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Abstract

In this paper we study the problem of finding the best approximation of a real square matrix by a matrix
that can be represented as the square of a real, skew-symmetric matrix. This problem is important in the
design of robust numerical algorithms aimed at estimating rigid body kinematics from multiple accelerometer
measurements. We give a constructive proof for the existence of a best approximant in the Frobenius norm.
We demonstrate the construction with some small examples, and we showcase the practical importance of
this work to the problem of determining the angular velocity of a rotating rigid body from its acceleration
measurements.
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1. Introduction

Approximating a given matrix by one with special properties appears in a variety of contexts in applied
mathematics and engineering. For example, the problems of approximating real, square matrices in the set
of symmetric, positive, semidefinite matrices [1, 2, 3] and in the orthonormal group [4] see applications in
computational methods for machine learning and control theory.

Here, we concern ourselves with the following matrix approximation problem. Given a real, square matrix
A, can we find a matrix U “ K2—where K is a real, skew-symmetric matrix—that best approximates A
among all such matrices? More precisely, if Mn is the Euclidean space of real, nˆn matrices equipped with
the Frobenius inner product, and Kn Ă Mn is the subspace of real, skew-symmetric, n ˆ n matrices, then
we solve

argmin
UPKsq

n

}U ´ A}F , (P)

where
Ksq

n “
␣

K2 : K P Kn

(

(1)

and } ¨ }F denotes the norm induced by the Frobenius inner product. As the above minimization depends on
the matrix A P Mn, we will refer to the problem as Problem P(A).

The main contribution of this work is an explicit construction for a minimizer of Problem P(A). We
remark that this may not be the sole minimizer of Problem P(A). We provide the construction in two
formats: first as Definition 2, and later as Algorithm 9. Because our minimizer is provided explicitly, we do
not need to use optimization techniques such as Newton’s Method to solve Problem P(A) which may only
find local minima.

We are not the first to consider this optimization problem. In the case where n “ 3, Problem P(A)
has been attempted in the literature [5]. However, the construction from this previous work is obtained by
investigating the stationary points of Problem P(A)1. The construction is not proved to produce a global

˚Corresponding author
Email address: haneesh_kesari@brown.edu (Haneesh Kesari)

1To be precise, there exists a map from R3 to K3 (and hence Ksq
3 ). In Ref. [5], Problem P(A) is reformulated as a minimization

over R3. It is for this problem that the stationary points are computed.
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minimizer; moreover, as presented in [5, Section III.B], the construction does not work for certain input
matrices A.2

To conclude this section, we elaborate on the immediate practical application of our study below. After-
wards, this work is structured as follows. A formal statement of the mathematical problem is given in §2,
wherein our solution to Problem P(A) is posed as Theorem 3. In preparation for the proof of Theorem 3,
we recall a few identities in §3.1. The proof of Theorem 3 then follows in §3.2. We return to the practi-
cal application of our study in §4, illustrating Algorithm 9 with some examples in §4.2 and showcasing an
experimental demonstration in §5. Concluding remarks are provided in §6.

1.1. Motivating application

Angular velocity is a vector-valued measure of a rigid body’s rate of rotation. Its experimental measure-
ment is critical in a number of fields, such as aeronautics [6], astronautics [7, 8, 9, 10], robotics [11, 12],
and, most recently, biomechanics [13, 14, 15]. The head’s angular velocity during a traumatic event, such as
a blunt impact or a fall, is considered as a key parameter for assessing that event’s risk of leading to mild
traumatic brain injury (mTBI) [14, 15].

The
?
AO-algorithm [16] is a method that estimates rigid body kinematics (including angular velocity

and angular acceleration) using only measurements from accelerometers, rather than from gyroscopes. This
algorithm falls into the class of what are termed gyroscope-free algorithms [17, 18, 5, 19]. Accelerometers
typically have larger bandwidths than gyroscopes when they are of similar size and weight (Table. A.1), and
so gyroscope-free algorithms allow for measurement of angular velocity at much higher frequencies since they
rely only on accelerometer data.

We briefly outline the template of the
?
AO-algorithm below. The algorithm’s inputs are measurements

of the acceleration vectors at four of the rigid body’s points at a discrete sequence of time instances. (See last
paragraph of §5.2 for elaboration.) The acceleration vectors of the rigid body’s points are usually measured
in different bases (accelerometer bases3). The accelerometer bases are attached to the rigid body and move
with it (cf. Figs. 1(b.i)–(b.ii)). A plain version of the

?
AO-algorithm consists of the following two steps. (i)

At each time instance τi, i “ 1, 2, . . ., the acceleration data are synthesized to produce the symmetric matrix
B rτis (see Ref. [16] for details). The computation for B rτis also requires information about the relative
distances between the rigid body’s points, and the relative orientations of the accelerometer bases. (ii) The
angular velocity matrix of the rigid body at the time instance τi, W rτis P Kn, is then computed from the
roots4 of the function r rB rτiss r¨s, where r rBs r¨s : Kn Ñ Sn,

r rBs rWs “ WW ´ B, (2)

and B P Sn, the subspace of Mn consisting of all real, symmetric, n ˆ n matrices.
In theory, applying the plain

?
AO-algorithm to compute angular velocities is straightforward; in practice,

however, this proves challenging.
The set Ksq

n defined in (1) is a proper subset of Sn, though not possessing the same vector space structure.
It can be shown that rrBs r¨s must have a root when B P Ksq

n and have no roots when B P SnzKsq
n . For

each τi, the matrix Brτis always belongs to Sn. When Brτis comes from perfect rigid body motion, then
Brτis P Ksq

n . Therefore, in theory, W rτis can always be computed from the roots of r rB rτiss r¨s (cf. [16,
§4.2]), i.e., by applying step (ii) of the plain

?
AO-algorithm.

Due to noise in real acceleration data and lack of precision in position and orientation measurements,
applying step (i) of the plain

?
AO-algorithm only yields an approximation for B rτis. Let us call this

approximation rB rτis. Then what we can hope to get from rB rτis is only an approximation for the actual
angular velocity W rτis. This is not an issue in itself, since most experimental procedures also only yield

2These cases are accounted for in the computer algorithm presented in [5, Appendix B], though it is unclear how these
changes relate to the minimizers of the original optimization problem.

