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Abstract
Brain injuries resulting from mechanical trauma represent an ongoing global public health issue. Several in vitro and in vivo 
models for traumatic brain injury (TBI) continue to be developed for delineating the various complex pathophysiological 
processes involved in its onset and progression. Developing an in vitro TBI model that is based on cortical spheroids is espe-
cially of great interest currently because they can replicate key aspects of in vivo brain tissue, including its electrophysiology, 
physicochemical microenvironment, and extracellular matrix composition. Being able to mechanically deform the spheroids 
are a key requirement in any effective in vitro TBI model. The spheroids’ shape and size, however, make mechanically load-
ing them, especially in a high-throughput, sterile, and reproducible manner, quite challenging. To address this challenge, 
we present an idea for a spheroid-based, in vitro TBI model in which the spheroids are mechanically loaded by being spun 
by a centrifuge. (An experimental demonstration of this new idea will be published shortly elsewhere.) An issue that can 
limit its utility and scope is that imaging techniques used in 2D and 3D in vitro TBI models cannot be readily applied in it 
to determine spheroid strains. In order to address this issue, we developed a continuum mechanics-based theory to estimate 
the spheroids’ strains when they are being spun at a constant angular velocity. The mechanics theory, while applicable here 
to a special case of the centrifuge-based TBI model, is also of general value since it can help with the further exploration 
and development of TBI models.

Keywords  TBI · Brain · Trauma · Mechanobiology · Cell Mechanics · Continuum

1  Introduction

Traumatic brain injury (TBI) affects around 55 million peo-
ple around the world each year and represents an ongoing 
global public health issue (Maas et al. 2022). Its prevalence 
and incidence are higher than other common neurological 
diseases, including stroke, Alzheimer’s and Parkinson’s dis-
eases (Maas et al. 2022). In the US and Europe, 190–225 
patients die every day after suffering from a TBI event and 
tens of thousands suffer from chronic neurodegenerative 
diseases and complications resulting from the injury (TBI 
Data 2023; Maas et al. 2022). The high mortality and long-
term disability associated with TBI highlight the need for 
further research into its treatment and diagnosis. Currently, 
there are no FDA approved treatments (FDA 2021) for TBI. 
Traumatic brain injury is often diagnosed using a combina-
tion of standard-of-care imaging techniques such as com-
puted tomography (CT) (Maas et al. 2005) and magnetic 
resonance imaging (MRI) scans (McDonald et al. 2012), as 
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well as neurological scales assessing consciousness like the 
Glasgow Coma Scale (Teasdale and Jennett 1974).

Traumatic brain injury is a disease process rather than 
an event (Masel and DeWitt 2010). For developing effec-
tive treatments, it is critical to understand both TBI’s onset 
(primary injuries) and its progression (secondary injuries). 
As such, several in vivo as well as in vitro TBI models have 
been developed for delineating the various complex patho-
physiological processes involved in its onset and progres-
sion. In vivo TBI studies have relied extensively on rodent 
models. They include injury modalities such as controlled 
cortical impact (CCI) (Clark et al. 1994), fluid percussion 
injury (FPI) (McIntosh et al. 1989), weight drop (Feeney 
et al. 1981) and sustained focal compression (Lin et al. 
2010). As a whole, in vivo injury models are very attractive 
because they are all-encompassing: They include the brain’s 
vasculature and structural organization, the brain’s multi-
ple, distinct cell types, the blood-brain barrier, and access to 
blood circulation and peripheral immune cells. That is, they 
allow the study of complex multicellular, mechanistic, and 
systems-level responses to TBI, including axonal demyeli-
nation, blood-brain barrier breakdown, peripheral immune 
cell-mediated inflammation, and neurocognitive impairment.

The in vivo injury models, however, can also have a few 
limitations. (1) The in vivo models’ all-encompassing nature 
also makes them difficult to interpret. Specifically, in in vivo 
injury models, it is difficult to delineate how the various 
cellular, biochemical, and biophysical processes affect each 
other. The various processes have a complex interdepend-
ence on each other and form feedback loops that drive the 
disease progression. (2) The in vivo models can be expen-
sive, and (3) difficult to use. (4) In in vivo models, it is dif-
ficult to visualize brain tissue deformation in real time and 
correlate injury severity to those deformations. Such correla-
tions can potentially provide valuable information for devel-
oping inertial-sensor-system-based diagnosis techniques for 
mild TBI (mTBI) (Rahaman et al. 2020; Wan et al. 2022, 
2023; Carlsen et al. 2021).

In vitro TBI models in most cases circumvent the limita-
tions (1)–(3) of the in vivo models. That is, they are easier 
to interpret, are less expensive, are easier to use, and pose 
fewer ethical concerns compared to their in vivo counter-
parts. The earliest in vitro studies involved subjecting neu-
ronal and glial monolayers (2D cell cultures) to higher pres-
sures and monitoring plasma membrane damage and cell 
death (Murphy and Horrrocks 1993). In fact, the 2D in vitro 
models do not even suffer from limitation (4) of the in vivo 

models, since it is straightforward to monitor deformations 
in them using a time sequence of microscopy images and 
image processing algorithms. Despite their many attractive 
features, 2D in vitro models suffer from one major limita-
tion: They may not be sophisticated enough to capture the 
primary pathophysiological processes involved in TBI.

Three dimensional (3D) cell culture models are a rela-
tively recent development (Hanna and Pfister 2023). They 
are generally more sophisticated than 2D cell culture models. 
In particular, cortical spheroids—which are a special type of 
3D cell culture model—replicate key aspects of in vivo brain 
tissue, such as the electrophysiology, dimensionality, phys-
icochemical microenvironment, and the extracellular matrix 
composition observed (Dingle et al. 2015; Shoemaker et al. 
2021) in vivo. Hence, currently there is significant interest 
in developing in vitro TBI models that are based on 3D cell 
culture models. Some recent works in this direction involve 
compressing neuronal cells embedded in hydrogels made of 
specific extracelullar matrix proteins or biomaterial compos-
ites (Bar-Kochba et al. 2016; Liaudanskaya et al. 2020), and 
brain organoids (Shoemaker et al. 2021). The two main chal-
lenges in developing 3D in vitro TBI models are (1) design-
ing a mechanical loading system that can be used to mimic 
the mechanical forces that in vivo tissue experiences during 
TBI while maintaining high throughput, and sterility in the 
experiment, and (2) being able to estimate the deformations 
experienced by the in vitro tissue during the experiment.

We propose a new 3D in  vitro TBI model in which 
mechanical loads are applied to cortical spheroids, via the 
aid of centrifugal forces. Cortical spheroids are grown within 
a 3D soft substrate, i.e., within the cavities (such as micro-
wells) molded into the surface of a soft material (see inset 
in Fig. 1a), such as an agarose hydrogel. Cell culture media 
bathes the cortical spheroids as well as their soft substrate. 
We propose to load the cortical spheroids by spinning them 
along with their soft substrates and their fluid media using 
a centrifuge (see Fig. 1a). The centrifuge’s angular velocity 
can vary during the experiment. In a frame that rotates with 
the centrifuge’s rotating arm, the cortical spheroid, the soft 
substrate, and the fluid media experience body forces that 
push them away from the axis of rotation (Fig. 1b). These 
forces cause the fluid media and the soft substrate to push 
the cortical spheroid’s surfaces that they are, respectively, in 
contact with toward each other, thus squeezing the spheroid 
(Fig. 1c). We will experimentally demonstrate in a follow-up 
publication that this centrifugation-based method of loading 
the cortical spheroids can provide the basis for the develop-
ment of a high throughput and sterile in vitro 3D TBI model.

