4.1), and (4.2), it
an be shown that ‖�̂�′ (�̂�) ‖ = �̂�, where

̂ = 𝑆
𝐿
. (4.4)

Let 𝜃 (⋅) ∶ (0, 1∕2) → (−𝜋, 𝜋] be defined such that 𝜃 (�̂�) is the angle
etween ê1 and ê𝑡 (�̂�)1 (see Fig. 6(A)). We can express ê𝑡 (�̂�) , ê𝑛 (�̂�)
sing 𝜃(�̂�) as

ê𝑡 (�̂�) = cos(𝜃(�̂�))ê1 + sin(𝜃(�̂�))ê2, (4.5a)

ê𝑛 (�̂�) = sin(𝜃(�̂�))ê1 − cos(𝜃(�̂�))ê2, (4.5b)

espectively. Let 𝐸𝐼𝑷 (�̂�)∕𝐿2 ∈ F be the force acting on the spicule
ross-section containing the spicule material particle �̂�. Specifically,
𝐼𝑷 (0)∕𝐿2 is the force acting on the spicule due to its contact with

he trench’s left edge. The vector 𝑷 (0) can be expressed as

̂ (0) = 𝑃1 f̂1 + 𝑃2 f̂2, (4.6)

here 𝑃1, 𝑃2 ∈ R.
The spicule’s high aspect ratio and the observation of large displace-

ents in our SS experiments motivates us to use the Euler’s elastica
heory (Euler, 1952; Timoshenko and Gere, 2009) to model the spicule’s
eformation. The elastica theory is an extension of the EB theory to the
egime of large displacements and rotations. As per the elastica theory,

1 To be clear, considering two vectors of unit magnitude 𝒂 ∶= 𝑎1 ê1 + 𝑎2 ê2
and 𝒃 ∶= 𝑏1 ê1 + 𝑏2 ê2, the angle between them is the real number 𝜃 in (−𝜋, 𝜋]
such that 𝑎 cos(𝜃) − 𝑎 sin(𝜃) = 𝑏 and 𝑎 cos(𝜃) + 𝑎 sin(𝜃) = 𝑏 .
1 2 1 2 1 2
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Fig. 6. Geometry in our mechanics model. (A) A schematic of a beam (blue) suspended over a trench (gray). At �̂� = 0 the beam experiences the normal reaction force 𝐸𝐼𝑷 𝑛(0)∕𝐿2

and the frictional reaction force 𝐸𝐼𝑷 𝑡(0)∕𝐿2. The force 𝑭 acts at the spicule midpoint. The magnitude of the beam’s midpoint’s deflection is |𝑤0|. The angle between ê1 and ê𝑡 (�̂�)

is 𝜃 (�̂�), and 𝜃0 ∶= 𝜃(0). (B) A free body diagram of the left half of the beam (blue). The beam is subject to the forces 𝐸𝐼𝑃1∕𝐿2 f̂1, and 𝐸𝐼𝑃2∕𝐿2 f̂2 at �̂� = 0, and the forces −𝐸𝐼𝑃1∕𝐿2 f̂1,
and 𝐹∕2f̂ at �̂� = 1∕2. At �̂� = 1∕2 the beam is also subject to a moment 𝑴 .
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the spicule’s cross-sectional rotation 𝜃(⋅) needs to satisfy the non-linear
differential equation

𝜃′′(�̂�)∕�̂�2 + 𝑃1 sin(𝜃(�̂�)) − 𝑃2 cos(𝜃(�̂�)) = 0, (4.7a)

over the domain (0, 1∕2) and satisfy the boundary conditions

𝜃′(�̂�)|
|�̂�=0 = 0, (4.7b)

𝜃(�̂�)|�̂�=1∕2 = 0. (4.7c)

In (4.7), 𝜃′(⋅) and 𝜃′′(⋅) denote 𝜃(⋅)’s first and second derivatives,
respectively. The boundary condition (4.7b) follows from the fact that
there is no bending moment acting on the spicule at �̂� = 0, and the
boundary condition (4.7c) follows from the problem’s symmetry about
the trench’s mid plane.

4.1.2. Coulomb friction model
Let

f̂𝑡(�̂�) ∶=F
(

ê𝑡(�̂�)
)

= cos(𝜃(�̂�))f̂1 + sin(𝜃(�̂�))f̂2, (4.8a)

f̂𝑛(�̂�) ∶=F
(

ê𝑛(�̂�)
)

= sin(𝜃(�̂�))f̂1 − cos(𝜃(�̂�))f̂2. (4.8b)

The linear map F appearing in (4.8) has been defined in Section 2.
Using f̂𝑡(�̂�), f̂𝑛(�̂�), we can express 𝑷 (�̂�) as the sum of 𝑷 𝑡(�̂�) and 𝑷 𝑛(�̂�),
where 𝑷 𝑡(�̂�) = 𝑃𝑡(�̂�)f̂𝑡(�̂�), 𝑷 𝑛(�̂�) = 𝑃𝑛(�̂�)f̂𝑛(�̂�), and 𝑃𝑡(⋅), 𝑃𝑛(⋅) ∶ (0, 1∕2) →
R. We refer to 𝑷 𝑡(�̂�) and 𝑷 𝑛(�̂�) as, respectively, the (scaled) tangential
and normal forces at the material particle �̂�. We call 𝑷 𝑡(0) and 𝑷 𝑛(0)
the (scaled) tangential and normal contact forces (at the left trench
edge), respectively, and for brevity, denote their magnitudes, i.e., 𝑃𝑡(0)
and 𝑃𝑛(0), as 𝑃𝑡 and 𝑃𝑛, respectively.

We define the angle 𝛽0 ∈ (0, 𝜋) such that

cot
(

𝛽0
)

=
𝑃𝑡
𝑃𝑛
. (4.9)

It follows from Eqs. (4.6), (4.8), and (4.9), and the definitions of 𝑃𝑡
and 𝑃𝑛 that

𝑃 = 𝑃 csc
(

𝛽
)

cos
(

𝜃 − 𝛽
)

, (4.10a)
7

1 𝑛 0 0 0 p
𝑃2 = 𝑃𝑛 csc
(

𝛽0
)

sin
(

𝜃0 − 𝛽0
)

, (4.10b)

here

0 ∶= 𝜃(0). (4.10c)

Substituting 𝑃1, 𝑃2 from (4.10) into (4.7a) and simplifying, we get
hat
′′(�̂�) + �̂�2𝑃𝑛 csc

(

𝛽0
)

sin(𝜃(�̂�) − 𝜃0 + 𝛽0) = 0. (4.11)

We model contact between the spicule and the trench edges using
he Coulomb’s law of friction (Popov, 2017). As per the Coulomb’s law,
hen 𝑃𝑛 ≥ 0, ||

|

𝑃𝑡
|

|

|

≤ 𝜇𝑃𝑛, which in terms of 𝛽0 reads

𝜇 ≤ cot
(

𝛽0
)

≤ 𝜇, (4.12)

here 𝜇 is the coefficient of friction. (As we mentioned in Section 1,
n our problem we take the static and kinetic coefficients of friction to
ave the same value).