3e.g., the orthonormal vector sets
`

ℓei rτ s
˘

iPp1,2,3q
, ℓ “ 1, 2, 3, 4, shown in Fig. 1(b.ii)

4When multiple roots exist, the physically meaningful root is taken to be the one that is closest to the physically meaningful
root from the previous time instance. Thus, in effect, the rigid body’s initial angular velocity dictates the choice of the physically
meaningful root at each time instance.
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approximations for the physical quantity of interest. The issue lies in that rB rτis rarely, if ever, belongs to

Ksq
n , and so r

”

rB rτis
ı

r¨s has no roots. Consequently, step (ii) of the plain
?
AO-algorithm does not work.

An alternate strategy for computing ĂW rτis from rB rτis is based on finding best approximants as follows.

By construction, rB rτis always belongs to Sn. Find a best approximant for rB rτis in Ksq
n . Let this matrix

be pB rτis. Compute the roots of r
”

pB rτis
ı

r¨s. This is now straightforward, since pB rτis P Ksq
n . Finally,

compute ĂW rτis from the roots of r
”

pB rτis
ı

r¨s, in the same manner as W rτis is computed from the roots

of r rB rτiss r¨s. This alternate strategy is the
?
AO-algorithm. Note that it is the same as the plain

?
AO-

algorithm except for the additional approximation step, i.e., approximating rB rτis with pB rτis. Thus, success
of the

?
AO-algorithm is dependent on this approximation step, namely approximating an arbitrary, real,

symmetric matrix by one belonging to Ksq
n .

In the sequel, we outline the problem we study, which is a more general version of the problem needed
for the

?
AO-algorithm. In this more general problem, we consider determining a best approximant in Ksq

n

of an arbitrary real, n ˆ n matrix A rather than a real, symmetric n ˆ n matrix B. Our analysis is general
with respect to the dimension n, whereas for the

?
AO-algorithm it suffices to consider only the cases n “ 2

and n “ 3.

2. Preliminaries and main result

2.1. Definitions and notation

To make the statement of P more precise we first introduce some definitions and notation.

Matrix components:. Say the matrix A “

´

pAijqjPI

¯

iPI
, where Aij P R, and I “ p1, . . . , nq. We sometimes

denote the p-qth component of A, i.e. Apq, as A¨p¨q.

Diagonal matrices:. An important subset of Sn is the set of diagonal matrices. We will compactly write
these matrices using the operator diagn r¨, ¨, . . . , ¨s : Rn Ñ Sn,

diagn ra1, a2, . . . , ans “

¨

˚

˚

˚

˝

a1 0 ¨ ¨ ¨ 0
0 a2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ an

˛

‹

‹

‹

‚

. (3)

Set of orthogonal matrices On:. A matrix Q P Mn is orthogonal if and only if

QTQ “ QQT
“ In, (4)

where In “ diagn r1, . . . , 1s is the identity matrix. In the previous equation, QT denotes the transpose of Q,

i.e. if Q “

´

pQijqjPI

¯

iPI
then QT

“

´

pQjiqjPI

¯

iPI
. We denote the set of all orthogonal matrices in Mn as

On.
Let qk “ ppQikqqiPI P Rn be the kth column of Q. Then it follows that

xqi,qjy “ δij , (5)

for any i, j P I, where x¨, ¨y is the standard inner product on Rn and δij is the Kronecker delta symbol, which
equals unity when i “ j and zero otherwise.

Frobenius inner product and norm:. In this work Mn is a Euclidean vector space. Its inner product is
x¨, ¨yF : Mn ˆ Mn Ñ R,

xX,YyF “

n
ÿ

i“1

n
ÿ

j“1

XijYij , (6)
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where Xij , and Yij are, respectively, the i-jth components of X, and Y. The inner product x¨, ¨yF is called
the Frobenius inner product. The Frobenius inner product induces a norm on Mn, } ¨ }F : Mn Ñ R, defined
as

}A}F “
a

xA,AyF ,

which we call the Frobenius norm.

2.2. Best approximant of a matrix by the square of a skew-symmetric matrix

Proposition 1. Problem P(A) admits a solution.

A proof for Proposition 1 can be constructed using Weierstrass’ Extreme Value Theorem [20, Proposition

A.8] and the facts that: (i) there exists an isometric isomorphism between Mn and Rn2

, (ii) the set Ksq
n is

closed in Mn, and (iii) the function which maps U to }U ´ A}F is continuous and coercive on Ksq
n .

However, Problem P(A) is more effectively addressed by Theorem 3, which we state later in this section.
Not only does Theorem 3 imply Proposition 1 as a corollary, but it also provides a recipe for constructing a
solution to Problem P(A) . Therefore, we focus the remainder of this section on Theorem 3 and its proof.

To make the statement of Theorem 3 more compact, we define what we term the skew-square-spectral
approximant of a matrix A as follows.

Definition 2 (Skew-square-spectral approximant). Let A P Mn, and B “

´

A ` AT
¯

{2. It follows from

the Real Spectral Theorem [21, 7.29] that B can be decomposed as

B “ NΛNT, (7a)

where N P On, and
Λ :“ diagn rλ1, λ2, . . . , λns , (7b)

where λi P R, i “ 1, . . . , n, are a non-increasing sequence of real numbers. The skew-square-spectral approx-
imant of A is defined as

U‹
rAs :“ ND‹NT, (8a)

where D‹ is a diagonal matrix that depends on Λ. Its form is slightly different depending on whether n is
even or odd. When n is even let k “ n{2. In this case

D‹ :“ diagn rµ‹
1, µ

‹
1, . . . , µ

‹
k, µ

‹
ks , (8b)

where for i P p1, . . . , kq

µ‹
i “

"

pλ2i´1 ` λ2iq {2, λ2i´1 ` λ2i ď 0,
0, otherwise.

(8c)

When n is odd let k “ pn ´ 1q{2. In this case

D‹ :“ diagn r0, µ‹
1, µ

‹
1, . . . , µ

‹
k, µ

‹
ks , (9a)

where for i P p1, . . . , kq

µ‹
i “

"

pλ2i ` λ2i`1q {2, λ2i ` λ2i`1 ď 0,
0, otherwise.