The above proposed centrifugation-based 3D in vitro TBI 
model (centrifuge-TBI-model) does not have the limitations 
(1)–(3) of the in vivo models, neither does it have the limi-
tation of insufficient sophistication of the 2D in vitro mod-
els. The model is designed to be high throughput; maintain 

Fig. 1   An illustration of the centrifuge-TBI-model. For ease of expo-
sition, especially when we develop the mechanics theory in Sect. 4, 
we only show one cortical spheroid as being spun in (a) and (b). 
However, in practice, several thousands of spheroids can be spun 
simultaneously

◂
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conditions that are as sterile as those present at the time the 
spheroids are grown; and allow loading of the spheroids in 
a reproducible manner.

The centrifuge-TBI-model is of high throughput, since 
thousands of spheroids can be grown simultaneously, and 
then spun simultaneously as well1; with no steps between the 
two that involve processing the spheroids serially, such as 
individual pipetting, positioning, or probing. These features 
are possible for the following reasons. The 3D soft substrate 
is micromachined to have close to a hundred cavities/micro-
wells on it. A single spheroid (which could be as large as 
8000 cells) grows in a cavity via self-assembly given the 
nonadhesive properties of the soft substrate. It has already 
been demonstrated that using the 3D soft substrates several 
thousands of spheroids can be grown simultaneously (Din-
gle et al. 2015). A single substrate is usually smaller than 
a cubic centimeter in size; therefore, a lab grade centrifuge 
will be able to hold over a hundred substrates. Hence, sev-
eral thousands of spheroids can be spun simultaneously if 
desired. In addition to the growth and loading operations 
in the centrifuge-TBI-model each being parallel in nature, 
another aspect of the model that critically contributes to 
it being high throughput is that the spheroids are loaded 
in situ, i.e., they are tested in the same substrate as that in 
which they are grown (compare, e.g., Fig. 1a and b).

The loading conditions are sterile due to the in situ testing 
and because the loading on the spheroids is being primarily 
performed by the same fluid media and the soft substrate 
used to grow them (e.g., see Figs. 1c and d).

The mechanical loading, i.e., the force on the spheroids, 
in the experiment can be easily and robustly tuned via the 
centrifuge’s angular velocity and the volume of the fluid 
media.

However, as with all models, the proposed model too has 
some limitations. One of the most significant of those is the 
same as limitation (4) of the in vivo models, which, to reit-
erate, is the inability to visualize tissue deformation in real 
time and correlate injury severity to those deformations. In 
order to address this limitation, in this paper, we consider 
a special case of the centrifuge-TBI-model and develop a 
mechanics theory for determining the cortical spheroids’ 
deformation in it. The special case we consider is the one 
which the centrifuge’s angular velocity is constant as a func-
tion of time. The primary assumptions in our mechanics 
theory are described in Sect. 2. The mathematical prelimi-
naries necessary for detailing our theory are described in 
Sect. 3. We develop the theory in Sect. 4 and summarize it 
in Sect. 5. Results from numerical solutions of our theory 

for two representative values of centrifuge angular velocity 
are presented in Sect. 6.

The proposed centrifuge-TBI-model, in theory, has many 
advantages compared to other models. The theory developed 
in this paper applies to a special case of the centrifuge-TBI-
model, and it provides an indirect means of determining the 
deformations. Future studies will work toward a general and 
direct approach for determining deformations. We believe 
that our theory is of value since it allows us to explore the 
centrifuge-TBI-model and its viability and potential for 
in vitro TBI studies.

2 � Primary assumptions and modeling 
decisions and their underlying rationale

In this section, we list some of the primary assumptions and 
modeling decisions that we made for developing our theory 
to estimate the deformations in the cortical spheroid as it is 
spun by the centrifuge.

As we already mentioned in Sect. 1, we restrict ourselves 
to the case where the centrifuge is being operated at a con-
stant angular velocity of �max rad∕s . We made this decision 
in order to reduce the theory’s complexity.

For modeling the deformations of the cortical spheroid, 
we also model the motion and deformations of the 3D soft 
substrate containing it, and the fluid media that bathes the 
spheroid and the substrate.

We ignore acceleration due to gravity in our theory.2
We assume that the deformations and stresses in the 

spheroid and the substrate’s region that is in its vicinity are 
axi-symmetric.

We assume that the mechanics of the spheroid, the sub-
strate, and the fluid media can be well modeled using con-
tinuum theories (Gurtin 1982). Consequently, we model 
the spheroid and the substrate as homogeneous solids and 
the fluid media as a homogeneous fluid. Even more specifi-
cally, we model the spheroid as a spherical ball composed 
of an incompressible neo-Hookean material, the substrate 
as composed of a compressible neo-Hookean material, and 
the fluid media as an incompressible Newtonian fluid. The 
constitutive law for the fluid media is given in Sect. 4.3 and 
those for the spheroid and substrate are given in Sect. 4.4. 
Additionally, we model the interaction between the spheroid 
and substrate as non-adhesive frictionless contact. We refer 
to (i) the cortical spheroid, (ii) the 3D soft substrate, and (iii) 
the fluid media collectively as the continua.

1  In Fig. 1, we only show a single cortical spheroid being spun, even 
though in practice, several thousand can be spun simultaneously. We 
do so since showing a single spheroid makes it easier to use Fig. 1 to 
explain the development of the mechanics theory.

2  This assumption is only valid when the centrifuge’s angular veloci-
ties and the spheroid’s distance from the centrifuge rotation axis at 
those velocities are such that the centripetal accelerations in and 
around the vicinity of the spheroid are much larger than the accelera-
tion due to gravity. We assume that this in fact is always the case in 
the centrifuge-mTBI-model, which our theory is intended to model.
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We assume that in a frame that rotates with the centri-
fuge’s spinning arm, all mechanical fields remain stationary 
w.r.t. time. (see Sect. 7 for a discussion of this important 
assumption).

On account of the previous assumption, it follows that the 
motion of the continua can be described as

Here, X is the position vector of a continuum material parti-
cle X  in a reference configuration (The particle can belong 
to the spheroid, the soft substrate, or the fluid media). We 
will henceforth be referring to the material particle X  by its 
reference position vector, X . We call x

�
[⋅] the deformation 

(1)x
�
[X] = Q

�
I
�R→�

(
X + U⋆[X]

)
.

map and x
�
[X] the material particle X ’s current position 

vector at the time instance � . We call U⋆[X] , the intermedi-
ate displacements of the material particle X . In general, the 
intermediate displacements in addition to X also depend on 
the time instance � . In our theory, the intermediate displace-
ments only depending on X too are a consequence of our 
previous assumption. We define the symbols Q

�
 , and I

�R→�
 

appearing in (1) in Sect. 4.1.2. For a mathematically com-
plete and rigorous formulation of (1) see (Wan et al. 2023).

The material field U⋆[⋅] is an unknown a priori. The 
strains and the stresses in the continua depend on the values 
of its gradient, 

{
�
X

[
U

⋆
]}
[⋅] . In Sect. 4, we derive the equa-

tions whose solution (cf. Sects. 5 and 6) will yield U⋆[⋅] and 
hence, the strains and the stresses.