.2. Equilibrium force–displacement curves

.2.1. Solution to the boundary value problem (4.7) using the solution to
he nonlinear pendulum problem

Following Blasius (for accessible references, see, e.g., Goldstein,
938; Klamkin, 1962), we construct the solution to our boundary value
roblem (BVP) (4.7) using the solution of an auxiliary initial value
roblem (IVP).

The IVP we consider is as follows. The function 𝛽 ∶ (0, 1∕2) → (−𝜋, 𝜋]
atisfies the nonlinear ordinary differential equation (ODE)

′′(�̂�) + 𝜔2 sin(𝛽(�̂�)) = 0, (4.13a)

nd the initial conditions

𝛽(�̂�)|�̂�=0 = 𝛽0, (4.13b)

𝛽′(�̂�)|
|�̂�=0 = 0, (4.13c)

where 𝜔 > 0 and 𝛽0 ∈ (0, 𝜋). The IVP (4.13) is related to the

roblem of a simple pendulum executing finite angle motions in a
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plane. The complete solution to the IVP (4.13) is commonly attributed
to Euler (Euler, 1750). For more modern references of the solution, see,
e.g., Whittaker (1937), Beléndez et al. (2007). In order to explicitly
note the dependence of the solution to the IVP (4.13), i.e., 𝛽(⋅), on the
arameters 𝜔 and 𝛽0, we denote 𝛽(⋅) in the remainder of this paper
s 𝛽(⋅;𝜔, 𝛽0) and express it as

(

�̂�;𝜔, 𝛽0
)

= 2 arcsin
(

sin
𝛽0
2

cd
(

𝜔 �̂�; sin2
𝛽0
2

))

, (4.14)

where cd(𝑢;𝑚) ∶= cos(𝜓(𝑢;𝑚))
(

1 − 𝑚 sin2(𝜓(𝑢;𝑚))
)−1∕2 is the Jacobi

elliptic function. Here, 𝜓(𝑢;𝑚) is the Jacobi amplitude, which is the
inverse of the elliptic integral of the first kind, i.e., 𝜓, 𝑢, 𝑚 satisfy the
equation 𝑢 = ∫ 𝜓0

(

1 − 𝑚2 sin(𝜁 )2
)−1∕2 𝑑𝜁 .

It can be shown that the solution to our BVP, 𝜃(⋅), can be constructed
using 𝛽

(

⋅;𝜔, 𝛽0
)

as

𝜃(�̂�) = 𝛽
(

�̂�;𝜔
(

�̂�, 𝑃𝑛, 𝛽0
)

, 𝛽0
)

− 𝛽
( 1
2
;𝜔

(

�̂�, 𝑃𝑛, 𝛽0
)

, 𝛽0
)

, (4.15a)

where

𝜔
(

�̂�, 𝑃𝑛, 𝛽0
)

∶= �̂�
(

𝑃𝑛 csc
(

𝛽0
))1∕2 . (4.15b)

It can be deduced from (4.15) that 𝜃(⋅) depends on the independent
parameters �̂�, 𝑃𝑛, and 𝛽0. We will explicitly note this dependence by
denoting 𝜃(⋅) as 𝜃(⋅; �̂�, 𝑃𝑛, 𝛽0). In order to make our results look less cum-
bersome, we will denote the sequence of independent parameters �̂�, 𝑃𝑛,
and 𝛽0 simply as p. In terms of p, the solution 𝜃(⋅; �̂�, 𝑃𝑛, 𝛽0) will appear
as 𝜃(⋅;p), and the result (4.15) will read

𝜃(�̂�;p) = 𝛽
(

�̂�;𝜔 (p) , 𝛽0
)

− 𝛽
( 1
2
;𝜔 (p) , 𝛽0

)

, (4.16a)

here

(p) ∶= �̂�
(

𝑃𝑛 csc
(

𝛽0
))1∕2 . (4.16b)

.2.2. Midpoint deflection and force
In this section, we present formulae for calculating the midpoint de-

lection �̂�0 and force 𝐹 . As we did with 𝜃(⋅), when we want to note the
ependence of �̂�0, 𝐹 , 𝜃0, and �̂� (⋅) on the independent parameters �̂�, 𝑃𝑛,

and 𝛽0 explicitly, we will denote them as �̂�0 (p), 𝐹 (p), 𝜃0(p) and �̂� (⋅;p),
espectively.

We can express �̂�(�̂�;p) as �̂�1(�̂�;p)ê1 + �̂�2(�̂�;p)ê2, where �̂�1(⋅;p),
̂2(⋅;p) are smooth real valued functions on (0, 1∕2). It follows from
4.3a) and (4.5a) that

̂ ′1(�̂�;p) = �̂� cos(𝜃(�̂�;p)), (4.17a)

̂ ′2(�̂�;p) = �̂� sin(𝜃(�̂�;p)). (4.17b)

idpoint deflection. Integrating (4.17b) from �̂� = 0 to �̂� = 1∕2,
implifying the expression ∫ 1∕2

0 �̂�′2(�̂�;p) 𝑑�̂� that appears on the left hand
ide (LHS) of the resulting equation as �̂�2(1∕2;p) − �̂�2(0;p), and then

noting that �̂�2(1∕2;p) = �̂�0(p) and �̂�2(0;p) = 0, we get that

�̂�0 (p) = �̂� ∫

1∕2

0
sin (𝜃 (�̂�;p)) 𝑑�̂�. (4.18)

Midpoint force. From the balance of external forces acting on the left
half of the spicule specimen (Fig. 6(B)) in the f̂2 direction, we get that

𝐹 + 2𝑃2 = 0. (4.19)

Substituting 𝑃2 in (4.19) from (4.10b) and then using (4.16b) and
substituting the factor 𝑃𝑛 csc

(

𝛽0
)

as 𝜔(p)2∕�̂�2, we get

𝐹 (p) = −2𝜔(p)2 sin
(

𝜃0(p) − 𝛽0
) 1 . (4.20)
8

�̂�2 t
Integrating (4.17a) from �̂� = 0 to �̂� = 1∕2, simplifying the expres-
sion ∫ 1∕2

0 �̂�′1(�̂�;p) 𝑑�̂� that appears on the LHS as �̂�1(1∕2;p) − �̂�1(0;p),
noting that �̂�1(1∕2;p) = 1∕2 and �̂�1(0;p) = 0, multiplying the resulting
equation with 2∕�̂�, and then squaring the result, we get that

1
�̂�2

= 4

(

∫

1∕2

0
cos (𝜃 (�̂�;p)) 𝑑�̂�

)2

. (4.21)

ubstituting the factor 1∕�̂�2 in (4.20) from (4.21) and simplifying, we
get that

𝐹 (p) = 8𝜔 (p)2
(

∫

1∕2

0
cos (𝜃 (�̂�;p)) 𝑑�̂�

)2

sin
(

𝛽0 − 𝜃0 (p)
)