(9b)

Theorem 3. Given A P Mn, a solution to Problem PpAq is U‹
rAs.

Recall that problem P has been stated in the Introduction. In Theorem 3, U‹
rAs is the skew-square-

spectral approximant of A, which is defined in Definition 2. Definition 2 is also a recipe for constructing
U‹

rAs.
In the sequel, we prove Theorem 3.
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3. Proofs

3.1. Supporting results

Before proving Theorem 3 we state four lemmas which we will use in the proof. Lemma 4 and Lemma 5
are standard results, while parts of the proof of Lemma 7 can be found in the literature. For the sake of
completeness, we provide complete proofs for these lemmas in Appendix C. The final lemma, Lemma 8, is
easily proven from existing results in the literature; however, we were unaware of these results during the
preparation of this manuscript. A short proof, using specialized results from the literature, as well as our
own longer proof, are also provided in Appendix C.

Lemma 4. For S P Sn and K P Kn,

}S ` K}2F “ }S}2F ` }K}2F .

Lemma 5. Let A P Mn and Q P On. Then

}AQ}F “ }A}F “ }QA}F .

For presenting Lemma 7, we first define the set Vn.

Definition 6. For n P N
Vn :“

!

NDNT : N P On and D P Dn

)

. (10)

The set Dn depends on whether n is even or odd. When n is even, Dn is the set of all matrices of the
form diagn rµ1, µ1, . . . , µk, µks, where µi ď 0, i “ 1, . . . , k, are a non-increasing sequence of real numbers and
k “ n{2. When n is odd Dn is the set of all matrices of the form diagn r0, µ1, µ1, . . . , µk, µks, with µi ď 0,
i “ 1, . . . , k, as before and k “ pn ´ 1q{2.

Lemma 7. The sets Vn and Ksq
n are the same.

Lemma 8. Let Λ “ diagn rλ1, λ2, . . . , λns where λ1 ě λ2 ě . . . ě λn, and let D “ diagn rµ1, µ2, . . . , µns

where µ1 ě µ2 ě . . . ě µn. Then,

min
QPOn

}Λ ´ QDQT
}F “ }Λ ´ D}F . (11)

3.2. Proof of Theorem 3

Theorem 3. Given A P Mn, a solution to Problem PpAq is U‹
rAs.

Proof. We consider the case where n is even, i.e., n “ 2k, for some k P N. The case where n is odd can be
handled similarly. Let C “ pA ´ AT

q{2 and B “ pA ` AT
q{2. For any U P Ksq

n , by Lemma 4

}A ´ U}2F “ }B ´ U}2F ` }C}2F . (12)

Owing to (12), a solution to PpAq is also a solution to PpBq and vice versa. Furthermore, from U‹
rAs’s

definition we note that U‹
rAs “ U‹

rBs. Thus, it suffices to show that a solution to PpBq is U‹
rBs, i.e.,

∥B ´ U‹
rBs∥2F ď ∥B ´ U∥2F , (13)

for any U P Ksq
n .

1. Since U P Ksq
n it follows from Lemma 7 that U can be decomposed as

U “ MDMT, (14)

where D “ diagn rµ1, µ1, . . . , µk, µks with 0 ě µ1 ě . . . ě µk, and M P On.
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2. Applying U’s decomposition given in (14) and B’s decomposition given in (7) we get that

∥B ´ U∥2F “

∥∥∥NΛNT
´ MDMT

∥∥∥2
F
,

“

∥∥∥N´

Λ ´ NTMDMTN
¯

NT
∥∥∥2
F
,

“

∥∥∥Λ ´ NTMDMTN
∥∥∥2
F
, (15a)

where the third equality follows from two applications of Lemma 5 to remove the orthogonal matrices
N and NT. Defining Q “ NTM P On,

∥B ´ U∥2F “

∥∥∥Λ ´ QDQT
∥∥∥2
F
, (15b)

ě ∥Λ ´ D∥2F , (15c)

where the inequality follows from Lemma 8.

3. Next, using B’s decomposition given in (7) and U‹
rBs’s decomposition (which is the same as U‹

rAs’s
decomposition) given in (8) we have

∥B ´ U‹
rBs∥2F “ ∥Λ ´ D‹∥2F , (16)

where we have used similar manipulations to the previous step.

4. Subtracting (16) from (15c) we get

}B ´ U}2F ´ }B ´ U‹
rBs }2F ě }Λ ´ D}2F ´ }Λ ´ D‹

}2F ,

“ 2
k
ÿ

i“1

pµi ´ µ‹
i q pµi ` µ‹

i

´ λ2i´1 ´ λ2iq, (17)

where the equality follows direct calculation of the Frobenius norms using the explicit formulas for Λ,
D, and D‹ in terms of λi, µi, and µ‹

i , respectively.

5. We claim each term in the sum in (17) is non-negative, and so (13) holds. Let 1 ď i ď k.
p5.aq Suppose that λ2i´1 ` λ2i is non-positive. Then, by definition µ‹

i “ pλ2i´1 ` λ2iq {2, and so the
term in the sum simplifies to

ˆ

µi ´
λ2i´1 ` λ2i

2

˙2

,

which is clearly non-negative.
p5.bq Otherwise, suppose that λ2i´1 ` λ2i is positive. Then µ‹

i “ 0 and the term in the sum is

µi pµi ´ λ2i´1 ´ λ2iq .

Since µi ď 0 (see Step 1) and ´λ2i´1 ´ λ2i ă 0, this is the product of two negative numbers,
which is positive.

4. Algorithm and examples

4.1. Algorithm

Following Definition 2, we summarize the procedure to compute the best approximant of A in Ksq
n , i.e.,

U‹
rAs in Algorithm 9.