Fig. 2   An illustration of the various mathematical objects that we use 
in our mechanics model of spheroid centrifugation. All objects are 
defined in Sects. 3 and 4.1. In (c) the point marked ci [x, τ], i ∈ {1, 

2, 3}, is a vector obtained by translating ci [x, τ] with x. We show the 
translated version instead of the original one for clarity.



1184	 Y. Wan et al.

3 � Mathematical preliminaries

In this section, we present the preliminary mechanics and 
mathematical notions that are needed for the development of 
our theory. Some of these notions can also be found in (Wan 
et al. 2022, Sect. 2.1) and (Rahaman et al. 2020, Sect. 2.1).

3.1 � Abstract vector spaces in our model

Let �R be an oriented Euclidean vector space, i.e., an ori-
ented finite dimensional, real, inner product space, and let 
the affine point space ER have �R as its associated vector 
translation space. We refer to �R and ER as the reference 
Euclidean vector and point space, respectively. Let � and E  
be another pair of Euclidean vector and affine point space, 
respectively. Our continua (which can either be the sphe-
roid, the 3D soft substrate, or the fluid media) execute their 
motion in E  . For that reason, we refer to � and E  as the 
physical Euclidean vector space and point space, respec-
tively. We model each of our continuum bodies, spheroid, 
soft substrate, and the media using the topological spaces 
B

sprd , Bsub , and Bfluid , respectively (see Fig. 2a).
We call a select continuous, injective map from B (which 

can be Bfluid , Bsprd , or Bsub ) into �R the reference configu-
ration and denoted it as �R . The elements of B are called 
material particles. We call X ≡ �R[X] the particle X  ’s ref-
erence position vector and �R[B] the reference body (see 
Fig. 2b). Taking some arbitrary point OR ∈ ER to be ER ’s ori-
gin (see Fig. 2a), to �R we associate the map �R ∶ B → ER 
such that OR + �R[X] = �R[X] . We call X ≡ �R[X] the 
particle X  ’s reference point.

We model time as a one-dimensional normed vector 
space �  and denote a typical element in it as � = �s , where 
� ∈ ℝ and s is a fixed vector which has units of seconds.

3.2 � Cartesian basis vectors

The sets 
(
Ei

)
i∈I

 and 
(
ei
)
i∈I

 , where I ∶= (1, 2, 3) , are ortho-
normal sets of basis vectors for �R and � , respectively. By 
orthonormal, we mean that the inner product between Ei and 
Ej , or ei and ej , where i, j ∈ I  , equals �ij , the Kronecker 
delta symbol, which equals unity iff i = j and zero otherwise. 
In our problem, we take Ei and ei , i ∈ I  , to have the units 
of meters. The Cartesian co-ordinates of X which we denote 
as �̆[X] =

(
�̆i[X]

)
i∈I

 are components of X w.r.t. Ei , that is 

�̆i[X] = Xi  ,  where  Xi ∶= X ⋅ Ei  .  For  s impl ic i ty, 
� ≡

(
X1,X2,X3

)
.

We denote the space of all m × n real nested ordered 
sets, where m, n ∈ ℕ , as Mm×n(ℝ) . Thus, �̆[X] ∈ M3×1(ℝ) . 
We call the map ER ∋ X ↦ �̆[X] ∈ M3×1(ℝ) the Carte-
sian co-ordinate map. Let 

(
�i
)
i∈I

 be an orthonormal set 

of basis vectors for M3×1(ℝ) , or ℝ3 , where �1 ∶= (1, 0, 0) , 
�2 ∶= (0, 1, 0) , and �3 ∶= (0, 0, 1) . When we refer to X ∈ �R , 
� ∈ M3×1(ℝ) , or X ∈ ER as a material particle we in fact 
mean the material particle X ∈ B.

3.3 � Co‑rotational Cartesian basis vectors for �

Let

The matrix �[�] belongs to the special orthonormal group 
SO(3) ⊂ M3×3(ℝ) and therefore, satisfies the equations 

and

 where ��[�] is the transpose of �[�] , i.e., ��[�] = (�[�])� , 
and �3×3 =

(
�ij
)
i,j∈I

∈ M3×3(ℝ).
Using �[�] we define the co-rotational set of basis vectors 

for � , (ei[�])i∈I  , as

Note that (ei[�])i∈I  change with time (see Fig. 2c). However, 
at each time instance � , they form an orthonormal set of vec-
tors and provide a basis for �.

3.4 � Co‑rotational Cartesian co‑ordinates

Given x ∈ � , let

where (ei[�]
)

i∈ℐ
 is defined via (4). We call (x̆i[x, �]

)

i∈ℐ = :�̆[x, �] 
the co-rotational Cartesian co-ordinates of x at the time 
instance �.

3.5 � Co‑rotational cylindrical basis vectors for �

Using �̆[x, 𝜏] , we define the set of co-rotational cylindrical 
basis vectors 

(
ci[x, �]

)
i∈I

 (see Fig. 2c) at the point x at the 
time instance � as

where �[⋅] ∶ M3×1(ℝ) → M3×3(ℝ),

(2)

�
Qij[�]

�
i,j∈I

=

⎛
⎜⎜⎝

cos
�
�max�

�
− sin

�
�max�

�
0

sin
�
�max�

�
cos

�
�max�

�
0

0 0 1

⎞
⎟⎟⎠
∶=∶ �[�].

(3a)��[�]�[�] = �3×3,

(3b)�[�]��[�] = �3×3,

(4)ei[�] = Qji[�]ej.

(5)x̆i[x, 𝜏] ∶= x ⋅ ei[𝜏],

(6)
(
ci[x, 𝜏]

)
i∈I

= �
[
�̆[x, 𝜏]

](
ei[𝜏]

)
i∈I

,
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3.6 � Linear maps between vector spaces

Say � and � are two arbitrary, oriented Euclidean vector 
spaces; for instance, they can be �R and � . We denote the 
space of all linear maps (transformations/operators) from 
� to � as L(�,�) . We denote the norm of a vector w1 in 
� that is induced by � ’s inner product, i.e., (w1 ⋅ w1)

1∕2 , as 
‖w1‖ . For u1 ∈ � , the expression u1 ⊗ w1 denotes the linear 
map from � to � defined as

where w2 ∈ � . If the sets 
(
ui
)
i∈I

 and 
(
wi

)
i∈I

 provide bases 
for � and � , respectively, then, it can be shown that 
(

(

ui ⊗ wj
)

j∈ℐ

)

i∈ℐ
 , which we will henceforth abbreviate as (

ui ⊗ wj

)
i,j∈I

 , provides a basis for L(�,�) . The number 
Tij , where i, j ∈ I  , is called the component of T ∈ L(�,�) 
w.r.t. ui ⊗ wj iff Tij = ui ⋅

(
Twj

)
 . We call the nested ordered 

set (Tij
)

i,j∈ℐ
 the component form of T w.r.t. 

(
ui ⊗ wj

)
i,j∈I

 and 
denote it as �.

From here on, unless otherwise specified, we will be fol-
lowing the Einstein summation convention. As per this con-
vention, a repeated index in a term will imply a sum over that 
term with the repeated index taking values in I  . For exam-
ple, the expression XiEi represents the sum 

∑
i∈I XiEi . And 

an unrepeated index in a term will signify a set of 3 terms. 
For example, the term Ei represents the set 

{
Ei

|| i ∈ I
}
.

