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Abstract

Dry adhesion plays a critical role in many fields, including the locomotion of
some insects and failure of microelectromechanical systems. The Dupré’s work
of adhesion of a contact interface is an important metric of dry adhesion. It
is often measured by applying the Johnson-Kendall-Roberts (JKR) theory [1]
to contact force–indentation depth curves that are measured using an atomic
force microscope (AFM), or an instrument modeled after it. The JKR the-
ory has been exceptionally successful in interpreting contact force–indentation
depth measurements and explaining adhesive, elastic contact phenomena, such
as the pull-in and pull-off instabilities. However, in many cases the JKR the-
ory predicts a lower magnitude for the pull-off force than what is experimen-
tally measured, and it does not capture the finite changes in the indentation
depth that occur during the pull-in and pull-off instabilities. In those cases,
applying the JKR theory to calculate the work of adhesion from only the mea-
sured pull-off force is likely to give highly inaccurate results. We believe that
these discrepancies occur because the classical JKR theory ignores the machine
stiffness—which, in the case of AFM-type instruments, is the stiffness of the me-
chanical structure that connects the tip to the translation stage, which moves
the tip towards and away from the substrate. In this paper, we present a model
that is related to, but more general than, the JKR theory that accounts for
the machine stiffness. This model explains the experimental data better than
the JKR theory in the cases where the JKR theory displays the aforementioned
discrepancies. We consider both the first order necessary and the higher order
sufficiency conditions while deriving the solutions in our model.
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1. Introduction1

Van der Waals (dipole-dipole) and Coulombic interactions between molecules2

can give rise to attractive forces between solids [2, 3]. These attractive forces can3

make a pair of contacting surfaces adhesive even when they are not connected4

by any liquid bridges. The effect of these attractive forces, termed dry adhesion,5

operates at all scales but is dominant at µm–nm lengths (Figure 1a).6

Dry adhesion has been found to play an important role in many fields, in-7

cluding biology, engineering, and physics. Many insects, spiders, and reptiles,8

for example, possess fibrillar structures on their foot pads that, through adhe-9

sion, allow these animals to adeptly scale vertical surfaces [4–9] (Figure 1b). In10

microelectromechanical systems (MEMS) engineering, adhesion-induced device11

failure is a pervasive problem that limits its continued development. In MEMS12

devices, such as comb drive accelerometers, slender, micrometer-sized structures13

are aligned in parallel rows in close proximity to one another (Figure 1c). Dur-14

ing the device’s fabrication stage or later in its operation, these structures can15

unintentionally come into contact with each other or the substrate and remain16

permanently adhered, leading to device failure [10]. Adhesion also plays a role17

in the physical properties that underlie friction and wear at the sub-micrometer18

scale [11, 12]. Contact between hard solids, such as metals and ceramics, primar-19

ily takes place at the surfaces’ asperities. Adhesion firmly welds the asperities,20

and thus the two solids. In order to move or slide the solids over one another,21

significant frictional force must be generated in order to break the asperities22

apart or rupture the asperities from their respective solids, contributing to wear23

(Figure 1d).24

An important metric for quantifying dry adhesion between two contacting25

solids is the Dupré’s work of adhesion,26

w := γ1 + γ2 − γ12, (1.1)

where γ1 and γ2 are the surface energies of the two solids and γ12 is the con-27

tact interface’s energy per unit area [14]. Adhesion can be measured through28

a variety of tests and experiments, including thin film peeling [15–17], blister29

tests [18, 19], and normal contact experiments [20–27]. Among these techniques,30

normal contact experiments distinguish themselves for two reasons: firstly, they31

can provide information about the materials’ elastic properties; and secondly,32

they can spatially map out a material’s surface adhesive and bulk elastic prop-33

erties at the µm–nm length scales, making it the preferred test for evaluating34

adhesion and the elasticity of a solid.35

Normal contact experiments are typically performed using an atomic force36

microscope (AFM) [20–24] or an instrument modeled after it. In these experi-37

ments, a sample of the material whose properties are to be examined is prepared38

in the form of a rectangular or circular slab. This slab is most commonly re-39

ferred to as the substrate. The substrate is placed under a rigid tip, which is40

connected to a stage via a passive mechanical structure, such as the cantilever41

in an AFM (Figure 2a). The instrument controls the position of the stage and42

brings the tip and substrate into and out of contact. Mechanical properties are43
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Figure 1: (a) Adhesion dominates at small scales. Bradley [13] considered the adhesive force
between a rigid sphere and a rigid semi-infinite body. He assumed that the adhesive interaction
between two molecules of the solids, with centers a distance d apart, is proportional to 1/dn

where n is an integer. The adhesive force is found to be 2πwR, where w is the work of
adhesion and R is the radius of the sphere. At the same time, the gravitational force on the
sphere is 4πρgR3/3 where ρ is the density of the material of which the sphere is composed.
For most engineering materials, w and ρ are of the order of 10 mJ/m2 [14] and 103 kg/m3,
respectively. (b) An ant climbs on a plant stem, showcasing that adhesive forces overcomes
the gravitational forces at small length scales. (c) A comb finger of a drive actuator is stuck
to the substrate due to adhesion [10]. (d) Wear debris accumulates on the surface of the gear
of a microengine [10] as a result of adhesion.

measured at a given location on a substrate’s surface by carrying out one or44

more contact cycles. Each contact cycle begins with a loading phase, when the45

stage moves towards the substrate, followed by an unloading phase, when the46

stage moves away from the substrate. During contact cycles, the deformation47

of the mechanical structure that connects the stage to the tip is often small,48

resembling an elastic spring. The stiffness of this spring is referred to as the49

machine stiffness. In AFM contact experiments, the mechanical structure that50

connects the tip to the stage is a cantilever. The cantilever’s shape, size, and51

material composition then dictate the machine stiffness.52

In the experiments, the contact force that arises between the two solids is53

measured as a function of the indentation depth which is the distance from the54

undeformed substrate’s surface to the tip. The properties of the substrate are55

obtained from the contact force–indentation depth data based on a classical56

adhesive contact theory such as the Johnson-Kendall-Roberts (JKR) theory [1].57

According to the JKR theory, the tip would jump into contact with the substrate58
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unstably in the loading phase, resulting in an abrupt decrease in the contact59

force. Similarly, in the unloading phase, the tip would jump out of contact with60

the substrate spontaneously, resulting in a sudden increase in contact force.61

The phenomena of the tip jumping into and out of contact with the substrate62

unstably are called pull-in and pull-off instabilities, respectively. There are two63

important experimental results that differ from the JKR predictions. First, the64

indentation depth just before and after the pull-in and pull-off instabilities do65

not change as per the JKR theory, see Figure 2b. However, in many adhesive66

contact experiments the indentation depth just before and after the pull-in and67

pull-off instabilities are different [20–22, 24], see Figure 2c. Second, the JKR68

theory predicts the contact force at the pull-off instability, i.e. the pull-off force,69

to be −5πwR/6, where R is the radius of curvature of the tip; whereas the70

measured pull-off force in experiments is different from that value (see §4). The71

work of adhesion would be inaccurate if it were calculated using the pull-off force72

given by the JKR theory. The reason for this difference is due to the machine73

stiffness, whose effect is overlooked in the JKR theory.74

In this paper, we show that machine stiffness is an important factor in adhe-75

sive contact. Our problem is a model for a class of contact experiments that are76

conducted using an AFM-type instrument. We consider an axisymmetric me-77

chanics problem involving the adhesive, frictionless contact between two solids78

to study the effect of machine stiffness. Both the tip’s symmetry axis and the79

stage’s translational directions are normal to the substrate’s surface that faces80

the tip. We assume that the contact region is simply connected and hence is a81

disk that has its center on the tip’s symmetry axis. Just as in the JKR model [1],82

adhesion in our problem is modeled as an infinitesimal interaction—albeit its83

origins from the van der Waals and Coulombic interactions are finite-ranged.84

More specifically, Johnson et al. [1] treated adhesive elastic contact by includ-85

ing an adhesion energy term in the system’s total potential energy, and then86

determined the contact region by stipulating that the contact radius locally87

minimizes the potential energy. We adopt the same methodology as Johnson88

et al. [1], and additionally include an elastic energy term that results from the89

deformation of the instrument’s mechanical structure into the total potential90

energy calculation of our model. We use a variational approach in the study91

of our adhesive contact problem and derive the necessary and sufficient condi-92

tions on the solutions to our problem. We remark that Takahashi et al. [28]93

and Yang [29] analyzed the effect of machine stiffness on the adhesive contact94

between a paraboloidal tip and an elastic half-space. They too use a variational95

approach. However, our approach is different from that of Takahashi et al. and96

Yang in that they only consider the first order necessary conditions on the solu-97

tions to their problems, while in our model we further consider the second order98

sufficiency conditions on the solutions. Second order sufficiency conditions have99

previously been used to study the stability of the equilibrium configurations in100

adhesive elastic contact problems by Kesari and Lew [30], Argatov et al. [31],101