. (4.22)

.2.3. Compatibility
Substituting 𝜃 (⋅;p) in (4.21) from (4.16) and rearranging, we get

̂ = 1
2

(

∫

1∕2

0
cos

(

𝛽
(

�̂�;𝜔(p), 𝛽0
)

− 𝛽
( 1
2
;𝜔(p), 𝛽0

))

𝑑�̂�

)−1

. (4.23)

.2.4. Upper envelope of the equilibrium region and the closing equation
In order to derive our model’s predictions for the force–

isplacement curves measured by the SS experiments in the loading
hase, the spicule-specimen’s equilibrium configurations first need to
e extracted. We define what we physically mean by the spicule
pecimen’s equilibrium configuration at the beginning of Section 4.1
when the spicule specimen is in one of its equilibrium configurations,
hat does not necessarily mean that the MTS’s cantilever wedge is also
n one of its equilibrium configurations, i.e., that our entire mechanical
ystem is in equilibrium. See Section 4.3 for further discussion of this
ssue). Mathematically, a spicule’s equilibrium configuration can be
escribed as an ordered set

(

�̂�, 𝑃𝑛, 𝛽0
)

that satisfies the contact consti-
utive law (4.12) and the compatibility condition (4.23). We mark the
quilibrium configurations, which were determined numerically using
lgorithm 1, in the �̂�0-𝐹 , �̂�-�̂�0, and �̂�-𝐹 spaces for a representative

case in Figs. 7(A), (B), and (C), respectively. For a given �̂�, there can
exist more than one equilibrium configuration. This is partly because as
can be seen from (4.9) and (4.12), the number cot

(

𝛽0
)

only needs to lie
between certain bounds, specifically between ±𝜇. Therefore, in general,
the sets of equilibrium states have non-zero measures in the �̂�0-𝐹 , �̂�-�̂�0
or �̂�-𝐹 spaces.

However, it can be argued that in the loading portion of the SS
experiments, 𝑃𝑛 ≥ 0. Under some mild assumptions on the loading rate,
it can be further argued2 that cot

(

𝛽0
)

in fact achieves its lower bound,
i.e., that

cot
(

𝛽0
)

= −𝜇. (4.24)

As discussed in Section 1, it is reasonable to assume that 𝜇 varies
along the spicule’s length so that the value of 𝜇 depends on the contact
position between the spicule and the trench’s left edge, which depends
on �̂�. We assume that the dependence of 𝜇 on �̂� can be expressed as

𝜇
(

�̂�
)

= 𝜇0

(

1 + 𝐴 cos
(

𝜋�̂�
�̂�

+ 𝜙
))

, (4.25)

here �̂� ∶= 𝜆∕𝐿, 𝜆 ∈ R≥0. Here, 𝜆 μm is the wavelength of the assumed
periodic variation of the coefficient of friction. Note that the value of
the phase 𝜙, depending on the positions of contacting points between
the spicule specimens and the trench edges at the beginning of the
experiments, may not be the same as the value of 𝜙 in (1.1).

Therefore, in an equilibrium state, the value of 𝛽0 is fully determined
by the value of �̂� in that state. More specifically, it follows from (4.24)

2 The mathematical analysis underlying this assertion is quite involved and
herefore we plan on publishing it elsewhere.
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Fig. 7. The equilibrium region in the �̂�0-𝐹 , �̂�-�̂�0, and �̂�-𝐹 space for a representative case. We consider the case in which the coefficient of friction varies as in (4.25) with
𝜇0 = 0.3, 𝐴 = 0.2, �̂� = 0.02𝜋, and 𝜙 = 0, i.e., in which 𝜇(�̂�) = 0.3

(

1 + 0.2 cos
(

�̂�∕0.02
))

. For this case we computed the equilibrium regions using the procedure detailed in Algorithm
1. Subfigures (A), (B), and (C) show the equilibrium region in the �̂�0-𝐹 , �̂�-�̂�0, and �̂�-𝐹 space, respectively. In each of the subfigures the equilibrium region is shown in light gray,
while the upper envelope of the equilibrium region (i.e., the equilibrium curve) is shown as a dark-gray curve. In (A) we mark a locus of configurations in which �̂� is constant
using a dashed black curve. The solid arrows above the equilibrium curve indicate that �̂� strictly increases as we travel along the curve starting from the origin.
I

that 𝛽0 is equal to the value of 𝛽0
(

�̂�
)

, where the function 𝛽0(⋅) ∶
[1,∞) → (0, 𝜋) is defined by equations

sin
(

𝛽0
(

�̂�
))

= 1
√

1 + 𝜇
(

�̂�
)2
, (4.26a)

cos
(

𝛽0
(

�̂�
))

=
−𝜇

(

�̂�
)

√

1 + 𝜇
(

�̂�
)2
. (4.26b)

As mentioned in Section 1, for simplicity, we take 𝜇(⋅) to be of the form
given by (4.25).
9

It now follows from (4.23) that in the state mentioned above, the
value of 𝑃𝑛 is also fully determined by the value of �̂�; the value of 𝑃𝑛 has
to be a root of 𝑓

(

⋅; �̂�, 𝛽0
(

�̂�
))

, and the function 𝑓
(

⋅; �̂�, 𝛽0
)

∶ R≥0 → R
is defined by equation

𝑓
(

⋅; �̂�, 𝛽0
)

= 1 − 2�̂� ∫

1∕2

0
cos

(

𝛽
(

�̂�;𝜔(�̂�, ⋅, 𝛽0), 𝛽0
)

− 𝛽
( 1
2
;𝜔(�̂�, ⋅, 𝛽0), 𝛽0

))

𝑑�̂�.

(4.27)

n general, 𝑓
(

⋅; �̂�, 𝛽0
(

�̂�
))

will have multiple roots. However, using
practical considerations, it can be deduced that only the smallest
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of 𝑓
(

⋅; �̂�, 𝛽0
(

�̂�
))

’s roots is relevant in the context of the SS experi-
ents. We denote the value of that smallest root as 𝑃𝑛

(

�̂�
)

, which can
e computed using the Newton–Raphson method.