The operator Dj[⋅] is defined such that

for f ∶ ℝ
3
→ ℝ . We abbreviate Dj

[
f
]
 as Dj f .

(7)�
��
x1, x2, x3

��
∶=

1�
x2
1
+ x2

3

⎛
⎜⎜⎜⎝

x1 0 x3
x3 0 − x1

0

�
x2
1
+ x2

3
0

⎞
⎟⎟⎟⎠
.

(8)
(
u1 ⊗ w1

)
w2 = u1

(
w1 ⋅ w2

)
,

(9)
{
Dj

[
f
]}
[�] =

�f [�]

�Xj

,

4 � Mechanics Model

4.1 � Kinematics

4.1.1 � Stationary and reference configurations

We show our assumed geometries for the continua in the 
centrifuge-TBI-model in Fig.  1a  and b. The configura-
tion shown in (a) is for when the centrifuge is stationary 
(recall that we have ignored acceleration due to gravity), 
and the one shown in (b) is the reference configuration in 
our problem.

In Fig. 1a, the spheroid lies in a 3D soft substrate, while 
the 3D soft substrate itself lies in an enclosure connected to 
the centrifuge’s spinning arm. The geometries of the sphe-
roid, the substrate, and the enclosure are all axi-symmetric 
about the axis �c shown in Fig. 1a. Thus, the spheroid is, 
well, a spherical ball of radius R0 m . The cavity in the sub-
strate that the spheroid lies in has the shape of a test tube. 
It is open at the top; it is L1 m deep; the radius of its circu-
lar cross-sections is R1 m ; and its base has a hemispherical 
shape. The substrate does not completely fill the enclosure. 
The substrate’s cross-sections toward the top are annular 
disks, while those toward the bottom are circular disks. The 
inner radii of the annular disks are R1 m . The outer radii 
of the annular disks (and the radii of the circular disks) is 
L3∕2 m . The enclosure’s cross-sections toward the top as 
well as those toward the bottom are both annular disks, albeit 
of different inner radii. The inner radii of the enclosure’s 
annular disks that lie toward the bottom are the same as the 
outer radii of the substrate’s annular disks, namely L3∕2 m . 
The inner radii of the enclosure’s annular disks that lie 
toward the top are R2 m.

The spheroid’s center Os lies on the central axis �c (see 
Fig. 1a), and it rests at the bottom of the cavity, with a single 
point touching (see Fig. 1a). The thickness of the substrate 
under the spheroid is L2 m.

We refer to the point at which the centrifuge’s spinning 
arm attaches to the enclosure as OP (marked in Fig. 1b). We 
take the reference configuration for our problem to be the 
one shown in Fig. 1b, which is the same as that in Fig. 1a 
except that the enclosure and the continua have undergone a 
rigid body rotation about the axis that is perpendicular to the 

Table 1   Typical values for the geometry parameters R
0
–R

2
 , and L

1
–L

6
 in the centrifuge-TBI-model

These parameters are defined in Fig. 1a and b. These typical values are based on the spheroid, and 3D soft substrate dimensions reported in 
(Dingle et al. 2015); geometry of the enclosure (marked in Fig. 1a) in which the 3D soft substrate containing the spheroid is typically held; the 
amount of fluid media that is typically added to the enclosure, which is around 1 ml (Dingle et al. 2015); and the dimensions of a typical lab 
grade centrifuge, such as 5810R Eppendorf https://​www.​eppen​dorf.​com/​us-​en. The units of all parameters are meters

Parameter name R
0

R
1

R
2

L
1

L
2

L
3

L
4

L
5

L
6

Parameter value ×103 0.08 0.2 7.96 0.8 1.5 0.8 66 59.61 112.69

https://www.eppendorf.com/us-en
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plane spanned by the centrifuge’s rotation axis and spinning 
arm (shown in Fig. 1a) and passing through OP.3

The base of the substrate is at a distance of L4 m from the 
point OP (shown in Fig. 1b). The spheroid and the substrate 
are bathed in the fluid media. The surface of the fluid media 
is at a distance of L5 m from the point OP (shown in Fig. 1b). 
The length of the spinning arm is L6 m.

Typical values for all the geometry parameters in the 
stationary and reference configurations, which are partially 
based on the measurements reported in (Dingle et al. 2015), 
are given in Table 1.

4.1.2 � Deformation mapping

The motion of the continua is given by (1). To partially 
reiterate, the vector X ∈ �R is the reference position vec-
tor of the material particle X  . The symbol I

�R→�
 denotes 

the identity linear map from �R onto � . More explicitly, 
I
�R→�

= ei ⊗ Ei . Without loss of generality, we take that 
the continua rotate about e3 . Since we restrict ourselves 
to the case in which the continua rotate at a fixed angular 
velocity of �max rad∕s , the assumption of rotation about e3 
implies that Q

�
= Qij[𝜏]ei ⊗ ej , where Qij[�] is defined in 

(2). The map U⋆ ∶ �R → �R is the intermediate displace-
ment field of B . The symbol x

�
[X] is the material parti-

cle X ’s position vector in � at the time instance � . The set 
�
�
[B] =

{
x
�
[X] ∈ � ||X ∈ �R[B]

}
 is called the current 

body (see Fig. 2c).
As per (1), the continua’s deformations are time invariant 

in the co-rotational basis (ei[�])i∈I  . The co-rotational basis 
themselves rotate about the time stationary vector e3 with the 
constant angular velocity �max rad∕s (see Fig. 2c).

4.1.3 � Displacements components

Expressing X = XiEi , and U⋆[X] = U⋆
i
[�]Ei , and using (1) 

and (4), it can be shown that 

where

 Denoting (xi[�])i∈I  as �[�] and 
(
U⋆

i
[�]

)
i∈I

 as �⋆[�] , 
(10b) can equivalently be expressed as

(10a)x�[X] = xi[�]ei[�],

(10b)xi[�] = Xi + U⋆

i
[�].

Let

and

We refer to the restriction of �[⋅] to R
[
B

sprd
]
 as �sprd[⋅] . The 

maps �sub[⋅] and �fluid[⋅] are defined similarly.

4.1.4 � Velocity components

We call L(� ,�) the physical velocity vector space and 
denote it as �  . It can be shown that the set 

(
vi[�]

)
i∈I

 , where 
vi[�] ∈ �  and are defined such that {vi[�]}� = �ei[�] , that 
is vi[𝜏] ∶= ei[𝜏]⊗ s∗ , where s∗ is the dual of s , provides 
an orthonormal basis for �  . The velocity of a material par-
ticle X executing its motion in � lies in �  . The velocity of 
the material particle X at the instant � , which we denote 
as V

�
[X] , equals the value of the Fréchet derivative of the 

map � ∋ � ↦ xX[�] ∈ � , where xX[�] = x
�
[X] , at the time 

instance � . Thus, it follows from (1) that for � ≥ 0

where

and

 From (2) and (14c), it follows that

Denoting (Vi[�])i∈I  as �[�] , (14b) can equivalently be writ-
ten as

The velocity of the material particle located at x ∈ � at the 
time instance � is defined as

From (14a), (14b), and (10b), the equation (17) can be writ-
ten as

(11)�[�] = � + �⋆[�].