Willert et al. [32], and Popov et al. [33], among others.102

The outline of the paper is as follows. First, we formulate our contact103

problem using the variational approach and derive the solutions in §2. In §3 we104
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Figure 2: (a) A schematic of an AFM contact experiment. The instrument brings the tip and
substrate into and out of contact by controlling the position of the stage, which is connected
to the tip by an elastic cantilever. (b) The contact force–indentation depth curve according to
the JKR theory. The pull-in instability (B → C) and pull-off instability (D → A) are marked
along with corresponding contact configurations. (c) The measured contact force–indentation
depth data from the contact experiments between a glass bead and a Polydimethylsiloxane
(PDMS) substrate [21].

consider two tip geometries, spherical and conical, as examples to illustrate the105

results derived in §2. In this section, we also study the dependence of the pull-in106

and pull-off instabilities and the resulted hysteretic energy loss on the machine107

stiffness. We compare the theoretical predictions of our model with experimental108

measurements and discuss some potential sources for the discrepancies between109

our model and experiments in §4.110

2. Adhesive elastic contact model111

2.1. Geometry112

Figure 3 shows the geometry of our contact mechanics problem. Our problem113

has the three-dimensional Euclidean point space E3 as its backdrop. We identify114

points in E3 using the set of Cartesian coordinates {x, y, z} that correspond to115

a fixed, orthonormal set of vectors {êx, êy, êz} that span the vector space V116

associated with E3.117

The tip in the class of experiments that we model in this paper is usually118

composed of materials that are much stiffer than that of the substrate. Thus,119

we model the tip as a rigid solid. Recall that in the experiments we model, the120

tip’s geometry has continuous rotational symmetry. Therefore, we take the tip121

to be a solid of revolution whose symmetry axis is a fixed line that is parallel122

to êz and passes through the fixed point O, which is the origin of E3. In the123

reference configuration of our problem (Figure 3a), the tip’s surface facing the124

substrate is the region125

∂T0 := {Pt = O + rêr(θ) + f(r)êz ∈ E3 | θ ∈ [0, 2π) and r ∈ [0,∞)},

where the tip’s radial profile f : [0,∞) → (−∞, 0] is a sufficiently smooth126

function such that f(0) = 0, the vector êr(θ) := cos θêx + sin θêy, and r and θ127

are, respectively, the radial and polar coordinates of Pt.128
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We model the instrument’s stage as a material point and the structure con-129

necting the tip and the stage as a linear elastic spring. In the reference config-130

uration of Figure 3a, the spring is unstretched. In the class of experiments we131

model, the size of the contact region is typically much smaller than the dimen-132

sions of the substrate. In the reference configuration, the substrate occupies the133

region z ≥ 0, which we refer to as the half-space S0. We refer to the surface of134

S0 that faces the tip as ∂S0. In the reference configuration, there is no contact135

between the tip and substrate and the substrate is stress-free. We discuss in136

more detail what it means for the tip and substrate to be in contact later in137

this section.138

Figure 3b shows the deformed configuration of our problem. In it, the stage139

and tip have been moved by amounts of ∆êz and hêz, respectively, from where140

they were located in the reference configuration. We call ∆ the stage displace-141

ment and h ∈ (−∞,+∞) the indentation depth. In the deformed configuration,142

the tip’s surface facing the substrate occupies the region143

∂Tt := {O + rêr(θ) + ũz(r;h)êz ∈ E3 | θ ∈ [0, 2π) and r ∈ [0,∞)},

where ũz(·, h) : [0,∞)→ (−∞,+∞) is defined as144

ũz(r;h) := h+ f(r). (2.1)

As is standard in continuum mechanics, we identify material particles that145

belong to the tip or substrate by the spatial points in the reference configuration146

E3 where they originate. We say that a substrate’s surface material particle147

S ∈ ∂S0 is a contact particle if there exists a tip material particle Q ∈ ∂T0148

such that S and Q occupy the same spatial point in the deformed configuration.149

We refer to the set of all contact particles as the contact region Γc and to the150

measure of Γc as the contact area. We define the tip and substrate to be in151

contact if the contact area is strictly positive. As previously noted, our problem152

is axisymmetric and the contact region in it is simply connected. Therefore, we153

can always write Γc = {S ∈ ∂S0 | r ≤ a}, where r is S ’s radial coordinate and154

a ≥ 0 is Γc’s contact radius.155

Let P ∈ S0 be a substrate material particle. The displacement of P is the156

vector u(P) that is defined such that P + u(P) = p, where p is P’s location in157

the deformed configuration. In our problem we only consider displacement fields158

u : S0 → V for which p has the same θ coordinate as P. Therefore, u(P) can159

be expressed as ur(r, z)êr(θ) + uz(r, z)êz, where r, θ, and z are P’s cylindrical160

coordinates and ur(·, ·), uz(·, ·) : [0,∞)× [0,∞)→ (−∞,∞).161

Let S ∈ ∂S0 be a contact particle that is in contact with a tip particle162

Q ∈ ∂T0. Because S and Q occupy the same spatial point in the deformed163

configuration, it follows that164

(rS + ur(rS , 0))êr(θS ) + uz(rS , 0)êz = rQ êr(θQ ) + ũz(rQ ;h)êz, (2.2)

where rS , θS and rQ , θQ are the radial and polar coordinates of S and Q , respec-165

tively. It follows from (2.2) that θS = θQ , rS + ur(rS , 0) = rQ , and166

uz(rS , 0) = ũz(rS + ur(rS , 0);h). (2.3)
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Figure 3: (a) and (b), respectively, show the reference and a deformed configuration of the
contacting solids in our problem, see §2.1.

Imposing the boundary condition (2.3) on the substrate’s displacement field167

leads to a problem for which obtaining an analytical solution is quite challenging.168

In our problem, we impose the boundary condition169

uz(rS , 0) = ũz(rS ;h), (2.4)

which is an approximation of (2.3) on the substrate’s displacement field.170

2.2. Variational formulation of the adhesive elastic contact problem171

We use a variational perspective in the study of our contact mechanics prob-172

lem. That is, for a given stage displacement ∆, we posit that the experimentally173

observed configuration of the spring, tip, and half-space is one in which the sys-174

tem’s total energy is locally minimized with respect to a, h, and u. Thus, we175

allow for the possibility of there being more than one configuration that is ex-176

perimentally observable at a given ∆. We assume that the type of solutions we177

seek can be obtained by first minimizing the potential energy with respect to u178

alone, while holding a and h fixed, and then minimizing this partially minimized179

potential energy with respect to a and h.180

The potential energy in our problem consists of three terms: the energy181

stored in the spring because of its stretching, the energy stored in the contact182

region due to the adhesive interactions between the tip and the substrate, and183

the energy stored in the substrate due to its deformation. The potential energy184

stored in the spring that connects the tip to the stage is ks(∆ − h)2/2, where185

ks ∈ (0,∞) is the spring’s stiffness. As previously noted, we model adhesion186

between the tip and the substrate using the JKR theory. According to this187

theory, the potential energy from the adhesive interactions between the tip and188

substrate is −πwa2. We model the substrate as a homogeneous, isotropic, linear189

elastic material with Young’s modulus E and Poisson’s ratio ν. Therefore, the190

potential energy stored in the substrate is191

1

2

∫
S0
σ : ε dS0, (2.5)
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where192

σ =
E

(1 + ν)