4.2. Basic examples

We illustrate the application of Algorithm 9 for some simple matrices, which highlight the salient steps
and emphasize the potential existence of multiple solutions.
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Algorithm 9: Computing a best approximant to a matrix A P Mn in the set Ksq
n

Input: A matrix A P Mn, n ě 1;
Output: A best approximant to A in Ksq

n , U‹
rAs ;

Compute the symmetric part of A, B “

´

A ` AT
¯

{2;

Compute a real spectral decomposition of

B “ Ndiagn rλ1, λ2, . . . , λnsNT

in which N P On and λi P R, i “ 1, . . . , n, are a non-increasing sequence of real numbers;
d‹

Ð H ; /* an empty list */

if n is even then
k “ n{2;
for i “ 1 to k do

if λ2i´1 ` λ2i ď 0 then
µ‹ Ð pλ2i´1 ` λ2iq {2;

else
µ‹ Ð 0;

end
Append µ‹ to d‹ twice;

end

else
k “ pn ´ 1q{2;
Append 0 to d‹;
for i “ 1 to k do

if λ2i ` λ2i`1 ď 0 then
µ‹ Ð pλ2i ` λ2i`1q {2;

else
µ‹ Ð 0;

end
Append µ‹ to d‹ twice;

end

end
D‹

Ð diagn rd‹
s;

return U‹
rAs “ ND‹NT.

Example 1. Let

A “

¨

˝

´1 4 2
2 ´1 3

´2 ´3 ´6

˛

‚. (18)

The symmetric part of A is

B “

´

A ` AT
¯

{2 “

¨

˝

´1 3 0
3 ´1 0
0 0 ´6

˛

‚. (19)

A real spectral decomposition of B of the form stipulated by Algorithm 95 is

B “ NΛNT, (20a)

5It can be shown that this real spectral decomposition for the symmetric part of the given A is the only one possible for it
that has the form stipulated by Algorithm 9.
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where

N “

¨

˝

1?
2

´ 1?
2

0
1?
2

1?
2

0

0 0 1

˛

‚, (20b)

Λ “ diag3 r2,´4,´6s . (20c)

Next we need to construct the matrix D‹. As n “ 3 (and k “ pn ´ 1q{2 “ 1) we know

D‹
“ diag3 r0, µ‹

1, µ
‹
1s . (21)

Since λ2 ` λ3 “ ´4 ´ 6 “ ´10 ă 0, we get that

µ‹
1 “ p´4 ´ 6q{2 “ ´5.

Thus, we can construct U‹
rAs:

U‹
rAs “ ND‹NT

“

¨

˝

´ 5
2

5
2 0

5
2 ´ 5

2 0
0 0 ´5

˛

‚. (22)

Example 2. Our work provides a means of constructing a best approximation to a given matrix in the
sense of Problem P(A); however, there is no guarantee of uniqueness. For example, consider the matrix
A “ B “ diag3 r´1,´1,´1s. This matrix does not have a unique spectral decomposition of the form
stipulated by Algorithm 9. That is, B can be written as Ndiag3 r´1,´1,´1sNT where N is any element in
O3. Following Algorithm 9, we set

U‹
rAs “ Ndiag3 r0,´1,´1sNT, (23)

where we reiterate that N is an arbitrary element of O3. In other words, all elements of the set

!

N diag3 r0,´1,´1s NT : N P O3

)

Ă Ksq
n (24)

are best approximants of A.

5. An application in measuring angular velocity

In this section, we demonstrate an experimental application of Theorem 3. We use our result to robustly
estimate a rigid body’s angular velocity from experimental accelerometer data. Specifically, we apply the?
AO-algorithm to the accelerometer data from a rigid body rotation experiment (Fig. 1) and estimate the

angular velocity vector of the rigid body in that experiment. Recall that Theorem 3 is an integral part of
the

?
AO-algorithm; it is used for carrying out the critical step of constructing an approximation for the

matrix rB rτis in the space Ksq
n (see §1.1 for details). Without this approximation step, the

?
AO-algorithm

reduces to the plain
?
AO-algorithm. The

?
AO-algorithm is a viable means for estimating angular velocity

in real-world situations wherein the data contains noise and errors, and, due to the elasticity of materials,
the accelerometers are no longer rigidly affixed to one another (so that generally rB rτis R Ksq

n ). In contrast,
the plain

?
AO-algorithm can only calculate the angular velocity in ideal situations6, wherein the data is

free from noise and errors and the motion is that of a perfect rigid body.

6By “real-world” and “ideal” we are not simply contrasting between experimental and computational situations. Even
motion extracted from computational mechanics simulations of rigid body motion can contain numerical noise, especially at
large time steps, and it too could only be an approximation of rigid body motion, since specialized time integration schemes
are required to perfectly maintain the rigidity constraint in the simulation.
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Apparatus of the rotation experimenta

Motor

Sensor holder

Rotation direction

Rotation axis, N

b Abstract copy of the rotation experiment
(i) (ii)

Chassis

Figure 1: Rigid body rotation experiment setup. (a) shows a sketch of the rigid body rotation experiment described in
§5.1. (b) shows a more abstract version of the experiment. Subfigures (i) and (ii) respectively denote the configurations
of the rigid body in our experiment at the initial and a later time instance. All the mathematical symbols in this figure
are described in §5.1–5.3. For instance, the arrows marked ei, i “ 1, 2, 3, denote the basis vectors, and the blue cuboid
marked A4 denotes the accelerometer #4. Its position vector at the initial and at a later time instance is, respectively,
marked in (i) and (ii) as 4x r0s and 4x rτ s. The components of 4x r0s w.r.t. peiqiPI , which we denote as 4x r0s, in the
punctuated rotation trial (see, e.g., §5.1.2) are p0.02, 0.03, 0.11q. Similarly, the components of the other accelerometers’
initial position vectors are 1x r0s “ p´0.08,´0.01, 0.04q, 2x r0s “ p0.04,´0.06, 0.01q, and 3x r0s “ p0.02, 0.08,´0.05q.
The arrows marked 4ei r0s, i “ 1, 2, 3, in (i) denote accelerometer #4’s measurement directions at the initial time in-
stance. Their components w.r.t. peiqiPI in the punctuated rotation trial are p´0.68, 0.14, 0.71q, p0.08,´0.95, 0.27q, and
p0.72, 0.24, 0.64q. Similarly, the components of

`

1ei r0s
˘

iPI
are pp0.44, 0.66, 0.61q , p´0.87, 0.48, 0.11q , p´0.22,´0.58, 0.79qq,

of
`

2ei r0s
˘

iPI
are pp0.07, 0.97, 0.22q , p´0.96, 0, 0.28q , p0.27,´0.23, 0.93qq, and of

`

3ei r0s
˘

iPI
are

pp´0.42, 0.45,´0.78q , p´0.90,´0.24, 0.34q , p´0.03, 0.85, 0.51qq. Furthermore, the arrows marked ei r0s, i “ 1, 2, 3, in (i)
denote the body basis vectors at the initial time instance. Their respective components in the punctuated rotation trial are
p1, 0, 0q, p0, 1, 0q, and p0, 0, 1q. The arrow marked n denotes the rotation axis, and its components are n “ p´0.27,´0.28,´0.92q.
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5.1. Rigid body motion and rotation experiments

We conducted a rigid body rotation experiment to demonstrate an application of the
?
AO-algorithm,

and, consequently, that of Theorem 3.