The results put forward in the last three paragraphs can be summa-
ized by stating that, during the loading portion of the SS experiments,
he equilibrium states have the form

(

�̂�, 𝑃𝑛
(

�̂�
)

, 𝛽0
(

�̂�
))

. We call the
et of the equilibrium states having this form the upper envelope of the
quilibrium region (shown as gray curves in Fig. 7). The upper envelope
f the equilibrium region in the �̂�0-𝐹 space can be expressed as the
arametric curve

sp-eq ∶=
{(

𝑤+
0
(

�̂�
)

, 𝐹+ (

�̂�
))

∣ �̂� ≥ 1
}

, (4.28a)

here �̂�+
0 (⋅) ∶ [1,∞) → R≥0 is defined by the equation

̂+0
(

�̂�
)

= �̂�0
(

�̂�, 𝑃𝑛
(

�̂�
)

, 𝛽0
(

�̂�
))

, (4.28b)

nd 𝐹+ ∶ [1,∞) → R≥0 is defined by the equation

̂+ (

�̂�
)

= 𝐹
(

�̂�, 𝑃𝑛
(

�̂�
)

, 𝛽0
(

�̂�
))

. (4.28c)

We will be referring to 𝛾sp-eq simply as the spicule equilibrium curve.
he equilibrium curve can be numerically constructed using Algorithm
after changing line number 5 in it to ‘‘Compute 𝛽+0 ← arccot

(

−𝜇
(

�̂�
))

,
hen 𝛽−0 ← 𝛽+0

Algorithm 1: Procedure for computing the equilibrium region.
1: Input: 𝜇0, 𝐴, �̂�, 𝜙, �̂�∗a, and natural numbers 𝑛�̂� , and 𝑛𝛽0

b

2: Initialization: �̂� = 1, 𝑃𝑛 = 0, �̂�0 = 0, 𝐹 = 0, 𝛥�̂� = �̂�∗∕𝑛�̂�
3: for �̂� = 1, 1 + 𝛥�̂�, 1 + 2𝛥�̂�,… , �̂�∗ do
4: Compute 𝜇

(

�̂�
)

← 𝜇0
(

1 + 𝐴 cos
(

𝜋�̂�∕�̂� + 𝜙
))

5: Compute 𝛽+0 ← arccot
(

−𝜇
(

�̂�
))

and 𝛽−0 ← arccot
(

𝜇
(

�̂�
))

6: Compute 𝛥𝛽0 ←
(

𝛽+0 − 𝛽−0
)

∕𝑛𝛽0
7: for 𝛽0 = 𝛽−0 , 𝛽

−
0 + 𝛥𝛽0, 𝛽−0 + 2𝛥𝛽0,… 𝛽+0 do

8: Solve for 𝑃𝑛 as the smallest root of 𝑓 (⋅; �̂�, 𝛽0)c
9: Construct 𝜃(⋅;p) from (4.16) using �̂�, 𝑃𝑛,and 𝛽0

10: Determine �̂�0(p) and 𝐹 (p) from (4.18), (4.22), (4.16b)
and (4.10c)

11: Save the points (�̂�, �̂�0(p)), (�̂�, 𝐹 (p)), and (�̂�0(p), 𝐹 (p)) as
respective members of the equilibrium regions in the �̂�-�̂�0, �̂�-𝐹 ,
and �̂�0-𝐹 spaces

12: end for
13: end for
14: Output: A collection of 𝑛�̂� × 𝑛𝛽0 equilibrium points in each of the

�̂�-�̂�0, �̂�-𝐹 , and �̂�0-𝐹 spaces

a The parameter �̂�∗ > 1 specifies the maximum value of �̂� among all the
computed equilibrium configurations.

b The parameters 𝑛�̂� and 𝑛𝛽0 , respectively, specify the number of different
�̂� and 𝛽0 values among the computed equilibrium configurations.

c defined in (4.27)

Remarks.

1. As can be noted from (4.28), the curve 𝛾sp-eq is parameterized by
the total length �̂�. The left end of the curve, i.e., the point (0, 0),
corresponds to �̂� = 1 (see Fig. 7(A)). Thus, the value of �̂� strictly
increases as we travel along the curve starting from the origin.

2. The equilibrium curves from our model for the cases in which
𝜇0 = 0.0 or 0.6 and 𝐴 = 0.0 or 0.4 are shown in Fig. 8(A).
In all cases, as expected, the equilibrium curves predicted by
our model asymptote to the one predicted by the EB theory
(see equation (5) in Kochiyama et al. (2021)) as the midpoint
deflection becomes small.

3. When 𝐴 = 0.0, the most noticeable aspect of the equilibrium
curves from our model is that the force initially increases and
later decreases with the midpoint deflection. In contrast, in the
equilibrium curve predicted by the EB theory (see Fig. 8(A)), the
force always increases with the deflection.
10

c

4. When 𝐴 ≠ 0.0, the equilibrium curves from our model have
an undulatory nature. The sawtooth pattern in our model is a
consequence of these undulations. The undulations appear to
become more pronounced as the values of �̂� and �̂�0 increase,
starting from when 𝐹 is about to reach its maximum value. As
noted from Fig. 2 in the SS experiments, the sawtooth-pattern
appears or is pronounced in this very same region.

4.3. Force–displacement curves that will be measured in the simply-
supported experiments

In Section 4.2.4, we discussed that only a subset (specifically, the
upper envelope) of the spicule’s equilibrium configurations is relevant
in the loading phase of the SS experiments. In the �̂�0-𝐹 space, we
termed that upper envelope (4.28) the spicule-equilibrium curve, 𝛾sp-eq.
The spicule configurations sampled by the experiment have to neces-
sarily lie on 𝛾sp-eq. However, not all the configurations in 𝛾sp-eq will
be sampled during the loading portion of the SS experiment. This is
because the spicule being in equilibrium does not necessarily mean that
the MTS’s wedge is in one of its equilibrium configurations. The force
acting on the spicule’s midpoint has to be provided by the wedge’s apex
(shown marked in Fig. 5(C)). However, that force may not necessarily
be balanced by the force acting on the wedge’s base due to the MTS’s
cantilever’s deformation.

To be more precise, we analyze the force balance on the wedge of
the MTS. We assume that in the SS experiments, the total length �̂�
evolves in the manner dictated by the function �̂� ∶ [0, 𝜏∗] → [1,∞). As

entioned previously, the experiment will only sample configurations
n 𝛾sp-eq. At the time instance 𝜏, the measured midpoint deflection
ill be �̂�+

0
(

�̂� (𝜏)
)

, i.e., �̂�0(𝜏) = �̂�+
0
(

�̂� (𝜏)
)

, and the measured force
cting on the spicule’s midpoint will be 𝐹+ (

�̂�(𝜏)
)

f̂2, i.e., 𝐹 (𝜏) =
̂+ (

�̂�(𝜏)
)

. This force needs to be provided by the wedge’s apex. There-
ore, the force acting on the wedge’s apex will be −𝐹+ (

�̂�(𝜏)
)

f̂2. It
ollows from (3.1) and (3.3) that the force acting on the wedge’s
ase is �̂�𝑐

(

�̂�𝑠(𝜏) − �̂�+
0
(

�̂� (𝜏)
))

f̂2, where �̂�𝑠(⋅) prescribes how the stage-
isplacement evolves with time during the experiment. Therefore, the
quilibrium condition for the wedge gives that �̂�(𝜏) be a root of the
unction 𝑅(⋅; 𝜏) ∶ [1,∞) → R,

(

�̂�; 𝜏
)

∶= 𝐹𝑐𝑎𝑛𝑡(�̂�+
0
(

�̂�
)

; 𝜏) − 𝐹+ (

�̂�
)

, (4.29a)

here

̂𝑐𝑎𝑛𝑡(�̂�0; 𝜏) ∶= �̂�𝑐 (�̂�𝑠(𝜏) − �̂�0). (4.29b)

We will be referring to the point
(

�̂�+
0
(

�̂� (𝜏)
)

, 𝐹+ (

�̂� (𝜏)
))

, where �̂� (𝜏)
s a root of 𝑅(⋅; 𝜏), an overall-equilibrium configuration at the time
nstance 𝜏. The overall-equilibrium configurations at the time instance 𝜏
an be visualized in the �̂�0-𝐹 space (see, e.g., Fig. 8(B)) as the inter-
ection points between 𝛾sp-eq and the graph of 𝐹𝑐𝑎𝑛𝑡(⋅; 𝜏).