[
ε+

ν

(1− 2ν)
Tr (ε) I

]
(2.6)

is the Cauchy stress tensor and193

ε =
1

2

(
∇u+ ∇uT

)
(2.7)

is the small strain tensor. The symbol : in (2.5) denotes double contraction. In194

(2.6), the symbol I denotes the second rank identity tensor and Tr(·) denotes195

the trace operator. In (2.7) the operators ∇(·) and (·)T denote the gradient and196

transpose operators, respectively.197

It follows from (2.4) that the displacement field always needs to satisfy the198

essential boundary condition199

uz(r, 0) = ũz(r;h) on Γc. (2.8)

When ∆, a, and h are held fixed, it can be shown that among the displacement200

fields that satisfy (2.8), the one that minimizes the system’s potential energy is201

the one that satisfies the equation and boundary conditions202

Div(σ) = o in S0, (2.9a)

σêz = o on ∂S0\Γc, (2.9b)

(I − êz ⊗ êz)σêz = o on Γc, (2.9c)

where Div(·) is the divergence operator, o is the null vector in V, and êz ⊗ êz203

is the tensor product of êz and itself. It is also required that the components204

of u and σ, respectively, be asymptotic to (r2 + z2)−1/2 and (r2 + z2)−1 as205

(r2 + z2)1/2 →∞.206

The solution to the mixed boundary value problem defined by (2.8)–(2.9)207

was given by Sneddon [34]. (For a concise derivation of this solution using208

Betti’s reciprocity theorem, see [35].) Using that solution, it can be shown that209

for any given ∆ and h and a positive a, the partially minimized potential energy210

of the system is211

π2E

4(1− ν2)

∫ a

0

χ(ã;h)2 dã+
1

2
ks(∆− h)2 − πwa2, (2.10)

where212

χ(ã;h) =
2

π

[
h+ ã

∫ ã

0

ũ′z(r;h)√
ã2 − r2

dr

]
for ã > 0. (2.11)

Because of the boundary condition (2.8), the mixed boundary value problem213

defined by is not well posed when a = 0 and h 6= 0. The value of the expression214

(2.10) equals the system’s partially minimized potential energy only when a > 0215

or when a = 0 and h = 0. When a = 0 and h ≤ 0, the tip and the half-space216

are not in contact. In this case, the partially minimized potential energy only217
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results from the stretching or compression of the spring. It is not possible for218

a = 0 and h > 0 because the tip cannot move into the region that is occupied219

by the unstressed half-space without forming any contact area with the half-220

space. Therefore, we conclude that the variational solution we seek will remain221

unaltered if we take the partially minimized potential energy of the system to222

be given by the value of the function Π(·, ·; ∆) : D ⊂ R2 → R ∪+∞, where223

Π(a, h; ∆) :=


π2E

4

∫ a
0
χ(ã;h)2 dã+ 1

2ks(∆− h)2 − πwa2, a > 0, h ∈ (−∞,+∞),
1
2ks(∆− h)2, a = 0, h ≤ 0,

+∞, a = 0, h > 0,

(2.12)
with the domain224

D := [0,∞)× (−∞,+∞), (2.13)

and the plane strain Young’s modulus E := E/(1−ν2). We next locally minimize225

Π(·, ·; ∆) with respect to a and h. More precisely, we seek the solution point226

(a∗, h∗) ∈ D for which there exists a positive number δ such that227

Π(a∗, h∗; ∆) ≤ Π(a, h; ∆), ∀(a, h) ∈ B(a∗, h∗, δ), (2.14)

where B(a∗;h∗; δ) := {(a, h) ∈ R2| ‖(a∗, h∗)− (a, h)‖ < δ}. The solution point228

is also said to be the stable equilibrium configuration of the adhesive elastic229

contact.230

2.3. Solutions231

2.3.1. Contact radius and indentation depth232

The solutions defined by (2.14) can lie either in the interior of the domain233

or on its boundary. We name the points in the interior of D interior points234

and on the boundary of D boundary points. We denote the boundary of D as235

int(D) and the interior of D as ∂D. It follows from the definition of D that236

the interior and boundary points are simply the points (a, h) ∈ R2 with a > 0237

and a = 0, respectively. We show in Appendix A that the boundary contains238

solutions only when ∆ < 0, and that those solutions are of the form (0,∆). In239

the remainder of this section, we only discuss solution points that lie in int(D).240

We begin by defining and characterizing the stationary points that are relevant241

for our discussion of interior solution points.242

Stationary points. A stationary point (a◦, h◦) is an interior point that satisfies243

the first order conditions244

∂Π

∂h
(a◦, h◦; ∆) = 0, (2.15a)

∂Π

∂a
(a◦, h◦; ∆) = 0. (2.15b)
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The stationary point is also referred to as the equilibrium configuration of the245

adhesive elastic contact. At all interior points (a, h) it follows from (2.12) that246

∂Π

∂h
(a, h; ∆) =

π2E
2

∫ a

0

χ(ã;h)
∂χ(ã;h)

∂h
dã− ks(∆− h), (2.16a)

∂Π

∂a
(a, h; ∆) =

π2E
4
χ(a;h)2 − 2πaw. (2.16b)

At any interior point (a, h) it follows from (2.11) that ∂χ(a;h)/∂h = 2/π.247

Thus, after substituting ∂χ(ã;h)/∂h with 2/π in (2.16a) and simplifying, we248

find that249

∂Π

∂h
(a, h; ∆) = πE

∫ a

0

χ(ã;h) dã− ks(∆− h). (2.17)

Equations (2.15a) and (2.17) imply that250

πE
∫ a◦

0

χ(ã;h◦) dã− ks(∆− h◦) = 0. (2.18)

Equations (2.15b) and (2.16b) imply that χ(a◦;h◦) is equal to ±
√

8a◦w/(πE).251

However, we show in Appendix B that only the negative square root is physically252

meaningful, i.e.,253

χ(a◦;h◦) = −
√

8a◦w

πE
. (2.19)

Equivalently, the stationary point (a◦, h◦) is a root of the function254

(a, h) 7→ χ(a;h) +

√
8aw

πE
. (2.20)

It follows from (2.11) and (2.20) and the implicit function theorem that there255

exists a function h that is defined on a neighborhood of a◦ such that256

h◦ = h(a◦). (2.21)

We derive h for contact experiments involving a spherical and conical tip in §3.1257

and §3.2, respectively.258

First order necessary condition. It can be shown that Π(·, ·; ∆) is continuously259

differentiable on int(D). Consequently, if (a∗, h∗) is an interior solution point,260

then it must also be a stationary point. Therefore, an interior solution point261

(a∗, h∗) is also a root of the function (2.20) and it satisfies the equation h∗ =262

h(a∗).263

Second order necessary condition. We discuss the second order conditions in Ap-264

pendix C. A consequence of those conditions is that the value of the function265

g : [0,∞)→ R, where266

g(a) := h ′(a)−
√

8πaEw
2aE + ks

(2.22)

at an interior solution point’s abscissa should be non-negative. The derivative267

of h is denoted as h ′.268

10



Second order sufficient condition. We show in Appendix C.3.1 that a stationary269

point (a◦, h◦) is a solution point if270

g(a◦) > 0. (2.23)

Equation (2.23) is the second order sufficiency condition (C.12) written in terms271

of the function g, which we introduced in (2.22).272

2.3.2. Contact force273

In our contact problem, the contact force between the tip and the substrate274

can be written as P êz. When P in non-negative (resp. non-positive), we say275

that the contact force is compressive (resp. attractive). The contact force276

corresponding to the solution point (a∗, h∗) is denoted as P ∗.277

As we discussed in §2.3.1, the solution points (a∗, h∗) belonging to ∂D are of278

the form (0,∆), where ∆ < 0. In the solutions corresponding to those points,279

the spring is unstretched, the substrate is undeformed, and the tip and the280

substrate are not in physical contact. (See Appendix A for details.) Therefore,281

the contact force P ∗ = 0 in those solutions.282

When (a∗, h∗) belongs to the int(D) it follows from the results presented by283

Snedddon [34] and [35, 5.10] that the contact force P ∗ is284

P ∗ = P (a∗, h∗), (2.24a)

where P : D → R and285

P (a, h) := πE
∫ a

0

χ(r;h) dr. (2.24b)