(12)R

[
B

sprd
]
∶=

{
� ∈ ℝ

3 | XiEi ∈ �R

[
B

sprd
]}
,

(13)R

[
B

sub
]
∶=

{
� ∈ ℝ

3 | XiEi ∈ �R

[
B

sub
]}
.

(14a)V
�
[X] = Vi[�]vi[�],

(14b)Vi[�] = Wij

(
Xj + U⋆

j
[�]

)
,

(14c)Wij = Q�
kj
[�]Qki[�].

(15)
�
Wij

�
i,j∈I

=

⎛
⎜⎜⎝

0 − �max 0

�max 0 0

0 0 0

⎞
⎟⎟⎠
=∶ �.

(16)�[�] = �
(
� + �⋆[�]

)
.

(17)v
�
[x] = V�

[
x−1
�
[x]

]
.

(18)v
�
[x] = Wijx̆j[x, 𝜏]vi[𝜏].

3  Note that in our problem, the reference configuration and the con-
figuration when the centrifuge is not spinning are not isomorphic. 
When the centrifuge is not spinning, the central axis and the rotation 
axis are parallel to each other, where as in the reference configura-
tion, the central axis �c and the rotation axis are perpendicular to each 
other.
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4.1.5 � Accelerations

We call L(� ,� ) the physical acceleration vector space 
and denote it as � . It can be shown that the set 

(
ai[�]

)
i∈I

 , 
where ai[�] ∈ � and are defined such that {ai[�]}� = �vi[�] , 
i.e., ai[𝜏] = vi[𝜏]⊗ s∗ , provides an orthonormal basis for 
� . The acceleration of a material particle X executing its 
motion in � lies in � . The acceleration of X at the time 
instance � equals the value of the Fréchet derivative of the 
map � ∋ � ↦ VX(�) ∈ � , where VX(�) = V

�
(X) , at the time 

instance � . Thus, it follows from (14a) that for � ≥ 0

where

Denoting (Ai[�])i∈I  as �[�] , (19b) can be equivalently 
be written as

The acceleration of the material particle located at x ∈ � at 
the time instance � is defined as

From (19a), (19b), and (10b), the equation (21) can be writ-
ten as

4.1.6 � Deformation gradient and Strains

The deformation gradient corresponding to the deformation 
mapping x

�
[⋅] , given in (1), is 

(19a)A�[X] = Ai[�]ai[�],

(19b)Ai[�] = WimWmp

(
Xp + U⋆

p
[�]

)
.

(20)�[�] = �2
(
� + �⋆[�]

)
.

(21)a
�
[x] = A�

[
x−1
�
[x]

]
.

(22)a
�
[x] = WimWmp x̆p[x, 𝜏]ai[𝜏].

(23a){�X

[
x
�

]
}[X] =∶ F

�
[X] = Fij[�]ei[𝜏]⊗ Ej,

where

 The right Cauchy-Green deformation tensor corresponding 
to the deformation gradient Fij[�]ei[𝜏]⊗ Ej is 

where

 We abbreviate 
(
Fij[�]

)
i,j∈I

 and 
(
Cij[�]

)
i,j∈I

 as �[�] and 
�[�] , respectively.

4.2 � Equilibrium

4.2.1 � Cauchy‑momentum equations in the reference body

It follows from the principle of balance of linear momentum 
and our decision to ignore acceleration due to gravity that

where { DivF
�
S}[⋅] is the divergence of the field 

X ↦ F
�
[X]S[X] . Here, S[X] is the 2nd Piola–Kirchhoff stress 

tensor at the material particle X.
In component form (25) can be written as

where Sij[�] , i,  j ∈ I  , are the components of S[X]4.
In (26) replacing Ai[�] with the RHS of (19b), we get

(23b)Fij[�] ∶= 𝛿ij + DjU
⋆

i
[�].

(24a)C[X] = Cij[�]Ei ⊗ Ej,

(24b)Cij[�] = Fmi[�]Fmj[�].

(25){ DivF
�
S}[X] = �oA�[X],

(26)
{
Dj

[
FimSmj

]}
[�] = �0Ai[�],

Fig. 3   An illustration of the cortical spheroid, the fluid media, and the soft substrate surfaces in the deformed (a) and reference (b) configura-
tions

4  Here, we omit providing the mathematical details of how precisely 
Sij[�] and Tij[�] are, respectively, related to S[X] and T

�
[x] . Since 

doing so will require notions from exterior algebra and differential 
geometry that need a significant amount of space to properly explain 
and hence, would distract from the primary focus of this paper.
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where �0 kg∕m3 is the density of the continua.
Noting from (15) that WimWmp = −�2

max

(
�ip − �i3�3p

)
 in 

(27), we get

The domain of (28) is either R
[
B

sprd
]
 , or R

[
B

sub
]
 , which 

were, respectively, defined in (12) and (13). Irrespective, of 
whether � belongs to R

[
B

sprd
]
 or R

[
B

sub
]
 the co-ordinates 

X1 and X3 are always less than L3∕2 , where recall that L3∕2 
is the outer radii of the substrate and is 0.4 × 10−3 in our 
model. The co-ordinate X2 in the domains, however, var-
ies between 176 × 10−3 and 179 × 10−3 . (Fig. 1 can help in 
understanding how we arrived at these ranges for the dif-
ferent co-ordinates.) Therefore, in (28), we ignore X1 , and 
X3 , in comparison with X2 . The intermediate displacement 
components U⋆

i
[�] are unlikely to be larger than the height 

of the substrate, which is, roughly, 3 millimeters . Therefore, 
we also ignore U∗

i
[�] in comparison with X2 in (28). In sum-

mary, we approximate (28) as

4.2.2 � Cauchy‑momentum equations in the current body

It follows from the principle of balance of linear momentum 
that

for all x ∈ �
�
[B] , where { DivT

�
}[⋅] is the divergence of 

the field x ↦ T
�
[x] . Here, T

�
[x] is the Cauchy stress ten-

sor at the current position x at the time instance � . And 
��[x] ∶= �0∕���

[
F
�

[
x−1
�
[x]

]]
 , where ���[⋅] is the determi-

nant operator.
In (30) replacing a

�
[x] with the RHS of (22) and rewriting 

(30) in component form, we get

for all � ∈ �[B],

and Tij[�] , i,  j ∈ I  , are the components of T
�
[x] 4 . Here, 

��[⋅] is defined such that ��[�] = ��
[
xiei[�]

]
 . Noting from 

(15) that WimWmp = −�2
max

(
�ip − �i3�3p

)
 in (31) we get

(27)
{
Dj

[
FimSmj

]}
[�] = 𝜌0WimWmp

(
Xp + U⋆

p
[�]

)
,

(28)
{
Dj

[
FimSmj

]}
[�] = −𝜌0𝜔

2

max

(
Xi + U⋆

i
[�] − 𝛿i3

(
X3 + U⋆

3
[�]

))
.

(29)
{
Dj

[
FimSmj

]}
[�] = −�0�

2

max
�i2�2jXj.

(30){ DivT
�
}[x] = ��[x]a� [x],

(31){DjTij}[�] = ��[�]WimWmpxp,

(32)
�[B] ∶=

{
� ∶=

(
x1, x2, x3

)
∈ ℝ

3 | xiei[�] ∈ �
�
[B]

}
,

(33){DjTij}[�] = −��[�]�
2
max

(
xi − �i3x3

)
.