.3.1. Evolution postulate and our model’s prediction for the measured
orce–displacement curves

In order to derive our model’s prediction for the measured force–
isplacement curve, we consider a thought experiment in which

̂ 𝑠(𝜏) =

⎧

⎪

⎨

⎪

⎩

1�̂�𝑠, 𝜏 ∈ (0, 𝜏1],
2�̂�𝑠, 𝜏 ∈ (𝜏1, 𝜏2],
3�̂�𝑠, 𝜏 ∈ (𝜏2, 𝜏3].

(4.30)

In Fig. 8(B), considering a representative �̂�𝑐 , we mark and label
he overall-equilibrium configurations at the three different stage dis-
lacements 1�̂�𝑠, 2�̂�𝑠, and 3�̂�𝑠. As noted from the figure, there can
xist more than one overall-equilibrium configurations at a given stage
isplacement. At the stage displacement 1�̂�𝑠, there exists only one
verall-equilibrium configuration. We denote the total length in that

1 ̂ 1 ̂
onfiguration as 𝑆1 and label the configuration as 𝑆1 in Fig. 8(B).
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Fig. 8. Equilibrium and measured force–displacement curves. (A) shows the equilibrium curves, 𝛾sp-eq, for the cases 𝜇
(

�̂�
)

= 0.6
(

1 + 0.4 cos
(

�̂�∕0.02
))

, 𝜇
(

�̂�
)

= 0.6, and 𝜇
(

�̂�
)

= 0.0,
using gray lines. The equilibrium curve predicted by the Euler–Bernoulli theory is also shown for reference, using dashed brown lines. (B) and (C) again show the equilibrium curve
corresponding to 𝜇

(

�̂�
)

= 0.6
(

1 + 0.4 cos
(

�̂�∕0.02
))

. They only consider this equilibrium curve and a cantilever stiffness of �̂�𝑐 = 30 and show the measured curves for two different
�̂�𝑠(⋅). (B) considers the �̂�𝑠(⋅) given in (4.30) for 1𝑤𝑠, 2𝑤𝑠, and 3𝑤𝑠 equal to 0.52, 0.65, and 0.69, respectively. In (B), on the equilibrium curve, we mark the overall-equilibrium
configurations at some three time instances that, respectively, belong to the intervals (0, 𝜏1], (𝜏1 , 𝜏2], and (𝜏2 , 𝜏3], which appear in (4.30). The stable overall-equilibrium configurations
are shown as filled circles; the unstable configurations as open circles; and the partially-stable configurations as semi-filled circles. All overall-equilibrium configurations corresponding
to the same time instance are connected using a dashed gray line. The three dashed gray lines are the graphs of the function (4.29b) at the three previously mentioned time
instances. The graph of the measured curve in this case consists of just the three points that are shown marked as 1�̂�1, 1�̂�2, and 2�̂�3. (C) shows the measured curve 𝛾𝑚 for the case
in which �̂�𝑠(⋅) is some continuous, monotonically increasing function of time. The measured curve in this case is the discontinuous curve that is shown using thin black lines. The
straight line segments that span the discontinuities of this curve signify the slip instabilities occurring at the trench edges.
However, at 2�̂�𝑠, there exist three overall-equilibrium configurations.
As before, we label these configurations in Fig. 8(B) using their total
lengths, i.e., as 1�̂�2, 2�̂�2, and 3�̂�2. At 1�̂�𝑠, it is clear that the experiment
will measure the total length 1�̂�1, i.e., �̂�(𝜏) = 1�̂�1 for all 𝜏 ∈ (0, 𝜏1].
However, at 2�̂�𝑠, which one of the three total lengths will the experi-
ment measure? From a theoretical mechanics perspective, the question
just posed is the same as the one analyzed in Deng and Kesari (Section
3, 2019b), Kesari and Lew (2011), Deng and Kesari (2021), though the
mechanical system investigated in Deng and Kesari (2019b), Kesari and
Lew (2011), Deng and Kesari (2021) is different from the one studied
in this paper. Following the analysis presented in Deng and Kesari
11
(2019b), Kesari and Lew (2011), Deng and Kesari (2021), a prerequisite
for an overall-equilibrium configuration to be measurable is that it
is stable. The overall equilibrium state with total length 𝑗�̂�𝑖 is stable,
iff

𝑅′ (𝑗�̂�𝑖; 𝜏
)

= −�̂�𝑐�̂�+′

0
(𝑗�̂�𝑖

)

− 𝐹+′ (𝑗�̂�𝑖
)

< 0. (4.31)

Using (4.31), it can be deduced from Fig. 8(B) that 1�̂�2 and 3�̂�2 are
stable, while 2�̂�2 is unstable. However, the question still remains as to
which of 1�̂�2 and 3�̂�2 will be measured. To answer this question, as
done in Kesari and Lew (2011), we postulate that among the different
measurable configurations, the system will evolve into the one that
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Fig. 9. Distribution of the values we chose for 𝜆 and 𝜇0 to get the predictions from our model for the force–displacement curves to compare favorably with their experimental
easurements. Subfigure (A) consists of two plots, which show the chosen values for 𝜆 that we arrived at when comparing to curves from C.1 and C.2, respectively. Subfigure