As we discussed in §2.3.1, by necessity an interior solution point is also a sta-286

tionary point. Thus, we can replace a◦ and h◦ with, respectively, a∗ and h∗287

in (2.18) and (2.19), and then, from (2.24), substitute πE
∫ a∗

0
χ(ã;h∗) dã with288

P ∗ in the first of the resulting equations to get289

∆ =
P ∗

ks
+ h∗ (2.25)

and290

χ(a∗;h∗) = −
√

8a∗w

πE
. (2.26)

We determine the solution contact radius, indentation depth, and contact force,291

i.e., a∗, h∗, and P ∗, through simultaneously solving the equations (2.24a)–(2.26).292

We illustrate this in §3.1 and §3.2, respectively, where we consider tips having293

spherical and conical shapes.294
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3. Applications295

3.1. Spherical tip296

3.1.1. Theory297

In AFM-type contact experiments involving a substrate that is especially298

delicate, such as a gel or a biological tissue, it is customary to use a spherical299

glass or polystyrene bead as the tip [20–23]. The radial profile of the spherical300

tip can be written as301

f(r) = R(1− r2/R2)1/2,

where 0 ≤ r < R and R is the sphere’s radius, see Figure 4a. For this particular302

f on calculating ũz from (2.1) and substituting it into (2.11), we get303

χ(ã;h) =
2

π

[
h− ã tanh−1

(
ã

R

)]
. (3.1)

From (3.1), it follows that in the limit ã/R→ 0304

χ(ã;h)

R
=

2

π

[
h

R
−
(
ã

R

)2
]

+O

(
ã4

R4

)
. (3.2)

Generally, when measuring compliant materials, the contact radius must be305

made large enough that the contact force is measurable. Because of this, during306

some stages of the experiments the contact radius a is not substantially smaller307

than the bead radius R. Despite that, in order to simplify some of the ensuing308

calculations in this section, we assume that the contact radius during the ex-309

periment is much smaller than R. That is, we ignore the fourth order term in310

(3.2) and simply take311

χ(ã;h) =
2

π

(
h− ã2

R

)
. (3.3)

Substituting (3.3) in (2.18) and (2.19), we find that the points (a◦, h◦) satisfy312

the equations313

h◦ = h(a◦), (3.4a)

where314

h(a◦) =
a◦2

R
−
√

2πa◦w

E
(3.4b)

and315

∆ =
P (a◦, h◦)

ks
+ h◦, (3.5a)

where316

P (a◦, h◦) = 2a◦h◦E − 2a◦3E
3R

. (3.5b)
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Recall from §2.3 that a stationary point (a◦, h◦) is a solution point if it317

satisfies the condition (2.23). We can compute the derivative of the function h318

given in (3.4b) and substitute it into (2.22) to determine the function g, and319

then substitute g in (2.23). In doing this, we find that (a◦, h◦) is a solution320

point if321

g(a◦) =
2a◦

R
−
√

πw

2a◦E
−
√

8πa◦Ew
2a◦E + ks

(3.6)

is positive.322

The non-dimensional variables and parameters P̄ (ā◦, h̄◦) := P (a◦, h◦)/P̂ ,323

h̄(ā◦) := h(a◦)/ĥ, and ∆̄ = ∆/ĥ, where ā◦ = a◦/â, h̄◦ = h◦/ĥ, P̂ := 3πwR/2,324

â :=
(
9πwR2/8E

)1/3
, and ĥ := (â2/R) allow equations (3.4)–(3.5) to be written325

as, respectively,326

h̄◦ = h̄(ā◦), (3.7a)

where327

h̄(ā◦) = ā◦2 − 4

3
ā◦1/2 (3.7b)

and328

∆̄ =
4

3α
P̄
(
ā◦, h̄◦

)
+ h̄◦, (3.8a)

where329

P̄
(
ā◦, h̄◦

)
=

3

2
ā◦h̄◦ − 1

2
ā◦3. (3.8b)

Defining ḡ(ā◦) := ā◦1/2g(ā◦â)/(3πw/(8ER))1/3 and with the non-dimensional330

parameters â and α, we get from (3.6) that331

ḡ(ā◦) = 3ā◦3/2 − 4ā◦

2ā◦ + α
− 1. (3.9)

The parameter α in (3.8a) and (3.9) is the ratio of the machine stiffness ks to332

the contact interface’s characteristic stiffness k̂s :=
(
9πwE2R2/8

)1/3
.333

3.1.2. Numerical calculation of pull-in and pull-off forces and hysteretic energy334

loss335

We numerically computed the stationary points for a range of ∆̄ values336

using (3.7)–(3.8). The results from these calculations are shown in Figure 4b–c.337

It follows from the discussion in Appendix A that the pull-in instability occurs338

when ∆̄ = 0. The contact radius just after the pull-in instability, āi, is the339

abscissa of the stationary point that satisfies (3.7)–(3.8) for ∆̄=0. We define the340

pull-off contact radius āo to be arg inf {ā◦ | ḡ(ā◦) > 0}. The indentation-depths341

just prior to the pull-in instability and pull-off instability are, respectively, h̄i =342
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Figure 4: (a) Geometry of the spherical-tip contact problem. In (b)–(d) we denote the different
tip-substrate configurations as points. A configuration’s abscissa gives its prescribed state
displacement ∆̄. In (b) and (c) the ordinate of each configuration gives its contact radius
and indentation depth, respectively. The configurations whose contact radii and indentation
depths corresponding to stationary points are marked as circles, while those corresponding to
solution points are marked as dots. In (d) the ordinate of a configuration gives its contact
force P̄ ∗. The configurations just after the occurrence of the pull-in instability are marked
by triangles, while the configurations just before the occurrence of the pull-off instability are
marked by squares.

h̄(āi) and h̄o = h̄(āo), where h̄ for the spherical tip is given in (3.7b). We marked343

āi and āo in Figure 4b, and h̄i and h̄o in Figure 4c.344

We define a non-dimensional solution point to be (ā∗, h̄∗) := (a∗/â, h∗/ĥ).345

A stationary point (ā◦, h̄◦) qualifies as a non-dimensional solution point if its346

abscissa satisfies the sufficiency condition that ḡ(ā◦) in (3.9) is positive. We347

show the abscissa and ordinate of several of these solution points in Figure 4a348

and b, respectively, using solid symbols. In addition to the solution points that349

we have from the set of stationary points, it follows from the discussion of §2.3.1350

that when ∆̄ < 0 we have additional solution points on the boundary ∂D that351

are of the form (0, ∆̄). The abscissa and ordinate of these points are also marked352

in Figure 4b and c, respectively.353

For each of the solution points (ā∗, h̄∗) shown in Figure 4b–c, we computed354
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the non-dimensional contact force P̄ ∗ := P ∗/P̂ as P̄ (ā∗, h̄∗), where P̄ for the355

spherical tip is given in (3.8b). We show these force values in Figure 4d. The356

contact forces corresponding to the solution points of the form (0, ∆̄), which are357

actually all zero, are also shown in that figure.358

We denote the contact force and the stage displacement just prior to the359

occurrence of the pull-in (resp. pull-off) instability as P̄ ∗i (resp. P̄ ∗o ) and ∆̄i360

(resp. ∆̄o). Recall that ∆̄i = 0. It follows from (3.8a) that361

∆̄o =
4

3α
P̄ (āo, h̄o) + h̄o.