4.3 � Pressure in the fluid media

We model the fluid media as an incompressible Newtonian 
fluid. It can be shown that in our problem, the rate of defor-
mation tensor is naught (see Sect. Appendix for details). 
Consequently, from (Gurtin 1982, Sect. 22), we can get

for all � ∈ �

[
B

fluid
]
,

and �[�] ∶=
(
Tij[�]

)
i,j∈I

 and pfluid
s

[⋅] is the pressure field.
In (33) substituting ��[�] as �0 , since we have assumed 

the fluid media as being incompressible, and �[�] as 
−pfluid

s
[�]�3×3 from (34), we get that

It can be shown that in our problem, the free surface of the 
fluid at the time instance � (marked as ��fluid

�,5
 in Fig. 3a) is 

always part of a cylinder. More specifically, it can be shown 
that

The parameter l7 in (37) is the distance of the center of ��fluid
�,5

 
from the rotation axis (see Fig. 3a).

The surface ��fluid
�,5

 experiences the atmospheric pressure 
patm Pa , where patm = 1.01325 × 105 . Hence, one of the 
boundary conditions on pfluid

s
[⋅] is

Solving (36) with the boundary condition (38), we get that

4.4 � Material constitutive laws

4.4.1 � Constitutive law for the spheroid

In (29) when � ∈ R

[
B

sprd
]

where Sij[�] is the i- jth component of S[X] , the 2nd 
Piola–Kirchhoff stress at the material particle X,

(34)�[�] = −pfluid
s

[�]�3×3,

(35)�

[
B

fluid
]
∶=

{
� ∈ ℝ

3 | xiei[�] ∈ �
�

[
B

fluid
]}
,

(36)

{
Di

[
pfluid
s

]}
[�] = �0�

2
max

(
xi − �i3x3

)
, ∀� ∈ �

[
B

fluid
]
.

(37)��fluid

�,5
=
{
� ∈ �

[
B

fluid
] | x2

1
+ x2

2
= l2

7

}
.

(38)pfluid
s

[�] = patm, � ∈ ��fluid

�,5
.

(39)pfluid
s

[�] =
1

2
�0�

2
max

(
x2
1
+ x2

2
− l2

7

)
+ patm.

(40a)Sij[�] = S̆
sprd

ij
[�[�]] − psprd

m
[�]J[�[�]](�[�])−1,

(40b)J[�] ∶=
√
���[�],
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S̆
sprd

ij
[⋅] is the i- jth component of �̆

sprd
[⋅],

 and � Pa is the shear modulus. Here, ��[⋅] is the trace opera-
tor. In (40a), the quantity psprdm [�] acts as a Lagrange unde-
termined multiplier, which can be interpreted as the hydro-
static pressure at the material particle � . Since psprdm [⋅] is 
an unknown a priori, we solve (29) in conjunction with the 
incompressibility constraint

Equations (40) are the incompressible neo-Hookean material 
model from (Bonet and Wood 1997, equation 5.50).

4.4.2 � Constitutive law for the 3D soft substrate

In (29) when � ∈ R

[
B

sub
]

where S̆sub
ij

[⋅] is the i- jth component of �̆
sub

[⋅],

 Here, � Pa and � Pa are the Lamé parameters. Equa-
tions (42) are the compressible neo-Hookean material model 
from (Bower 2009, Sect. 3.5.5).

4.5 � Boundary conditions

The solution of (29) also requires the use of the following 
boundary conditions.

Let ��sprd and ��sub be the surfaces of the spheroid 
R

[
B

sprd
]
 and the substrate R

[
B

sub
]
 , respectively. Let ��sprd

cont 
and ��sub

cont
 be the surfaces of R

[
B

sprd
]
 and R

[
B

sub
]
 , respec-

tively, that come into contact with each other (see Fig. 3b). 
They are both unknown a priori. The boundary conditions 
on ��sprd

cont and ��sub
cont

 are that there are no shear tractions on 
them, and the displacements of the spheroid and substrate 
on them, respectively, are such that

see Fig. 3a for an illustration.
Let ��sub

1
 and ��sub

2
 be the surfaces of R

[
B

sub
]
 shown 

in Fig.  3b. The boundary conditions on ��sprd ⧵ ��
sprd

cont 
and ��sub ⧵ ��sub

cont
⧵
⋃2

i=1
��sub

i
 (see Fig.  3b), due to the 

(40c)�̆
sprd

[�] = 𝜇���[�]−
1

3

(
�3×3 −

1

3
��[�]�−1

)
,

(41)J[�[�]] = 1.

(42a)Sij[�] = S̆sub
ij

[�[�]],

(42b)
�̆
sub

[�] = 𝜇���[�]−1∕3
(
�3×3 −

1

3
��[�]�−1

)

+
(
𝜆 +

2

3
𝜇

)
J[�](J[�] − 1)�−1

.

(43)�
sprd

[
��

sprd

cont

]
= �

sub[
��sub

cont

]
,

spheroid’s and substrate’s, respective, interactions with the 
fluid media are

where �[�] ∶=
(
Sij[�]

)
i,j∈I

 , �3×1 ≡ (0, 0, 0) , and �[�] is the 
unit outward surface normal vector at the location � (see 
Fig.  3b for example). The field pfluid

m
[�] in (44a) is 

pfluid
s

[
�[�]

]
 , where pfluid

s
[⋅] is given in (39). More 

concretely,

We cannot independently calculate l7 in our model. There-
fore, in (44b), we approximate l7 as L7 , the distance of the 
fluid’s free surface to the rotation axis under the assump-
tion that none of the continua (the spheroid, the fluid, and 
the substrate) deform (see Fig. 3b). Also, since U⋆

1
 , X1 , and 

U⋆
2

 are much smaller than X2 , in (44b) we approximate (
X1 + U⋆

1
[�]

)
 as naught, and 

(
X2 + U⋆

2
[�]

)
 as X2 . In sum-

mary, we compute

An additional boundary condition on the substrate is that 

 The boundary condition (45a) is a consequence of setting 
the radial component of the displacement field on ��sub

1
 (see 

Fig. 3b) to be naught, which we do to model the constraint 
from the enclosure (see Fig .1a). We choose the boundary 
condition (45b) to model the fact that the substrate sits in the 
enclosure (see Fig .1a), which constrains its deformation in 
the E2 direction on ��sub

2
.

5 � Coupled boundary value problems

As per our model, the motion of the spheroid and the 3D 
soft substrate is given by the family of deformation maps 
x
�
[⋅] . This family of deformation maps can be constructed 

using (10) once the displacement field components U⋆
i
[⋅] are 

known. The restrictions of U⋆
i
[⋅] to R

[
B

sprd
]
 (resp. R

[
B

sub
]
 

) are obtained by solving the partial differential equation 
(PDE) (29) over the region R

[
B

sprd
]
 (resp. R

[
B

sub
]
 ). We 

refer to the PDE (29) posed over the region R
[
B

sprd
]
 as 

the spheroid boundary value problem (BVP), and the PDE 
(29) posed over the region R

[
B

sub
]
 as the substrate BVP. 

(44a)
(
�[�]�[�] − pfluid

m
[�]�3×3

)
�[�] = �3×1,

(44b)
pfluid
m

[�] =
1

2
𝜌0𝜔

2
max

((
X1 + U⋆

1
[�]

)2
+
(
X2 + U⋆

2
[�]

)2
− l2

7

)
+ patm.