5.1.1. Rigid body motion

A sketch of the rigid body and the apparatus we used to impose a motion on it in our rotation experiment
are shown in Fig. 1(a). Photographs of our experimental setup are provided in Fig. B.6. A more abstract
representation of our rigid body is shown in Fig. 1(b). As shown in Fig. 1(b), we take our rigid body to
execute its motion in the physical Euclidean point space E , which is a three dimensional real affine space.
We term the inner product space associated with it the physical Euclidean vector space, and denote it as
E. An orthonormal basis for E is the set of vectors peiqiPI , where I “ p1, 2, 3q, shown in Fig. 1(b). In our
formulation the vectors ei have units of meters7. Let the position vector of a rigid body material particle P
w.r.t. the origin o, shown in Fig. 1(b), at the time instance τ be Px rτ s. We then refer to

Px rτ s :“
`Px rτ s ¨ ei

˘

iPI
P R3, (25)

as particle P 1s non-dimensional position vector at the non-dimensional time instance τ P R. In our formu-
lation τ is defined such that τ seconds “ τ . From here on we will drop the qualifiers “dimensional” and
“non-dimensional,” since these should be clear from context8. In a general rigid body motion Px rτ s evolves
as

Px rτ s “ R rτ s Px0 ` c rτ s , (26)

where R rτ s is a rotation matrix, belonging to the special orthogonal group SOp3,Rq (a subset of O3), and
Px0, c rτ s P R3. The matrix R rτ s and the vector c rτ s are called the rotation matrix and the translation vector
at the time instance τ , respectively.

The angular velocity vector of a rigid body from classical physics, ωrτ s, is related to Rrτ s as follows. The
angular velocity matrix in the body frame W rτ s is defined as

W rτ s “ RT
rτ sR1

rτ s , (27)

where R1
rτ s is the derivative of Rrτ s. It can be shown that W rτ s P K3 – sop3,Rq, the Lie algebra of

SOp3,Rq. The body angular velocity vector is defined as

w rτ s “ ‹W rτ s , (28)

where “‹” denotes the map so p3,Rq Q W ÞÑ ‹W P R3,

‹W “ pW¨3¨2,W¨1¨3,W¨2¨1q .

The angular velocity vector in the laboratory frame is

wrτ s :“
ÿ

iPI

w¨i rτ s eirτ s, (29)

where

ei rτ s :“ R rτ s ei, (30)

and e1 :“ p1, 0, 0q, e2 :“ p0, 1, 0q, and e3 :“ p0, 0, 1q9. The vector wrτ s is, in fact, a non-dimensional form of
ω rτ s.

7This formalism where the elements in a vector space have units, while their components w.r.t. any basis of that vector space
are non-dimensional, was introduced in [22, 14].

8To aid the reader, we denote non-dimensional quantity using sans serif fonts. For example, we denote the non-dimensional
counterpart to the dimensional/physical scalar τ as τ , and the non-dimensional counterpart to the dimensional vector x as x.

9The vectors ei rτ s :“ R rτ s ei are called the body basis vectors. Their dimensional counterparts appear in Fig. 1(b) as ei rτ s.
These vectors can be thought of as being attached to the body and rotating with it (cf. Figs. 1(b.i) and 1(b.ii)).
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5.1.2. Experimental configurations

The
?
AO-algorithm provides an approach to estimate the body angular velocity matrix, W rτ s, of a rigid

body when provided with acceleration measurements at four of its points (see §1.1 for details). It can handle
data from the general rigid body motion given in (26). However, in order to make it easy for us to quantify
the accuracy of the

?
AO-algorithm’s estimated angular velocities, in our experiments we only impose a

relatively simple, special case of the motion given in (26). Specifically, in our experiments we impose

c rτ s ” 0, (31a)

i.e., no translation, and

Rrτ s “ n b n ` pI ´ n b nq cos rθ rτ ss ` p˚nq sin rθ rτ ss , (31b)

where I is the identity element in M3, n P R3, θ r¨s is a continuous function, and “b” is the dyadic product,
such that if u, v P Rn then u b v P Mn, and pu b vq¨i¨j “ u¨iv¨j . The “˚” appearing in (31b) is the inverse

of ‹, mapping n P R3 to

˚n “

¨

˝

˜

ÿ

kPI

ϵikjn¨k

¸

jPI

˛

‚

iPI

P so p3,Rq ,

where ϵijk is the Levi-Cevita symbol. The vector n is called the rotation axis, and θ rτ s P R the rotation
angle at the time instance τ .

As per (31b) our rigid body rotates about the fixed axis n. (The dimensional counterpart of n, namely
n, can be seen in, e.g., Fig. 1(b).) We use a brushless direct current (BLDC) motor (CPM-SCHP-3426D-
ELNB, ClearPath, Teknic, USA; see Fig. 1(a)) to vary the rotation angle over time in a precise and systematic
fashion. Configurations of our rigid body at several θ values are shown in Fig. 2(b).

We carried out three experiments, each with a different imposed θ r¨s. The results from all three ex-
periments are quite similar. Therefore, here we only present results from the first experiment, which we
term punctuated rotation; and discuss the other two (which we refer to as oscillatory rotation, and constant
rotation) in §Appendix B. In the punctuated rotation experiment

θrτ s “
ωm

2
τ ´

2ωmτ1
π3

ÿ

n“1,3,5

1

n3
sin

„

2nπτ

τ1

ȷ

, (31c)

where ωm and τ1 are positive real numbers. The angular velocity in the punctuated rotation motion (31)
has the form of a triangle wave with period τ1 sec, varying between zero and ωm Hertz10, see Fig. 2(a.ii).