The pull-in and pull-off contact forces, i.e. P̄ ∗i and P̄ ∗o , can be calculated362

as P̄ (āi, h̄i) and P̄ (āo, h̄o), respectively, where P̄ for the spherical tip is given363

in (3.8b). We have marked the points (∆̄i, P̄
∗
i ) and (∆̄o, P̄

∗
o ) in Figure 4d.364

We show the contact forces P̄ ∗i and P̄ ∗o as a function of α in Figure 5a.365

Through an analysis of (3.7) and (3.8), we found that as α→ 0 the contact forces366

P̄ ∗i and P̄ ∗o tend to 0 and −1, respectively. And as α→∞, the contact forces P̄ ∗i367

and P̄ ∗o tend to −8/9 and −5/9, respectively. With the aid of these asymptotic368

results we were able to construct the functions P̄∗i , P̄∗o : (0,∞) → (−∞, 0),369

where370

P̄∗i (α) = −8

9

(
1− 1

1 + 0.83α1.12

)
(3.10a)

and371

P̄∗o (α) = −1

9

(
5 +

4

1 + 0.21α1.32

)
. (3.10b)

These provide excellent approximations for P̄ ∗i and P̄ ∗o for a wide range of α372

values. (See Figure 5a.)373

As can be noted from Figure 4b and c, there exist two solution points for374

some ∆̄ values. For those same values, unsurprisingly, there are also two force375

values. Which of these two force values are actually measured in an experiment376

depends on the contact cycle employed in that experiment. For example, for377

the typical contact cycle discussed in §1, the experiment will measure the force378

values that we have marked using right and left arrows in Figure 4d during the379

loading and the unloading phases, respectively.380

The hysteretic energy loss during a contact cycle can be computed as381

(R4w5/E2)1/3H̄, where382

H̄ =
4

3α

∫ āi

āo

P̄ (ā∗, h̄(ā∗))

[
P̄,1(ā∗, h̄(ā∗)) + P̄,2(ā∗, h̄(ā∗))h̄ ′(ā∗) +

3α

4
h̄ ′(ā∗)

]
dā∗,

(3.11)
in which P̄,1 and P̄,2 are the partial derivatives of P̄ with respect to its first383

and second arguments, respectively. It can be shown that as α → 0 the384

hysteretic energy loss H̄ → ∞, and as α → ∞ the hysteretic energy loss385
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Figure 5: The spherical-tip case. (a) The exact (circles) and approximate (solid line) values of
|P̄i| and |P̄o| as a function of α. The exact values are computed using the procedure outlined
in §3.1.2. The approximate values are given by the functions P̄i and P̄o defined in (3.10). (b)
The exact (circles) and approximate (solid line) values of H̄ as a function of α. The exact
values are computed using (3.11), while the approximate values are given by the function H̄
defined in (3.12).

H̄ → (π5/3 + 3 (2π)
5/3

)/10 (≈ 7.092). With the aid of these asymptotic re-386

sults, we constructed the function H̄ : (0,∞)→ (0,∞), where387

H̄ (α) = 7.092 +
7.657

α0.99
. (3.12)

The values of H̄ are very close to H̄ for a wide range of α values, see Figure 5b.388

3.2. Conical tip389

3.2.1. Theory390

In this section, we consider a conical tip whose radial profile f(r) = −r tan θ,391

where θ ∈ (0, π/2) is shown marked in Figure 6a. Calculating ũz from (2.1) for392

this radial profile and substituting it into (2.11) results in393

χ(ã;h) =
2

π

(
h− π

2
ã tan θ

)
. (3.13)

As we did in the case of the spherical tip (§3.1), by substituting (3.13) in (2.18)–394

(2.19) we obtain that the points (a◦, h◦) satisfy the equations395

h◦ = h(a◦), (3.14a)

where396

h(a◦) = 2a◦h◦E − 1

2
πa◦2E tan θ (3.14b)

and397

∆ =
P (a◦, h◦)

ks
+ h◦, (3.15a)
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Figure 6: (a) Geometry of the conical-tip contact problem. In (b)–(d) we denote the different
tip-substrate configurations as points. A configuration’s abscissa gives its prescribed state
displacement ∆̄. In (b) and (c) the ordinate of each configuration gives its contact radius
and indentation depth. The configurations whose contact radii and indentation depths corre-
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where398

P (a◦, h◦) = 2a◦h◦E − 1

2
πa◦2E tan θ. (3.15b)

From (2.22) and (3.14b), it follows that the function g for the case of conical399

tip is400

g(a◦) =
π

2
tan θ −

√
πw

2a◦E
−
√

8πa◦Ew
2a◦E + ks

. (3.16)

The functions with non-dimensional values and non-dimensional variables401

P̄ (ā◦, h̄◦) := P (a◦, h◦)/P̂ , h̄(ā◦) := h(a◦)/ĥ, and ∆̄ := ∆/ĥ, where ā◦ := a◦/â,402

h̄◦ := h◦/ĥ, P̂ := w2/(πE tan3 θ), â := w/(πE tan2 θ), and ĥ := w/(E tan θ),403
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allow (3.14)–(3.15) to be written as, respectively,404

h̄◦ = h̄(ā◦), (3.17a)

where405

h̄(ā◦) =
ā◦

2
− (2ā◦)

1/2
(3.17b)

and406

∆̄ =
1

α
P̄
(
ā◦, h̄◦

)
+ h̄◦, (3.18a)

where407

P̄
(
ā◦, h̄◦

)
= 2ā◦h̄◦ − 1

2
ā◦2. (3.18b)

The parameter α in (3.18a) is the ratio of the machine stiffness ks to the con-408

tact interface’s characteristic stiffness k̂s := w/(π tan2 θ). Defining ḡ(ā◦) :=409

(2ā◦)1/2g(ā◦â)/(π tan θ), we find from (3.16) and the definitions of α and â that410

411

ḡ(ā◦) =

√
2ā◦

2
− 4ā◦

2ā◦ + α
− 1. (3.19)

3.2.2. Numerical calculation of the pull-in and pull-off forces and the hysteretic412

energy loss413

We numerically computed the stationary points (ā◦, h̄◦) for a range of ∆̄414

values using (3.17)–(3.18). The solution points (ā∗, h̄∗) are those stationary415

points (ā◦, h̄◦) for which ḡ(ā◦) > 0, with ḡ being given in (3.19). When ā∗ > 0416

then P̄ ∗ = P̄ (ā∗, h̄∗), where P̄ is given in (3.18b). When ā∗ = 0, then P ∗ = 0.417

We show the abscissa (resp. ordinate) of the stationary and solution points as418

a function of ∆̄ in Figure 6b (resp. c), and show P̄ ∗ in Figure 6d.419

We employed the same procedure that we used in §3.1 to identify the contact420

radii āi and āo, indentation depths h̄i and h̄o, and contact forces P̄i and P̄o to421

identify those quantities in the case of conical tip (Figure 6b–d). We found that422

as α→ 0 the contact forces P̄ ∗i and P̄ ∗o approach 0 and −54, respectively. And423

as α → ∞, the contact forces P̄ ∗i and P̄ ∗o approach −32 and −6, respectively.424

With the aid of these asymptotic results, we were able to construct the functions425

P̄∗i and P̄∗o : (0,∞)→ (−∞, 0), where426

P̄∗i (α) = −32
(
1− e−0.12α

) (
1 + 2.05e−0.123α0.665

)
(3.20a)

and427

P̄∗o (α) = −6− 48

1 + 0.00158α2.285
(3.20b)
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Figure 7: The conical-tip case. (a) The exact (circles) and approximate (solid line) values of
|P̄i| and |P̄o| as a function of α. The exact values are computed using the procedure outlined
in §3.2.2. The approximate values are given by the functions P̄i and P̄o defined in (3.20). (b)
The exact (circles) and approximate (solid line) values of H̄ as a function of α. The exact
values are computed using (3.21), while the approximate values are given by the function H̄
defined in (3.22).

whose values approximate, respectively, P̄ ∗i and P̄ ∗o very closely for a wide range428

of α (Figure 7a).429

We computed the hysteretic energy loss during a contact cycle as430

w3H̄/(πE2 tan4 θ), where431

H̄ =
1

α

∫ āi

āo

P̄ (ā∗, h̄(ā∗))
[
P̄,1(ā∗, h̄(ā∗)) + P̄,2(ā∗, h̄(ā∗))h̄ ′(ā∗) + αh̄ ′(ā∗)