(B) consists of three plots, which show the chosen values for 𝜇0 that we arrived at when comparing to curves from C.1, C.2, and C.3, respectively. All plots belonging to either
(A) or (B) share the same 𝑦-axis. The 𝑥-axis in all plots in both (A) and (B) gives the test number, which ranges from 0 to 40. We use black five-pointed star, black up-pointing
triangle, and black circle to mark the values we chose when comparing, respectively, to curves from C.1, C.2, and C.3. However, if the curve corresponding to a chosen value also
belonged to C.4 then we show that chosen value using a red cross. In each plot a black horizontal line is used to mark the mean of the chosen values in that plot. In computing
the means, we excluded a chosen value if the curve that it corresponds to also belonged to C.4. The remainder of the statements in this caption pertain only to (B). The gray
orizontal line (labeled as 0.541) that runs across all plots in (B) marks the mean of values we chose for 𝜇0 when comparing to all curves not from C.4. We mark the maximum
labeled as 0.721) and the minimum (labeled as 0.5) of the measured values for the coefficient of friction between glass and steels that are shown in Table 1. In general, the
oefficient of friction is expected to lie between 0 and 1. These two values are shown marked using blue dashed lines. The size of the error bar around each value chosen for 𝜇0
hen comparing to a curve from either C.1 or C.2 is proportional to the value chosen for 𝐴 in that comparison. Note that there are no error bars in the plot corresponding to
.3, since when comparing to curves from that category we took 𝐴 = 0 (see Section 5 for details).
F
w

s closest to the last measured configuration. In the current case, this
volution postulate implies that the configuration that the system will
hose among the measurable configurations will be the one whose
otal length is closest to the one in the last measured configuration.
he last measured configuration in our thought experiment is 1�̂�1.
herefore, when the stage displacement is 2�̂�𝑠, amongst 1�̂�2 and 3�̂�2, the
xperiment will measure the one that is closer to 1�̂�1. It follows from
emark 1 in Section 4.2.4 and Fig. 8(B) that 1�̂�1 < 1�̂�2 < 3�̂�2. Therefore,
t 2�̂�𝑠, the experiment will measure the configuration 1�̂�2, i.e., �̂� (𝜏) =
�̂�2 for all 𝜏 ∈ (𝜏1, 𝜏2]. When the stage displacement is 3�̂�𝑠, there are four
verall equilibrium configurations. We label those as 𝑗�̂�3, 𝑗 = 1,… , 4, in
12
ig. 8(B). Through similar analysis, it can be deduced that the system
ill measure 2�̂�3 at 3�̂�𝑠, implying that �̂�

(

𝜏3
)

= 2�̂�3 for all 𝜏 ∈ (𝜏2, 𝜏3].

Now we consider the measured force–displacement curve for arbi-
trary 𝛾sp-eq, �̂�𝑠(⋅), and �̂�𝑐 . The given �̂�𝑠(⋅) can be approximated using a
function of the form (4.30). For example, we consider a large number
of equally spaced time instances in [0, 𝜏∗], say 𝜏0, 𝜏1, 𝜏2, etc., and define
the value of the approximate-�̂�𝑠(⋅) for any time instance in (𝜏𝑖, 𝜏𝑖+1] to
be the constant value 𝑖+1�̂�𝑠 ∶= �̂�𝑠(𝜏𝑖+1). We can construct the evolution
of the measured approximate-�̂� (⋅) by carrying out analysis similar to
the one presented in the previous paragraph. By increasing the number
of time instances, �̂�(⋅) can be approximated to any desired degree.
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Fig. 10. Comparing measured force–displacement curves from the SS tests belonging to category C.1 with their theoretical predictions. Each subfigure corresponds to a different
test. The subfigures with a red cross mark at their top left corners correspond to tests that also belong to category C.4. The following statements apply to each subfigure
separately. The experimentally measured force–displacement curve is shown in blue. The prediction from our model for that curve is shown in black. The values we chose for the
parameters 𝜇0, 𝐴, 𝜆, and 𝜙 in our model for generating that prediction are shown at the top right corner. The predictions from the Euler–Bernoulli theory and from our model
for the case 𝜇0 = 0 are shown using brown-dashed and brown-solid lines, respectively. The gray dashed oblique lines are the graphs of the function (4.29b) at the time instances
at which we noted a sudden drop in the measured force. In generating these graphs, in the function (4.29b) we used the �̂�𝑐 and �̂�𝑠(⋅) that we constructed using the experimental
etails of the test.
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After determining the evolution of the measured configuration,
.e., �̂� (⋅), the measured force–displacement curve can be constructed
s

m =
{(

�̂�+
0
(

�̂�(𝜏)
)

, 𝐹+ (

�̂�(𝜏)
))

∣ 𝜏 ∈ [0, 𝜏∗)
}

. (4.32)

e provide a systematic procedure for numerically constructing 𝛾m in
lgorithm 2. In Fig. 8(C), we show a representative 𝛾m (black) by con-
idering a continuous, monotonically increasing �̂�𝑠(𝜏). The correspond-
ng spicule equilibrium curve 𝛾sp-eq (gray) and cantilever stiffness �̂�𝑐 are
he same as those in Fig. 8(B). As can be seen in (C), the curve 𝛾m is
iscontinuous, i.e., it is a union of non-intersecting smooth curves. We
onnect the nearest terminal ends of adjoining smooth curve segments
n 𝛾m using dashed line segments. The dashed line segments physically
enote mechanical instabilities. The quantities �̂�0, 𝐹 , and �̂� all change
y a finite amount during the occurrence of those instabilities. With its
13

p

iscontinuities, 𝛾m, at least qualitatively, captures the sawtooth pattern
bserved in the SS experiments.

. Comparing theoretical predictions for the force–displacement
urves with their experimental measurements

In Section 4.3.1, we discussed how the force–displacement curves
redicted by our model qualitatively capture the sawtooth pattern (see
ig. 8(C)). In this section, we discuss how the predictions from our
odel for the force–displacement curves compare with their measure-
ents reported in Kochiyama et al. (2021).

Kochiyama et al. (2021) reported measurements of force–
isplacement curves from 38 SS experiments. We place those curves
n the following three categories based on the nature of the sawtooth

attern observed in them.
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Fig. 10. (continued).
Algorithm 2: Procedure for computing the measured force–
isplacement curve.
1: Input: 𝛾sp-eq, �̂�𝑠(⋅), �̂�𝑐 , 𝜏∗, and a natural number 𝑛a

2: Initialization: 𝜏0 = 0, �̂�0 = 1, 𝛥𝜏 = 𝜏∗∕𝑛
3: for 𝑖 = 0, 1, 2,… , 𝑛 do
4: Compute 𝜏𝑖+1 ← 𝜏𝑖 + 𝛥𝜏
5: Construct 𝑅

(

⋅; 𝜏𝑖+1
)

from (4.29) using 𝛾sp-eq, �̂�𝑠(⋅), and �̂�𝑐
6: Solve for the roots of 𝑅

(

⋅; 𝜏𝑖+1
)

. We denote those roots as 𝑗�̂�𝑖+1,
where 𝑗 ∈  ∶=

{

1, 2,… , 𝑛𝑖+1
}

7: Set �̂�𝑖+1 ← 𝑘∗�̂�𝑖+1, where 𝑘∗ = argmin𝑘∈
|

|

|

𝑘�̂�𝑖+1 − �̂�𝑖
|

|

|

,  ∶=
{

𝑝 ∈  | 𝑅′(𝑝�̂�𝑖+1; 𝜏𝑖+1) < 0
}

b

8: Save
(

�̂�+
0
(

�̂�𝑖+1
)

, 𝐹+ (

�̂�𝑖+1
))

as a point belonging to the
measured force–displacement curve

9: end for
0: Output: A collection of 𝑛 points that belong to the measured

force–displacement curve

a The parameter 𝑛 specifies the number of computed points on the measured
orce–displacement curve.

b 𝑅′(⋅; 𝜏) is defined in (4.31).