5.2. Acceleration measurements

Results from a trial of the punctuated rotation experiment are shown in Figs. 3–5. The rotation θ r¨s was
that in (31c) with ωm “ 31.41, and τ1 “ 5.81. (Graphs of θ r¨s and its derivative for these parameter values
are shown in Figs. 2(a.i) and (a.ii), respectively.) The axis vector n in this trial was p´0.27,´0.28,´0.92q.
(The dimensional form n is shown in Fig. 1(b).)

It follows from (27), (28), and (31b) that the body angular velocity vector w is

w rτ s “ θ1 rτ s n. (32)

The time-dependency of the components of w’s for the punctuated rotation experiment are shown in Fig. 5.
The

?
AO-algorithm can estimate these components when provided with acceleration measurements at four

of the rigid body’s material particles. We discuss these measurements in the reminder of this section, and
the application of the

?
AO-algorithm to these measurements in the next section. (For prediction of mild

traumatic brain injury, the angular velocity vector w’s magnitude is more critical than its direction. The

10It is more common to use rad/sec as the units of angular velocity. We, however, chose to use the equivalent units of Hertz.
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body angular velocity vector w’s magnitude is always equal to that of w’s. In the current trial, due to the
simple nature of the imposed motion, their directions are same as well.)

Acceleration measurements at four of the rigid body’s particles in the trial are shown in Fig. 3. We denote
the four particles as A1, . . . , A4 (marked, e.g., in Fig. 1(a)). The acceleration vector at each Aℓ, ℓ “ 1, 2, 3, 4,
was measured by a tri-axial accelerometer (Blue Trident, Vicon, UK; 1.6 kHz sampling rate) that was rigidly
affixed to it. (These accelerometers are the blue objects in Fig. 1(a). In abstract copies of our rigid body
in Figs. 1(b) and 2(b), they appear as blue cuboids.) Subfigures (a)–(d) in Fig. 3 correspond, respectively,
to the measurements from A1–A4. Each subfigure shows graphs of three (discrete) functions. For example,
subfigure (d) shows graphs of 4αi r¨s, i “ 1, 2, 3. These functions are related to A4’s acceleration vector in
the following manner. Say 4arτ s is the non-dimensional acceleration of A4. Then 4αirτ s :“ 4a rτ s ¨ 4ei rτ s,
i “ 1, 2, 3. The vectors

`

4ei rτ s
˘

iPI
give the directions of accelerometer A4’s measurement axes at the time

instance τ11. The functions graphed in the other subfigures (resp.,
`

1αi r¨s
˘

iPI
,
`

2αi r¨s
˘

iPI
, and

`

3αi r¨s
˘

iPI
)

are similarly related to the acceleration vector evolutions at the other points (resp., 1a r¨s, 2a r¨s, and 3a r¨s).

5.3. Applying the
?
AO-algorithm

To recall, the
?
AO-algorithm allows us to determine the angular velocity of a rigid body from acceler-

ation measurements. The
?
AO-algorithm takes as input discrete forms of the accelerometer measurements

ℓα r¨s :“
`

ℓαi r¨s
˘

iPI
, ℓ “ 1, 2, 3, 4, which we discussed in the previous section. Additionally, it requires the

accelerometers’ relative positions and orientations. These can be computed from the initial values of the
accelerometers’ position vectors12 ℓxr0s, ℓ “ 1, 2, 3, 4, and their measurement axes

`

ℓei r0s
˘

iPI
. Our rigid

body was 3D printed using fused deposition molding (FDM, material: polylactic acid (PLA), 3D printer:
Original Prusa i3 MK3, Prusa Research, the Czech Republic). The parameters in its design were used to
compute the initial values ℓxr0s, and

`

ℓei r0s
˘

iPI
. These values for our punctuated rotation trial are given in

the caption of Fig. 1.
On feeding in the accelerometer measurements ℓα rτis, i “ 1, 2, . . ., and other experimental parameters,

the
?
AO-algorithm yields a discrete version of the function R Q τ ÞÑ P rτ s P M3 (for details see [16, Eq.

(4.1)]). The body angular velocity matrix of the rigid body at the time instance τ , W rτ s, is related to this
output as

r rB rτ ss
“

W rτ s
‰

“ 0, (33)

where B rτ s P Ksq
3 is the symmetric part of P rτ s, and r r¨s r¨s is defined in (2). As discussed in §1.1, due

to experimental noise and errors, we do not obtain B rτ s directly, but only an approximation for it, rB rτ s,
which usually does not lie in Ksq

3 . (More specifically, we do not obtain P rτ s but only an approximation for

it, rP rτ s, and take the symmetric part of rP rτ s “: rB rτ s as an approximation for B rτ s. Graphs of some of the

component functions of rB r¨s from the trial of our punctuated rotation experiment are shown in Fig. 4.) The

next step of the
?
AO-algorithm involves finding pB rτis, a best approximant for rB rτis in Ksq

3 . We calculate

pB rτis by applying Algorithm 9. Specifically, we compute pB rτis as U
‹
”

rB rτis
ı

, which in the current case can

be written as

U‹
”

rB rτis
ı

“ N rτis diag3 r0, µ‹
1 rτis , µ

‹
1 rτissN rτis

T
, (34a)

where

µ‹
1 rτis “

"

pλ2 rτis ` λ3 rτisq {2, λ2 rτis ` λ3 rτis ď 0,
0, otherwise,

(34b)

11The dimensional counterparts of
`

4ei r¨s
˘

iPI
at the initial and at a later time instance are, respectively, shown in Figs. 1(b.i)

and 1(b.ii). In each figure they appear as differently colored arrows emanating from A4. Recall that the accelerometers are
rigidly fixed to the body and move with it. Therefore, the evolution of

`

4ei rτ s
˘

iPI
is the same as that in (30) with the body

basis vector ei rτ s replaced with 4ei rτ s, and the laboratory basis vector ei replaced with the initial value of 4ei r¨s. In fact,
the measurement axes of all four accelerometers,