]
dā∗,

(3.21)
in which h̄ and P̄ are given in (3.17b) and (3.18b), respectively. We found that432

as α → 0 the hysteretic energy loss H̄ → ∞, and as α → ∞ the hysteretic433

energy loss H̄ → 22. With the aid of these asymptotic results we were able to434

construct the function H̄ : (0,∞)→ (0,∞), where435

H̄ (α) = 22 +
4383.87

α1.4478
, (3.22)

whose value is very close to H̄ for a wide range of α (Figure 7b).436

4. Experimental comparison and discussion437

4.1. Experimental comparison438

In this section, we compare our model to the experiments reported by Sun et439

al. [21] and Notbohm et al. [22]. Both experiments involved adhesive elastic440

contact between a PDMS slab and an AFM tip. The AFM tip in Sun et al.’s441

experiments was a Si3N4 bead of radius R = 58 nm. In Notbohm et al.’s442

experiments the AFM tip was a glass bead with R = 2.5µm.443

In Figure 8a we show the contact force–indentation depth data from a rep-444

resentative contact cycle in Sun et al.’s experiments as gray dots. In that same445
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figure, we show the best fit of our model, specifically (3.4b) and (3.5b), as blue446

curves and the JKR model as red curves. For both models, we use E and w447

as the fitting parameters. (See Appendix D for details.) These parameters448

come out to be 6.39 MPa and 63.2 mJ/m2, respectively, in the best fit of both449

our model and the JKR model. Sun et al. [21] report the stiffness of the AFM450

cantilever in their experiments to be ks = 0.66 N/m. Using this value, the best451

fit of our model predicts the pull-off force to be −14.73 nN, whereas the best fit452

of the JKR model predicts it to be −5πwR/6 = −9.59 nN. As can be seen in453

Figure 8a, the experimental pull-off force is −14.8 nN. Thus, the prediction of454

the pull-off force from our model is much closer to the experimental value than455

the prediction of the JKR model.456

An important experimental feature that is uniquely captured by our model is457

that in the experiments, the indentation depth changes by a finite amount during458

the pull-in and pull-off instabilities. For example, in the data shown in Figure 8a,459

the indentation depth changes by 26.7 nm and 26.9 nm during the pull-in and460

pull-off instabilities, respectively. In alignment with these observations, the461

best fit of our model predicts the indentation depth during the instabilities to462

change by 27.4 nm and 26 nm, respectively. In distinct contrast, the JKR model463

always predicts there to be no change in the indentation depth during either of464

the instabilities.465

Figure 8b shows the contact force–indentation depth data from a represen-466

tative contact cycle in Notbohmet al.’s experiments as gray dots. The best fits467

of our model and the JKR model are shown in Figure 8b as blue and red curves,468

respectively. In the best fits of both our model and the JKR model, E and w469

come out to be 0.65 MPa and 25.7 J/m2, respectively. The AFM cantilever’s470

stiffness in Notbohm et al.’s experiments was ks = 0.642 N/m. Using this value471

for the machine stiffness, we find the pull-off contact force in the best fit of472

our model to be −281.5 nN. This value is remarkably close to the experimental473
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pull-off force value, which is −281.6 nN. In contrast, the pull-off force in the best474

fit of the JKR theory is −5πwR/6 = −167.5 nN, which is significantly greater475

than the experimental value. The changes in the indentation depth during the476

occurrence of the pull-in and pull-off instabilities in the experiments are 0.17477

µm and 0.41 µm, respectively. These changes in the best fit of our model are,478

respectively, 0.19 µm and 0.42 µm, which are very close to the experimental479

values.480

4.2. Discussion481

There is a significant discrepancy between the best fits of our model, the482

JKR model, and the experiments towards the end of the unloading phase. (See483

Figure 8b.) Notbohm et al. [22] argue that the discrepancy between their data484

and the JKR model towards the end of the unloading phase was due to the485

nonlinear deformation behavior of the AFM cantilever. However, we believe486

that this discrepancy requires further investigation.487

There is also a discrepancy between the best fits of our model, the JKR488

model, and Notbohm et al.’s experimental data just prior to the occurrence of489

the pull-in instability. Prior to the occurrence of the pull-in instability, there490

is no contact force in either our model or the JKR model. However, as can491

be noted in Figure 8b, in Notbohm et al.’s experiments there are some small,492

but non-negligible, negative contact forces prior to the occurrence of the pull-in493

instability. We believe that this discrepancy is due to the assumption in our494

model that the interbody adhesive interactions are infinitesimally short ranged.495

As we discussed in §1, dry adhesion mostly originates from van der Waals and496

Coulombic type interactions, which have a finite interaction range. The finite497

ranged interactions can give rise to negative forces between the tip and the498

substrate even prior to the occurrence of the pull-in instability. This view is499

supported by molecular statics simulations of adhesive elastic contact [36], in500

which the interbody interactions are taken to have a finite range and the contact501

forces in them are seen to be non-zero prior to the occurrence of the pull-in502

instability.503

A further implication of our assumption that the interbody adhesive inter-504

actions are infinitesimally short ranged is that our model’s prediction that the505

pull-in instability occurs when ∆ = 0 is also quite likely to be inconsistent506

with experiments. In experiments, the pull-in instability is likely to occur when507

∆ < 0, although it might be difficult to experimentally demonstrate this fact508

since identifying the datum of ∆ is quite challenging in adhesive elastic contact509

experiments.510
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Appendix A. Solutions on the boundary of the domain D516

In this section we study the solutions as defined by (2.14) that lie on the517

boundary of the domain D of the function Π(·, ·; ∆). Recall that the domain518

of Π(·, ·; ∆) is the set D := {(a, h) ∈ R2 : a ≥ 0}. Therefore, the domain519

boundary ∂D is simply the set of points in R2 that are of the form (0, h). As520

we will show, the solution points on ∂D could only exist in the form of (0,∆)521

when ∆ < 0. At these points, there is no deformation of the elastic spring and522

the tip and the substrate are not in physical contact.523

Appendix A.1. Points of the form (0, h) where h > 0 cannot be solutions524

A point of the form (0, h) where h > 0 cannot be a solution to our contact525

mechanics problem. Given any δ > 0, the neighborhood B(0, h, δ) of (0, h)526

contains the point (δ/2, h). The value of Π(·, ·; ∆) at (δ/2, h), as given by the527

first line in (2.12), is finite and smaller than its value at (0, h). As can be528

determined by the third line of (2.12), it is also unbounded. That is, we are529

always able to find a point in the neighborhood of (0, h), no matter how small530

the neighborhood’s diameter, where the value of Π(·, ·; ∆) is smaller than at531

(0, h). Consequently, the point (0, h) cannot be a solution.532

Appendix A.2. A point (a, h) where a = 0 and h < 0 is a solution iff ∆ < 0 and533

h = ∆534

The difference in the value of Π(·, ·; ∆) at a point (0, h), where h < 0, and a535

neighboring point (δa, h+ δh), where δa ≥ 0, can be expressed as536

Π[δa, h+ δh; ∆]−Π[0, h; ∆] = Eh2δa+ ksδh(h−∆) +O(‖(δa, δh)‖2) (A.1)

in the limit of (δa, δh) → (0, 0). Any sequence of points converging to (0, h)537

where h < 0 can be expressed as (δan, h + δhn)n∈N, where δan ≥ 0 and the538

sequence (δan, δhn) converges to (0, 0). Consider the case ∆ < 0 and h = ∆.539

It follows from (A.1) that there exists an N ∈ N such that for all n > N the540

sign of the difference Π[an, hn; ∆]−Π[0, h; ∆] is the same as that of the leading541

order term Eh2δan. Because both E and δan are positive, the leading order542

term is positive. This result implies that when ∆ < 0, the point (0,∆) is always543

a solution.544

Now consider the case h 6= ∆ and the sequence of points (an, hn)n∈N where545

an = 0 and hn = h− (h−∆)/n. This sequence of points also converge to (0, h).546

It follows from (A.1) that there exists an N ∈ N such that for all n > N the547

sign of the difference Π[an, hn; ∆] − Π[0, h; ∆] is the as same that of the term548

−ks(h−∆)2/n, which is negative because ks > 0. Therefore, when h 6= ∆, the549

point (0, h) where h < 0 cannot be a solution. Therefore, it is implied that that550

a point of the form (0, h) where h < 0 is a solution iff ∆ < 0 and h = ∆.551
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Appendix A.3. The point (a, h) = (0, 0) cannot be a solution552

In this section we show that the point (a, h) = (0, 0) cannot be a solution553

at any given ∆. We demonstrate this by showing that no matter how small554

δ is, there will always exist points in B(0, 0, δ) where the value of Π(·, ·; ∆) is555

smaller than its value at (a, h) = (0, 0). We begin by deriving an asymptotic556

series expansion for Π(·, ·; ∆) in the limit (a, h) → 0, with a > 0. In the limit557

ã→ 0 we know from (2.1) and (2.11) that558

χ(ã;h) =
2h

π
+ ãf ′(0) +

2ã2

π
f ′′(0) +O(ã3), (A.2)

where O is the Bachmann–Landau “Big-Oh” symbol. We then obtain559

χ(ã;h)2 =
4h2

π2
+

4ahf ′(0)

π
+ a2

(
8hf ′′(0)

π2
+ f ′(0)2

)
+O(ã3). (A.3)

After substituting (A.3) into (2.12) and simplifying, we determine that560

π2E
4

∫ a

0

χ(ã;h)2 dã =Eh2a+
π

2
Ehf ′(0)a2

+ E
(

2

3
hf ′′(0) +

π2

12
f ′(0)2

)
a3 +O(a4).