C.1 Curves displaying a clear sawtooth pattern.
C.2 Curves displaying a nominal sawtooth pattern.
C.3 Curves displaying almost no sawtooth pattern.

Category C.1. This category consists of curves from the SS experiments
which Kochiyama et al. labeled as SS4, SS8, SS11, SS12, SS14, SS16,
SS18, SS20, SS25, SS30, SS32, SS33, SS35, and SS38 (see Fig. 10). There
are 14 curves in total in this category.
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Category C.2. This category consists of curves from the SS experiments
which Kochiyama et al. labeled as SS5, SS7, SS17, SS19, SS22, SS24,
SS26, and SS29 (see Fig. 11). There are eight curves in total in this
category.

Category C.3. This category consists of curves from the SS experiments
which Kochiyama et al. labeled as SS1, SS2, SS3, SS6, SS9, SS10, SS13,
SS15, SS21, SS23, SS27, SS28, SS31, SS34, SS36, and SS37 (see Fig. 12).
These are 16 curves in total.

We compare our model’s predictions with each of the measured
curves in Figs. 10 (Category C.1), 11 (Category C.2), and 12 (Cate-
gory C.3). The values of the parameters 𝜇0, 𝐴, 𝜆, and 𝜙 were manually
adjusted so that our model’s predictions matched the measured curves
as closely as possible. These manually chosen values are shown along-
side each comparison (see top right hand corner of each subfigure in
Figs. 10–12). In each of the subfigures of Figs. 10–12, our model’s
prediction for the measured curve is shown in black (consisting of
solid and dashed segments). The measured curve is shown in blue. For
reference, we also include the prediction from the EB theory, as well as
from our model for the case 𝜇0 = 0. The prediction from the EB theory
(brown dashed) appears as a straight line, while that from our model
for the case 𝜇0 = 0 (brown solid) appears as a section of an upside down
parabola.

When comparing our model to the curves from C.1 and C.2, the
values of 𝜇0, 𝐴, 𝜆, and 𝜙 were adjusted, whereas when comparing to
the curves from C.3, only the value of 𝜇0 was adjusted. We will explain
this difference shortly after we discuss the former. The values chosen
for 𝜙 do not have much experimental significance, since they primarily
correlate with the position of contacting points between the spicule
specimens and the trench edges at the beginning of the experiments.
The values of 𝐴 and 𝜆 do have experimental significance, as we expect
their values to correlate with the variation in spicules’ surface friction.



Journal of the Mechanical Behavior of Biomedical Materials 124 (2021) 104787W. Fang et al.

t
0
t

Fig. 11. Comparing measured force–displacement curves from the SS tests belonging to category C.2 with their theoretical predictions. Each subfigure corresponds to a different
test. The subfigures with a red cross mark at their top left corners correspond to tests that also belong to category C.4. The statements made in the caption of Fig. 10 that apply
to its subfigures individually apply to the subfigures of this figure individually as well.
The mean-range of the values chosen for 𝜆 when comparing to curves
from C.1 and C.2 are, in the format of mean-(minimum, maximum),
10.883-(5.498, 25.133) and 44.670-(23.562, 58.905), respectively (see
Fig. 9(A)). The mean-range of the values chosen for 𝐴 when comparing
o curves from C.1 and C.2 are 0.145-(0.030, 0.333) and 0.074-(0.040,
.135), respectively. A graphical representation of the distribution of
he values chosen for 𝐴 is shown as error bars in Fig. 9(B).

We would consider the chosen values for 𝐴 and 𝜆 to be reasonable
if they were, respectively, close to other estimates of 𝐴 and 𝜆 that were
arrived at independently. For ascertaining how reasonable the values
chosen for 𝐴 and 𝜆 are, it would be ideal if we could directly measure
the variation of the coefficient of friction along the spicules’ lengths,
perhaps using an Atomic Force Microscope (AFM). Unfortunately, we
currently do not have such AFM data available to us (see Section 6 for
further discussion).

We considered the possibility of evaluating the values chosen for 𝐴
and 𝜆 using the spicules’ SEM images, such as those shown in Fig. 4.
Though we believe that the parameter 𝐴 depends on the spicules’
surface topography, we do not currently have an insight into the
15
mathematical nature of that dependence. Consequently, we are unable
to gauge the reasonableness of the values chosen for 𝐴 from the
spicules’ SEM images. We are more confident of evaluating 𝜆’s chosen
values using the SEM images. We denote the projected thickness of a
spicule on an image as 𝑧, and define the topography map: 𝑠 ↦ 𝑧(𝑠).
If we calculate the Fourier spectrum of 𝑧(𝑠), we expect the dominant
angular frequency in that spectrum to be a good estimate for 2𝜋∕𝜆.
However, we were unable to successfully carry out such an evaluation.
The reason behind this can be explained through a rough estimation as
follows. As mentioned previously, the means of the values chosen for 𝜆
when comparing to the curves from C.1 and C.2 are ≈ 11 and 45 μm,
respectively. In order to evaluate the soundness of these values using
the aforementioned Fourier analysis, SEM images with a horizontal
field width (HFW) of ideally 10 times the expected wavelength (around
450 μm) would be needed. The resolution in our SEM images with
such HFW would be limited to around 0.29 μm. Considering that the
outer-layer thickness of a spicule is typically 0.4 μm (Monn et al.,
2015) and assuming that at least 10 pixels are needed on an image
for describing the undulation in a spicule’s lateral surface, a resolution
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Fig. 12. Comparing measured force–displacement curves from the SS tests belonging to category C.3 with their theoretical predictions. Each subfigure corresponds to a different
test. The subfigures with a red cross mark at their top left corners correspond to tests that also belong to category C.4. The statements made in the caption of Fig. 10 that apply
to its subfigures individually apply to the subfigures of this figure individually as well.
of ideally 0.04 μm is required. Therefore, the competition between the
HFW and the resolution of SEM images prevents us from evaluating
the reasonableness of the values chosen for 𝜆 from the spicules’ SEM
images.

When comparing to the curves from category C.3, we only adjusted
the value of 𝜇0. Our model predicts the lack of any sawtooth pattern
when 𝐴 = 0, i.e., when the coefficient of friction is constant along the
spicule’s length. Since the curves in C.3 displayed almost no sawtooth-
pattern, we took 𝐴 = 0 when comparing to the curves from this
category. Due to the form of 𝜇(⋅) given in (4.25), with 𝐴 = 0, the values
of 𝜆 and 𝜙 become irrelevant.