(44c)pfluid
m

[�] ≈
1

2
�0�

2
max

(
X2
2
− L2

7

)
+ patm.

(45a)U⋆

1
[�]X1 = −U⋆

3
[�]X3, ∀� ∈ 𝜕�sub

1
,

(45b)U⋆

2
[�] = 0, ∀� ∈ 𝜕�sub

2
.
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Recall that the functions 
{
FimSmj

}
[⋅] appearing in (29) are 

defined as

In the spheroid (resp. substrate) BVP the Fim[⋅] in (46) are 
to be interpreted as the restrictions of the Fim[⋅] defined in 
(23b) to R

[
B

sprd
]
 (resp. R

[
B

sub
]
 ). For the spheroid (resp. 

substrate) BVP the Smj[⋅] in (46) is given by the function (40) 
(resp. (42)). In the spheroid BVP, due to the presence of the 
Lagrange multiplier (pressure field) psprdm [⋅] in (40), the PDE 
(29) needs to be solved jointly with the incompressibility 
constraint equation (41). The boundary conditions in the 
spheroid and the substrate BVPs are detailed in Sect. 4.5.

Note that the contact boundary condition (43) is part of 
both the spheroid and the substrate BVPs. It couples the 
two BVPs, since it involves displacement components from 
both BVPs. Therefore, the two BVPs cannot be solved inde-
pendently. We solve the spheroid and the substrate BVPs 
simultaneously using finite element techniques.

(46)� ↦ Fim[�]Smj[�].

6 � Representative numerical solutions 
of the theory

To get a preliminary understanding into the type of strains 
and stresses that the cortical spheroids experience in the 
constant angular velocity centrifuge-TBI-model, and for 
demonstrating our theory, we compute various strain and 
stress measures in the cortical spheroids using our theory 
for some representative values of angular velocity, geometry 
parameters, and material properties.

Typical lab grade centrifuges are capable of reaching top 
speeds in the range of 1000–5000 revolution per minute 
(RPM). Therefore, for the representative calculations, we 
consider angular velocities of 2000 RPM, i.e., 209 radians 
per second ( rad∕s ); and 4000 RPM, i.e., 419 rad∕s.

For the representative calculations, we take the 3D soft 
substrate to be composed of agarose hydrogel and the corti-
cal spheroids and fluid media to be the ones described in 
(Dingle et al. 2015). Consequently, we take the densities of 
the 3D soft substrate, cortical spheroid, and fluid media to 

Fig. 4   Strains in the spheroid predicted by our theory for the repre-
sentative values of angular velocity, geometry parameters, and mate-
rial properties described in Sect.  6 at an arbitrary time instance � . 
a Contour plots of the minimum principal value of the logarithmic 

strain tensor. The minimum principal value is the smallest eigenvalue. 
The logarithmic strain tensor is defined in Sect. 6.1. b Each line seg-
ment shows a section of the fiber associated with the eigenvectors that 
correspond to the minimum eigenvalue at the location of its midpoint



1191A mechanics theory for the exploration of a high‑throughput, sterile 3D in vitro traumatic brain…

be 1640, 1240, and 980 kg∕m3 , respectively. Based on the 
measurements in (Mori et al. 2013; Normand et al. 2000), 
we take the agarose hydrogel’s Lamé parameters to be 
� = 4.28571 × 105 Pa and � = 1.07143 × 105 Pa . Based on 
the measurements in (Boulet et al. 2011), we take the shear 
modulus of the cortical spheroids to be � = 1.33 × 103 Pa.

We take the values for the geometry parameters to be the 
ones given in Table 1.

Some strain measures from the representative calculations 
are shown in Figs. 4, 5 and 6 and stress measures in Figs. 7, 
8, 9 and 10. The definitions of some of those strain (resp. 
stress) measures are discussed in Sect. 6.1 (resp. Sect. 6.2).

6.1 � Strains

For the strain measure, we use the logarithmic strain tensor 
H

�
[x] . The logarithmic strain tensor is defined as 

where

(47a)H
�
[x] = lnV

�
[x],

The co-rotational Cartesian components of H
�
[x] are 

defined as

where x̆[�, 𝜏] is the vector in � such that � is its set of co-
rotational Cartesian co-ordinates at the time instance � . We 
denote the matrix 

(
Hij[�]

)
i,j∈I

 as �{ei[�]}[�].
Let

We call �{ci[x,�]}[�] , the co-rotational cylindrical compo-
nents form of H

�
[x] . We denote the (1, 1), (2, 2), (3, 3), and 

(1, 3) components of �{ci[x,�]}[�] , respectively, as Hrr[�] , 
H��[�] , Hzz[�] , and Hrz[�].

(47b)V
�
[x]V

�
[x] ∶= F

�

[
x−1
�
[x]

](
F
�

[
x−1
�
[x]

])�
.

(48)Hij[�] = ei[𝜏] ⋅
{
H

�
[x̆[�, 𝜏]]ej[𝜏]

}
,

(49)�{ci[x,�]}[�] ∶= �[�]
{
�{ei[�]}[�]

}
�[�]�.

Fig. 5   Strains in the spheroid predicted by our theory for the repre-
sentative values of angular velocity, geometry parameters, and mate-
rial properties described in Sect.  6 at an arbitrary time instance � . 
a  Contour plots of the maximum principal value of the logarithmic 

strain tensor. The maximum principal value is the largest eigenvalue. 
The logarithmic strain tensor is defined in Sect. 6.1. b Each line seg-
ment shows a section of the fiber associated with the eigenvectors that 
correspond to the maximum eigenvalue at the location of its midpoint
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6.2 � Stresses

For the stress measure, we use the Cauchy stress tensor. In 
Sect. 6.1 we defined the co-rotational Cartesian components 
of the logarithmic strain tensor, �{ei[�]}[�] , using the loga-
rithmic strain tensor, H

�
[x] , and the co-rotational Cartesian 

basis 
(
ei[�]

)
i∈I

 . In the same way, we can define the co-
rotational Cartesian components of the Cauchy stress ten-
sor, �{ei[�]}[�] , using the Cauchy stress tensor, T

�
[x] , and (

ei[�]
)
i∈I

 . In Sect. 6.1, we further defined the co-rotational 
cylindrical components of the logarithmic strain tensor, 
�{ci[x,�]}[�] , using �{ei[�]}[�] and the function �[⋅] via (49). 
In the same way, we can define the the co-rotational cylin-
drical components of the Cauchy stress tensor, �{ci[x,�]}[�] , 
using �{ei[�]}[�] and �[⋅].

We denote the (1, 1), (2, 2), (3, 3), and (1, 3) compo-
nents of �{ci[x,�]}[�] , respectively, as Trr[�] , T��[�] , Tzz[�] , 
and Trz[�].

The pressure at the location x at the time instance � is 
defined as negative one third the trace of T

�
[x].

7 � Concluding remarks

1.	 In the proposed centrifuge-TBI-model design (Fig. 1), 
the cortical spheroids primarily undergo a type of 
squeezing deformation (Fig. 1c). However, with more 
sophisticated designs for the 3D soft substrate, it is pos-
sible to apply other types of deformations to the cortical 
spheroids.