(A.4)

It follows that in the limit (a, h) → (0, 0) with a > 0, the potential energy can561

be written as562

Π(a, h; ∆) =
1

2
ks∆

2 − ks∆h+
1

2
ksh

2 − πwa2

+ Eh2a+
π

2
Ef ′(0)ha2 + E

π2

12
f ′(0)2a3 +O(‖(a, h)‖4).

(A.5)

When (a, h) = (0, 0) the value of Π(·, ·; ∆) equals ks∆
2/2. Taking this into563

account, it follows from (A.5) that in the limit (a, h)→ (0, 0) with a > 0,564

Π(a, h; ∆)−Π(0, 0; ∆) = −ks∆h+
1

2
ksh

2 − πwa2 +O(‖(a, h)‖3). (A.6)

First consider the case |∆| 6= 0. In this case, using (A.6), we can express565

that566

Π(a, h; ∆)−Π(0, 0; ∆) = −ks∆h+O(‖(a, h)‖2) (A.7)

in the limit (a, h)→ (0, 0) with a > 0. The asymptotic expansion given by (A.7)567

holds for all sequences (an, hn)n ∈ N converging to (0, 0) in which an > 0. An568

example of such a sequence is (|∆|/n,∆/n)n ∈ N. In this sequence, it follows569

from (A.7) and the definition of O(·) that there exists an N ∈ N such that for570

all n > N the sign of Π(an, hn; ∆)−Π(0, 0; ∆) is the same as that of −ks∆2/n.571

Since ks > 0, this result implies that no matter how small we choose δ there572

will always exist a point in B(0, 0, δ) where the value of Π(·, ·; ∆) is smaller than573
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its value at the point (a, h) = (0, 0). This proves that when |∆| 6= 0, the point574

(a, h) = (0, 0) cannot be a solution.575

Now let us consider the case |∆| = 0. For this case, using (A.6), we can576

express577

Π(a, h; ∆)−Π(0, 0; ∆) =
1

2
ksh

2 − πwa2 +O(‖(a, h)‖3). (A.8)

Consider the sequence (an, hn)n∈N when an = |∆|/n and hn = 0. Note that this578

is an admissible sequence since an > 0 for all n. For this sequence, it follows579

from (A.8) and the definition of O(·) that there exists an N ∈ N such that for all580

n > N the sign of Π(an, hn; ∆)− Π(0, 0; ∆) is the same as that of −πw∆2/n2.581

Since w > 0, this result implies that no matter how small we choose δ there will582

always exist a point in B(0, 0, δ) where the value of Π(·, ·; ∆) is smaller than its583

value at the point (a, h) = (0, 0). Hence, even in the case |∆| = 0, the point584

(a, h) = (0, 0) cannot be a solution.585

Appendix B. Sign of χ(a;h)586

We take the negative root of χ(a◦;h◦) from (2.15b). This is because a neg-587

ative sign implies tensile tractions close to the contact periphery, whereas a588

positive sign implies a compressive tractions close to the contact periphery. Ad-589

hesion indicates an attractive interaction between the surfaces. Thus, for the590

case of adhesive contact, the traction in a region close enough to the contact pe-591

riphery has to be tensile when in equilibrium. The proof is as follows. According592

to [35], the surface traction of the elastic half-space is593

tz(r, z = 0;h) = − E
2r

d

dr

∫ a

r

χ(ã;h)ã√
ã2 − r2

dã

= − E
2r

d

dr

[
χ(a;h)

√
a2 − r2 −

∫ a

r

χ′(ã;h)
√
ã2 − r2 dã

]
= − E

2r

[
−χ(a;h)

r√
a2 − r2

+ r

∫ a

r

χ′(ã;h)
√
ã2 − r2 dã

]
=

E
2

[
χ(a;h)√
a2 − r2

−
∫ a

r

χ′(ã;h)
√
ã2 − r2 dã

]
,

(B.1)

where χ′(a;h) = ∂χ(ã;h)/∂ã. Let a = a◦, h = h◦, and r = (1 − ε)a◦, where594

ε→ 0+. After substituting, (B.1) becomes595

tz((1− ε)a◦;h◦) =
E

2a◦

[
χ(a◦;h◦)√

2ε
+O(

√
ε)

]
. (B.2)

If the traction close to the contact periphery has to be negative (or tensile596

traction according to the convention of [35]), then it requires that χ(a◦;h◦) < 0,597

i.e.,598

χ(a◦;h◦) = −
√

8a◦w

πE
. (B.3)
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Another reason why χ(a◦;h◦) < 0 is that the surfaces should not intersect599

with each other outside of the contact region. The displacement discontinuity600

outside the contact region [ũ]z is [14]601

[ũz(r;h)] = −
∫ r

a

χ(ã;h)√
r2 − ã2

dã. (B.4)

Let a = a◦, h = h◦, and r = (1 + ε)a◦, as ε→ 0+. Then, (B.4) becomes602

[ũz((1 + ε)a◦;h◦)] = −
∫ (1+ε)a◦

a◦

χ(ã;h◦)√
((1 + ε)a◦)2 − ã2

dã

= −χ(a◦;h◦)
√

2ε+O(ε).

(B.5)

Because the surfaces do not intersect, this implies that [ũ]z > 0 outside the603

contact region. Therefore it requires that χ(a◦;h◦) < 0.604

Appendix C. Second order necessary and sufficient conditions on in-605

terior solution points606

In Appendix C.1 we present the general form of the second order necessary607

condition on an interior solution point (a∗, h∗), and a second order sufficient608

condition that a stationary point (a◦, h◦) needs to satisfy in order for it to be609

an interior solution point. Recall that a stationary point (a◦, h◦) is an interior610

point that is also a root of the function (2.20). These conditions are given in611

terms of the second partial derivatives of Π(·, ·; ∆). We derive expressions for612

the second partial derivatives of Π(·, ·; ∆) at a stationary point in Appendix C.2.613

In Appendix C.3 we make use of those expressions to particularize and simplify614

the general conditions that we present in Appendix C.1. In this section we take615

(a∗, h∗) to denote an interior solution point.616

Appendix C.1. General second order necessary and sufficient conditions from617

optimization theory618

It can be shown that Π(·, ·; ∆) is twice continuously differentiable on int(D).619

Therefore, it follows from standard nonlinear optimization theory that a sec-620

ond order necessary condition on (a∗, h∗) is that the value of its corresponding621

quadratic form is always non-negative. The quadratic form corresponding to a622

point (a, h) is the function Q(·, ·; a, h) : R2\(0, 0)→ R, where623

Q(x, y; a, h) := x2 ∂
2Π

∂a2
(a, h; ∆) + 2xy

∂2Π

∂a∂h
(a, h; ∆) + y2 ∂

2Π

∂h2
(a, h; ∆). (C.1)

The quadratic form Q(·, ·; a∗, h∗) is always non-negative iff624

∂2Π

∂h2
(a∗, h∗; ∆) ≥ 0, (C.2a)

∂2Π

∂a2
(a∗, h∗; ∆)

∂2Π

∂h2
(a∗, h∗; ∆)− ∂2Π

∂a∂h
(a∗, h∗; ∆)2 ≥ 0, (C.2b)