`

ℓei rτ s
˘

iPI
, ℓ “ 1, 2, 3, 4, evolve similarly. Their evolution is illustrated in

Fig. 1(b), and Fig. 2(b).
12The dimensional form of 4x r¨s at the initial and a later time instance are shown in Fig. 1(b.i) and (b.ii), respectively.
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Figure 2: Punctuated rotation experiment. Subfigures (a.i) and (a.ii), respectively, show the variation of the rotation angle and
its derivative over time in the punctuated rotation experiment (see §5.1.2 for details). Subfigure (b) shows the configurations of
the rigid body (gray cuboid) and the accelerometers (blue cuboids within the gray cuboid) attached to it for different rotation
angles. The three arrows attached to the top corner of the gray cuboid denote the body basis vectors. The three arrows attached
to a blue cuboid denote the accelerometer’s measurement directions.

and λ2 rτis, and λ3 rτis are the two smallest eigenvalues of rB rτis. The matrix N rτis P M3 is constructed

by taking the eigenvectors of rB rτis to be its columns, with the second and third columns corresponding

to λ2 rτis and λ3 rτis, respectively. The raw matrices rB rτis and their respective approximation pB rτis are
compared in Fig. 4.

The final step of the
?
AO-algorithm involves computing the approximate body angular velocity matrix
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Figure 3: Acceleration measurements in the punctuated rotation experiment (see §5.2 for details). Subfigures (a)–(d) correspond
to the measurements from accelerometers A1–A4, respectively. The positions and orientations of the four accelerometers w.r.t.
the rigid body is illustrated in Figs. 1(b) and 2(b). Each subfigure shows three graphs, labeled i “ 1, i “ 2, and i “ 3. These,
respectively, correspond to the acceleration components measured by the accelerometer in its 1, 2, and 3, directions (see, e.g.,
the three arrows attached to the cuboid in the inset in (a)).

ĂW rτis from the roots of r
”

pB rτis
ı

r¨s. For the current case the roots of r
”

pB rτis
ı

r¨s come out to be

ĂW rτis “ ˘N rτis

¨

˝

0 0 0

0 0 ´
a

´µ‹
1 rτis

0
a

´µ‹
1 rτis 0

˛

‚N rτis
T

(35)

(see [16, §4.2] for details). The positive and negative signs in (35) correspond to the two roots of r
”

pB rτis
ı

r¨s.

We choose the root that is closer to ĂW r¨s’s value from the previous time step (see [16, §4.2] for details).
Following (28), we compute an approximate body angular velocity vector at the time instance τi— rw rτis—as

rw rτis “ ‹
ĂW rτis .

Graphs of the component functions of rw r¨s in the punctuated rotation trial are shown in Fig. 5.

5.4. Comparison

In addition to the graphs of rw r¨s’s components, Fig. 5 also shows the graphs of the ideal body angular
velocity’s components, i.e. the components of w r¨s given in (32), where θ r¨s is given by (31c) with ωm “ 31.41
and τ1 “ 5.81. The ideal angular velocity is what we expect to measure under ideal conditions, i.e., perfect
rigid body motion, knowledge of experimental parameters, and acceleration measurements. As shown in
Fig. 5, the angular velocity components measured using the

?
AO-algorithm closely align with their ideal

counterparts. However, they exhibit some noise, particularly at time instances where the ideal components
are non-smooth (τ “ 2.91, 5.81, 8.72, etc. in Fig. 5). Potential sources for this noise include accelerometer
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measurement noise, as well as spurious dynamics introduced by artifacts in the motor’s control system,
chassis vibrations, and dynamic elastic deformations between the accelerometer particles.

We quantify the discrepancy between the measured and ideal angular velocities using the error metric∥∥∥rw r¨s ´ w r¨s

∥∥∥
L2p0,T q

∥w r¨s∥L2p0,T q

. (36)

The norm ∥¨∥L2p0,T q, where T ą 0, is the standard L2 function norm:

∥w r¨s∥L2p0,T q “

˜

ż T

0

∥w rτ s∥2
¸1{2

, (37)

and r0, T s is w r¨s’s domain. Inside the integral in (37), ∥¨∥ denotes the standard Euclidean norm on R3. For
the punctuated rotation experiment, the error is 0.062 (or 6.2%). The error metrics for our oscillatory and
constant rotation experiments are discussed in the §Appendix B.

For reference, we also estimated the body angular velocity using an alternative technique. In this tech-
nique the body angular velocity is estimated by time integrating the experimental body angular acceleration.
It can be shown that

w1 rτ s “ ‹ pskew part of the P rτ sq , (38)

where w1 r¨s is the body angular acceleration and is the derivative of w r¨s, which, of course, is the body angular
velocity. The matrix valued function P r¨s in (38) is the same one that we discussed in the context of the?
AO-algorithm’s first step (see paragraph containing (33)). It depends on the acceleration measurements,

and the relative positions and orientations of the accelerometers. For a derivation of (38) see [23, §3.2].
Following (38), we also estimated the body angular velocity in the experiment by integrating the skew part

of rP r¨s, which was obtained by applying the first step of the
?
AO-algorithm to that experiment. We call

this alternative estimate of the body angular velocity the rw r¨s predicted from AO-algorithm, or AO-rw r¨s

for short. The components of AO-rw r¨s in the punctuated rotation experiment are graphed in Fig. 5. As
observed, the discrepancies between the components of AO-rw r¨s and their respective ideal components are
significantly larger than those of the body angular velocity components estimated using the

?
AO-algorithm.

Notably, the error metric for AO-rw r¨s is 1.64 (or 164%), which is about 25 times greater than that of the
body angular velocity estimated using the

?
AO-algorithm.

6. Concluding remarks

In this work, we have proved a result concerning the best approximation of square matrices within the
set of matrices that are the square of a skew-symmetric matrix. An immediate application of our result is
in numerical methods that aim to reproduce rigid body motion from acceleration measurements.

1. The present work uses the Frobenius norm to define a topology on the space of matrices. In other
works such as [3], best approximation in other norms are considered, such as the induced ℓ2-norm: for
A P Mn,

}A}2 :“ sup
xPRn

}Ax}

}x}
.