We show the values we chose for 𝜇0 when comparing to the curves
from C.1–C.3 in Fig. 9(B). The mean-range of the values chosen for 𝜇0
when comparing our model’s predictions to the curves from C.1, C.2,
and C.3 are 0.656-(0.284, 1.3), 0.688-(0.52, 1.07), and 0.520-(0.0,1.0),
respectively. We consider a final category of curves, C.4, which consists
of the curves SS8 and SS32 from C.1, SS24 from C.2, and SS13 and
SS36 from C.3. We believe that the curves from C.4 are suspect. Within
the context of beam models, the EB theory provides an upper bound
16
for the force, while our model for the case 𝜇0 = 0 provides a lower
bound. As can be seen from Fig. 13, the forces in the curves from C.4
sometimes exceed the force predicted by the EB theory. We speculate
that the spicules in the experiments related to C.4 were unable to slide
due to some reason, perhaps due to a protrusion on the spicule’s surface
getting stuck at the trench’s edge. On excluding the curves from C.4,
we get the mean-range of the values chosen for 𝜇0 to be 0.584-
(0.284, 0.93), 0.633-(0.52, 0.77), and 0.457-(0.0, 0.7) for C.1, C.2,
and C.3, respectively. The mean-range considering all curves except
those from C.4 is 0.541-(0.0, 0.93).

As mentioned previously, we were unable to directly characterize
the 𝜇(⋅) in our experiments. Note that the contact in our experiments
is between silica (spicule) and stainless steel (trench edge). Therefore,
as an alternative, we compare the values we chose for 𝜇0 to the values
reported in literature for the coefficient of friction between glass and
different types of steel, see Table 1. We mark the minimum and the
maximum of the values shown in Table 1, which are respectively 0.5
and 0.721, as green dashed lines in Fig. 9 B .
( )
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Fig. 12. (continued).
As can be noted from Fig. 9(B), the values we chose for 𝜇0 are quite
reasonable.

6. Concluding remarks

1. As can be noted from Table 1 and Fig. 9(B), the values of 𝜇0,
which were chosen to match our model’s predictions as closely
as possible with the measurements of Kochiyama et al. (2021)
are quite consistent with the values reported in literature for the
coefficient of friction between glass and steel (note that the con-
tact in our experiments is between silica (spicule) and stainless
steel (trench edge)). This consistency supports the view that it is
valid to use the developed model to interpret Kochiyama et al.’s
SS experiments.

2. In order to further gauge the validity of applying the developed
model to interpret the SS experiments, it would be ideal if 𝜇(⋅),
the variation of the coefficient of friction between the spicule
and the trench when different cross-sections of the spicule are
in contact with the trench, could be measured directly and
independently of the SS experiments. In the future, we plan on
characterizing 𝜇(⋅) using an Atomic Force Microscope (Kesari
et al., 2010; Kesari and Lew, 2011; Deng and Kesari, 2019a).
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Those experiments will provide alternate estimates for 𝐴 and 𝜆,
which can then be, respectively, compared with the chosen
values for them. That comparison would allow us to further
gauge the validity of applying our model to the SS experiments.

3. It is unlikely that the friction coefficient varies in a sinusoidal
fashion along the spicule’s length. It is even more unlikely that
the coefficient of friction varies in the exact same manner at
both the left and the right trench edges during the experiment,
as assumed in our model. The goal of assuming that the variation
of the coefficient of friction along the spicule’s length was sym-
metric about the spicule’s midpoint was to make the problem
tractable. However, the decision to model the variation of the
coefficient of friction using a single sinusoid was more delib-
erate. We have compared the predictions from other versions
of our model that incorporate more realistic variations for the
friction coefficient with the experimental curves. These more
realistic variations involved superposition of multiples sinusoids,
and consequently involved a larger number of free parameters
than the presented single sinusoidal variation, which contains
four free parameters, namely 𝜇0, 𝐴, 𝜆, and 𝜙. Unsurprisingly,
the predictions from those other versions of our model match the
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Fig. 13. Comparing measured force–displacement curves from the SS tests belonging to category C.4 with their theoretical predictions. Each subfigure corresponds to a different
test. The statements made in the caption of Fig. 10 that apply to its subfigures individually apply to the subfigures of this figure individually as well.
Table 1
Estimates for the coefficient of friction between glass and steel from literature.

Materials Geometry Surface condition Coefficient of friction

Glass–Hard steel (Tomlinson,
1929)

plane–spherical end of a rod (of diameter 2.54 mm) polished, clean, dry 0.605

Glass–Mild steel (Tomlinson,
1929)

plane–spherical end of a rod (of diameter 2.54 mm) polished, clean, dry 0.721

Glass–Mild steel (Beare and
Bowden, 1935)

plane–sphere (of diameter 5 mm) polished, clean, dry 0.51-0.61

Glass–Stainless steel (Deulin
et al., 2010)

– polished, in vacuum 0.5

Stainless steel (with silica
coating)–Stainless steel (Marsal
et al., 2013)

plane–sphere (of diameter 10 mm) in air 0.7
experimental curves better than those from the presented version
of the model. Despite the above fact, we chose to focus this
paper on the version based on the single sinusoidal variation,
since our primary goal was to present insight into the potential
mechanism(s) underlying the sawtooth pattern, rather than to
analytically reproduce the measured curves. And among the
different versions of our model that we studied, we believe
that the one based on the single sinusoidal variation illustrates
the sawtooth mechanism captured by our model in the clearest
manner.

4. The mechanism underlying the sawtooth patterns in our exper-
iments is similar to the surface topography (roughness) based
mechanism put forward for explaining the stick–slip
phenomenon (Rabinowicz and Tanner, 1966; Mora and Place,
1994; Berman et al., 1996). The controlling factors in the surface
18
topography mechanism of stick–slip are the surface’s roughness
and the stiffness of the loading system, which are the same as
the ones in our model’s mechanism for the sawtooth pattern if
we assume that the friction variation in our work is primarily
due to the spicule’s surface roughness. One difference in the
mechanics of the SS experiments and the stick–slip phenomenon
is that in the SS experiments, the spicule is slipping both before
and after the occurrence of an instability, while in the stick–slip
phenomenon, the specimen is stationary before the occurrence
of an instability, and is sliding afterwards.

5. Our preliminary research suggests that there can exist an alterna-
tive model for the SS experiments, which is also capable of cap-
turing the sawtooth patterns in the measured force–displacement
curves. Interestingly, in that model, it is not required to assume
that the coefficient of friction varies along the spicule’s length.
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Since we were unable to experimentally ascertain that the co-
efficient of friction indeed varied along the spicule’s length, a
model that does not require the assumption of a varying friction
coefficient may seem preferable to the one that does. However,
this alternative model also contains assumptions that cannot
be readily justified through experiments. Furthermore, we were
unable to derive any quantitative predictions from that different
model for the measured force–displacement curves. For these
reasons, we gave preference to the variable friction based model
that we presented in this paper.
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