∂2Π

∂a2
(a∗, h∗; ∆) ≥ 0. (C.2c)
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According to optimization theory, a sufficient condition for a stationary point625

(a◦, h◦) to be an interior solution point is that the value of its corresponding626

quadratic form must always be positive. The quadratic form corresponding to627

(a◦, h◦), namely Q(·, ·; a◦, h◦), is always positive iff628

∂2Π

∂a2
(a◦, h◦; ∆)

∂2Π

∂h2
(a◦, h◦; ∆)− ∂2Π

∂a∂h
(a◦, h◦; ∆)2 > 0, (C.3a)

∂2Π

∂a2
(a◦, h◦; ∆) > 0. (C.3b)

Appendix C.2. Second order partial derivatives of Π(·, ·; ∆) at an interior solu-629

tion point630

After differentiating (2.16) with respect to a and h, we find that631

∂2Π

∂a2
(a, h; ∆) =

π2E
2
χ(a;h)

∂χ(a;h)

∂a
− 2πw, (C.4a)

∂2Π

∂a∂h
(a, h; ∆) =

π2E
2
χ(a;h)

∂χ(a;h)

∂h
, (C.4b)

∂2Π

∂h2
(a, h; ∆) =

π2E
2

∫ a

0

{(
∂χ(ã;h)

∂h

)2

+ χ(ã;h)
∂2χ(ã;h)

∂h2

}
dã+ ks.

(C.4c)

It follows from (2.11) that632

∂χ(ã;h)

∂h
=

2

π
. (C.5)

In light of (C.5), (C.4) is reduced to633

∂2Π

∂a2
(a, h; ∆) =

π2E
2
χ(a;h)

∂χ(a;h)

∂a
− 2πw, (C.6a)

∂2Π

∂a∂h
(a, h; ∆) = πEχ(a;h), (C.6b)

∂2Π

∂h2
(a, h; ∆) = 2Ea+ ks. (C.6c)

Equation (C.6) gives the second partial derivatives of Π(·, ·; ∆) at any interior634

point (a, h). Using (C.6) we next evaluate the second partial derivatives of635

Π(·, ·; ∆) at a stationary point (a◦, h◦). To simply these derivatives, we first636

recall an important result discussed in §2.3.1, which is that637

χ(a◦;h◦) = −
√

8a◦w

πE
. (C.7)

We first substitute (a, h) in (C.6) with (a◦, h◦). In the resulting equation, we638

then substitute χ(a◦;h◦) with the expression on the right side of (C.7). After639
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simplifying, we determine that640

∂2Π

∂a2
(a◦, h◦; ∆) = −

√
2π3a◦Ew

∂χ(a;h)

∂a

∣∣∣∣
(a◦,h◦)

− 2πw, (C.8a)

∂2Π

∂a∂h
(a◦, h◦; ∆) = −

√
8πa◦Ew, (C.8b)

∂2Π

∂h2
(a◦, h◦; ∆) = 2Ea◦ + ks. (C.8c)

Recall that by definition (a◦, h◦) is a root of the function (2.20). The application641

of the Implicit function theorem to function (2.20) infers the existence of the642

function h , which is defined in (2.21). Additionally, it implies that643

∂χ(a;h)

∂a

∣∣∣∣
(a◦,h◦)

= −
√

2w

πa◦E
− 2

π
h ′(a◦). (C.9)

We can then simplify (C.8a) to644

∂2Π

∂a2
(a◦, h◦; ∆) = h ′(a◦)

√
8πa◦Ew. (C.10)

In summary, the second partial derivatives of Π(·, ·; ∆) at an interior solution645

point are646

∂2Π

∂a2
(a◦, h◦; ∆) = h ′(a◦)

√
8πa◦Ew, (C.11a)

∂2Π

∂a∂h
(a◦, h◦; ∆) = −

√
8πa◦Ew, (C.11b)

∂2Π

∂h2
(a◦, h◦; ∆) = 2a◦E + ks. (C.11c)

Appendix C.3. Simplified second order necessary and sufficient conditions647

Appendix C.3.1. A second order sufficiency condition for stationary points648

It follows from (C.11c) that ∂2Π/∂h2(a◦, h◦; ∆) > 0 at all stationary points,649

since at any stationary point a◦ > 0 and by construction E and ks are positive.650

Therefore, if (a◦, h◦) satisfies the inequality (C.3a), then it also satisfies the651

inequality (C.3b). Therefore, in order for a point to be a solution point, the652

only non-redundant sufficient condition on (a◦, h◦) is given by (C.3a). It follows653

from (C.11) that a stationary point (a◦, h◦) satisfies the sufficient condition654

(C.3a) iff655

g(a◦) = h ′(a◦)−
√

8πa◦Ew
2a◦E + ks

> 0. (C.12)
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Appendix C.3.2. A second order necessary condition for interior solution points656

Since an interior solution point is also a stationary point (§2.3.1), then we657

obtain from (C.11) that658

∂2Π

∂a2
(a∗, h∗; ∆) = h ′(a∗)

√
8πa∗Ew, (C.13a)

∂2Π

∂a∂h
(a∗, h∗; ∆) = −

√
8πa∗Ew, (C.13b)

∂2Π

∂h2
(a∗, h∗; ∆) = 2a∗E + ks. (C.13c)

The necessary condition (C.2a) does not lead to any additional conditions659

on the interior solution point (a∗, h∗). This is because it follows from (C.13c)660

that at any interior solution point ∂2Π/∂h2(a∗, h∗; ∆) > 0, since at any interior661

solution point a∗ > 0 and by construction E and ks are positive.662

It follows from (C.13) that the necessary condition (C.2b) holds iff g(a∗) ≥ 0.663

The function g is defined in (2.22). If (a∗, h∗) satisfies the necessary condition664

(C.2b), then it also satisfies the necessary condition (C.2c). This is because if665

h ′(a∗) is non-negative, then (C.13a) would imply that the necessary condition666

(C.2c) is satisfied.667

If (a∗, h∗) satisfies the necessary condition (C.2b), then668

g(a∗) = h ′(a∗)−
√

8πa∗Ew
2a∗E + ks

is non-negative and669

h ′(a∗) ≥
√

8πa∗Ew
2a∗E + ks

. (C.14)

At any interior solution point, a∗ is positive. By construction, E and ks are670

positive and w is non-negative, thus (C.14) implies that h ′(a∗) is non-negative.671

Appendix D. Fitting contact experimental data to theory672

In §4 we apply our model given in §3.1.1 to the experiments of Sun at al. [21]673

and Notbohm et al. [22]. It follows from (3.4b) and (3.5b) that the measured674

indentation depth, h, and the contact force, P , in those experiments should675

satisfy676

h = F (P ; â, P̂ ), (D.1)

where677

F (P ; â, P̂ ) :=
42/3â2

R


1 +

√
1 + P/P̂

2

4/3

− 2

3

1 +

√
1 + P/P̂

2

1/3 ,
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and678

â := (9πwR2/8E)1/3, (D.2a)

P̂ := 3πwR/2. (D.2b)

Say (hi, Pi), i = 1, 2, ..., n, where n is a positive integer, is a sequence of679

indentation depth–contact force measurements. An estimate of the mismatch680

between the theory and experimental results can be681

S(â, P̂ ) :=

n∑
i=1

ri(â, P̂ )2, (D.3)

where682

ri(â, P̂ ) := hi − F (Pi; â, P̂ ), (D.4)

and i = 1, 2, ..., n. We take the best values for the parameters â and P̂ to be683

those at which S attains its minimum. Denoting the best fit values of â and P̂684

as â∗ and P̂ ∗, respectively, a necessary condition that S attains its minimum at685

(â∗, P̂ ∗) is that686

∂S

∂â
(â∗, P̂ ∗) = 0, (D.5a)

∂S

∂P̂
(â∗, P̂ ∗) = 0. (D.5b)

We obtain â∗ and P̂ ∗ by numerically solving (D.5a)–(D.5b), which are a pair687

of coupled, nonlinear algebraic equations. The best fit values for w and E are688

then obtained by simultaneously solving (D.2a)–(D.2b) for w and E after first689

replacing in them â and P̂ with their respective best fit values and R with its690

experimentally reported value.691
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