2.	 We have stated earlier (see beginning of Sect. 2) that we 
restrict ourselves to the in vitro experiment in which the 
centrifuge’s angular velocity is constant as a function 
of time. However, based on some preliminary experi-
ments and noting that most micro-tissues are viscoelas-
tic in nature, we believe that the final results from our 
theory will continue to apply with a minor modification 
even when the angular velocity is not a constant. Say the 
angular velocity changes with time as dictated by the 
function 𝜏 ↦ 𝜔̆max[𝜏] . Then, we believe that our results 
modified by replacing �max in them with 𝜔̆max[𝜏] will 
apply at the time instance � . A caveat for our modified 
results to apply is that the variation of angular velocity 
with time be of a moderate character. That is, at the 

Fig. 6   Strains in the spheroid predicted by our theory for the repre-
sentative values of angular velocity, geometry parameters, and mate-
rial properties described in Sect. 6 at an arbitrary time instance � . The 
logarithmic strain tensor is defined in Sect.  6.1. The columns show 

contour plots of Hrr , H�� , Hzz , and Hrz , respectively, which are the 
co-rotational cylindrical components of the logarithmic strain tensor. 
They are defined in Sect. 6.1. The top row corresponds to the angular 
velocity 209 rad∕s , and the bottom row to 419 rad∕s
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least, the derivative of 𝜔̆[⋅] be well defined and bounded. 
Since, clearly, our modified results will not apply when 
the angular velocity is changed abruptly, i.e., when 𝜔̆[⋅] 
is a step function. (Such a step change in angular veloc-
ity will agitate the fluid media in addition to creating 
other complications.) Full 3D solution of the Navier–
Stokes equations, in the context of the centrifuge-TBI-
model, is needed in order to precisely determine the 
regime of applicability of our modified results.

3.	 The developed theory is fairly general. For deriving 
the numerical results shown in Figs. 4, 5, 6, 7, 8, 9 
and 10, we modeled the mechanical behavior of the 
spheroids using the incompressible neo-Hookean con-
stitutive law (40). This model does not incorporate any 
sophisticated material effects such as visco-elasticity, 
poro-elasticity, plasticity. We chose it not because we 
believe that the spheroid’s deformation does not con-

tain any such sophisticated effects, but rather because 
currently those effects are not sufficiently characterized 
in the spheroids, because of which (1) it is harder to 
justify the computational expense involved in incorpo-
rating those effects, and (2) the material constants in 
the material models incorporating those sophisticated 
effects will have to be selected in an almost arbitrary 
fashion. The elastic constants in the incompressible 
neo-Hookean constitutive law were chosen such that 
the spheroid’s elastic behavior was consistent with the 
brain white matter’s elasticity, which was characterized 
using magnetic resonance elastography (MRE) (Bou-
let et al. 2011), and the spheroids’ contact deforma-
tions, which were characterized using an Atomic Force 
Microscope (Dingle et al. 2015). Once the more sophis-
ticated material effects in the spheroid’s mechanical 
deformation become well characterized, new numeri-

Fig. 7   Stresses in the spheroid predicted by our theory for the repre-
sentative values of angular velocity, geometry parameters, and mate-
rial properties described in Sect.  6 at an arbitrary time instance � . 
a Contour plots of the minimum principal value of the Cauchy stress 

tensor. The minimum principal value is the smallest eigenvalue. 
b Each line segment shows a section of the fiber associated with the 
eigenvectors that correspond to the minimum eigenvalue at the loca-
tion of its midpoint
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cal results can be derived in a straightforward manner 
from the developed theory by simply changing the sphe-
roid’s constitutive equation (40) to be something differ-
ent that incorporates those effects. For example, it can 
be changed to the one developed in (Yuan et al. 2024), 
(Yuan et al. 2023), and (Yuan et al. 2022), which takes 
the brain’s poro-elastic behavior into account.

4.	 There are several studies that focus on the deformation 
of a spherical elastic solid. A number of axi-symmetric 
solutions can be found in standard elasticity monographs 
and textbooks, such as (Love 2013) and (Barber 2002). 
For axi-symmetric solutions involving contact between 
two nominally spherical solids see, e.g., (Kesari and 
Lew 2011;Deng and Kesari 2019a, 2019b). For results 
involving both non-axi-symmetric deformation and con-
tact see (Gutierrez et al. 2021). In the context of the 
vast amount of literature available on the deformation 
of a spherical elastic solid, a distinguishing aspect of the 
developed theory is that it contains the following four 
physical effects simultaneously: (a) contact between two 
deformable bodies, (b) finite deformation of both solids, 
(c) individual contact between the solids and a surround-

ing fluid, and (d) body forces on both solids and the fluid 
due to the rotation of their assembly.

5.	 From a mechanics and engineering perspective, we do 
not see anything that curtails one from using the idea of 
applying mechanical loads via centrifugation in other 
mechanobiology studies. Especially, in vitro traumatic 
injury studies can be envisioned with other micro-tis-
sues, such as those composed of lung or liver cells.

6.	 As we mentioned in Sect. 1, the mechanical loading, 
i.e., the force on the cortical spheroid, can be easily and 
robustly tuned via the centrifuge’s angular velocity and 
the volume of the fluid media. As we highlighted in 
Fig. 1c, the forces acting on the cortical spheroid consist 
of the tractions from the fluid media, tractions from the 
3D soft substrate, and the body forces due to the rota-
tions. The fact that the tractions on the cortical spheroid 
from the fluid media depend on the centrifuge’s angular 
velocity and the volume of the fluid media can be seen 
from (44c).

Fig. 8   Stresses in the spheroid predicted by our theory for the rep-
resentative values of angular velocity, geometry parameters, and 
material properties described in Sect. 6 at an arbitrary time instance 
� . a  Contour plots of the maximum principal value of the Cauchy 

stress tensor. The maximum principal value is the largest eigenvalue. 
b Each line segment shows a section of the fiber associated with the 
eigenvectors that correspond to the maximum eigenvalue at the loca-
tion of its midpoint
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Appendix: Vanishing of the rate 
of deformation tensor

The rate of deformation tensor is defined as

where L
�
[x] is the spatial velocity gradient, defined by

From (18), (51) can be written as

From the definition of Wij (15), it follows that Wij = −Wji . 
Then, from (52) and (50), we get that
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(50)D
�
[x] =

1

2

(
L
�
[x] + L

�
[x]�

)
,

(51)L
�
[x] =

{
�xv�

}
[x].

(52)L
�
[x] = Wij[𝜏]vi[𝜏]⊗ ej[𝜏].

(53)D
�
[x] = 0.

Fig. 9   Stresses in the spheroid predicted by our theory for the repre-
sentative values of angular velocity, geometry parameters, and mate-
rial properties described in Sect.  6 at an arbitrary time instance � . 
The columns show contour plots of Trr , T�� , Tzz , and Trz , respectively, 

which are the co-rotational cylindrical components of the Cauchy 
stress tensor (see Sect.  6.2 for details). The top row corresponds to 
the angular velocity 209 rad∕s and the bottom row to 419 rad∕s

Fig. 10   Pressures in the spheroid predicted by our theory for the 
representative values of angular velocity, geometry parameters, and 
material properties described in Sect. 6 at an arbitrary time instance 
� . The top plot corresponds to the angular velocity 209 rad∕s , and the 
bottom plot to 419 rad∕s
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