For rigid body motion, studying the best approximation problem in other norms may yield differ-
ent error properties, though we emphasize that all norms are equivalent on finite-dimensional vector
spaces. Additionally, for other applications of the present problem, other norms may be more natural.
Nevertheless, additional work is required to extend the results presented here to other norms, and it is
not apparent whether closed-form solutions may exist for these other norms.

2. In the context of the
?
AO-algorithm, a natural question is how close is the estimated angular velocity

matrix ĂW to the actual angular velocity matrix W at each time instance τi. In dimensions n “ 2 and

n “ 3, we can show that when xW,ĂWyF ą 0

›

›

›
W ´

ĂW
›

›

›

4

F
ď Cn

›

›

›
B ´ pB

›

›

›

2

F
,
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Figure 4: Graphs of certain components of B r¨s in the punctuated rotation experiment. To avoid clutter we arbitrarily chose to
only show the p1, 2q, p1, 3q, and p2, 2q components. Each component is graphed twice: once using the raw measurement for B r¨s,

namely rB r¨s, which is computed directly from the acceleration measurements shown in Fig. 3, using a thick, solid, partially

transparent line; and again using the best approximant of rB r¨s, namely pB r¨s, which is obtained by applying Theorem 3 to rB r¨s,
using a thin, solid, opaque line. See §5.3 for details.

where C2 “ 2 and C3 “ 8. Additionally, because pB is a best approximation of rB, we have }B ´ pB}F ď

2}B ´ rB}F and so
›

›

›
W ´

ĂW
›

›

›

4

F
ď 4Cn

›

›

›
B ´ rB

›

›

›

2

F
.

Meanwhile, it may be shown via counterexample that no Cn exists for n ą 3. Proof of these results
will be presented in a forthcoming publication.

3. Since Theorem 3 makes it possible to use the
?
AO-algorithm on real data, we demonstrated this ap-

plication by estimating the angular velocity of a rigid body using only acceleration measurements from
four particles. Angular velocities measured via the

?
AO-algorithm and through naive time integration

of angular accelerations are compared in Fig. 5. What is especially notable in Fig. 5 is that for the
case in which the angular velocity is measured via time integration the errors grow with time; while
in the case in which they are measured via the

?
AO-algorithm the errors remain bounded in time13.

Based on these observations it is reasonable to conclude that the
?
AO-algorithm is a significant im-

provement over the naive way of measuring angular velocity using only material particle accelerations.
In fact, considering the advantages of measuring angular velocity from particle accelerations, i.e., us-
ing accelerometers, rather than by using gyroscopes14, the

?
AO-algorithm is potentially a significant

advancement in measuring angular velocity in general. Since measurement of angular velocity is im-
portant in various fields—ranging from robotics to biomechanics—and, again, since Theorem 3 enables
the

?
AO-algorithm’s critical step, it follows that Theorem 3 and the mathematical theory that we

developed in support of it are likely to a have a significant technological impact.

13There are mathematical justifications for both these observations. We will present these justifications in our forthcoming
publication.

14We mentioned these advantages briefly in §1.1, but a thorough discussion is found in §Appendix A.
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Appendix A. Commercial off-the-shelf MEMS gyroscopes and accelerometers

A survey of commercially available off-the-shelf MEMS gyroscopes and accelerometers, along with their
respective specifications, is presented in Table A.1.

Table A.1: Commercial off-the-shelf MEMS gyroscopes and accelerometers

Company Product Bandwidth (Hz) Size (lengthˆwidthˆheight mm3) Weight (g)

Gyroscopes

STMicroelectronics [24] A3G4250D 110 4 ˆ 4 ˆ 1.1 —

I3G4250D 110 4 ˆ 4 ˆ 1.1 —

L3G3250A 140 3.5 ˆ 3 ˆ 1 —

L3GD20 100 4 ˆ 4 ˆ 1 —

L3G462A 110 4 ˆ 4 ˆ 1.1 —

LPR410AL 110 4 ˆ 5 ˆ 1 —

Analog Devices [25] ADXRS910 201 10.30 ˆ 10.42 ˆ 3.58 —

ADXRS290 480 4.5 ˆ 5.8 ˆ 1.2 —

ADXRS645 2000 15 ˆ 8 ˆ 2.85 —

ADIS16137 400 35.6 ˆ 44 ˆ 13.8 —

ADXRS642 2000 6.85 ˆ 6.85 ˆ 3.8 —

ADXRS646 1000 6.85 ˆ 6.85 ˆ 3.8 —

ADXRS453 77.5 9 ˆ 9 ˆ 4 —

ADXRS620 2500 6.85 ˆ 6.85 ˆ 3.8 —

ADXRS623 3000 6.85 ˆ 6.85 ˆ 3.8 —

ADIS16060 1000 8.35 ˆ 8.2 ˆ 5.2 —

Tronics’s Microsystems SA [26] G4300 200 12 ˆ 12 ˆ 5.5 —

G4050 30 12 ˆ 12 ˆ 5.5 —

G3300 200 19.6 ˆ 11.5 ˆ 2.9 —

Bosch Sensorteca[27] BMI323 563 2.5 ˆ 3.0 ˆ 0.83 —

Continued on next page
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Table A.1: Commercial off-the-shelf MEMS gyroscopes and accelerometers (Continued)

BMI270 751 2.5 ˆ 3.0 ˆ 0.8 —

BMI088 523 3 ˆ 4.5 ˆ 0.95 —

BMI085 684 3 ˆ 4.5 ˆ 0.95 —

Silicon Sensing [28] CRM100 160 5.7 ˆ 4.8 ˆ 1.2 —

CRS43 24 29 ˆ 29 ˆ 18.4 —

CRH03 100 47 ˆ 33.5 ˆ 25.4 —

CMS390 190 10.4 ˆ 6.7 ˆ 2.7 —

Gladiator Technologies [29] G300D 600 25.4 ˆ 25.4 ˆ 15.2 —

G200 200 8190 (volume) —

G150Z 200 18000 (volume) —

Safran [30] STIM210 262 44.8 ˆ 38.6 ˆ 21.5 52

STIM277H 262 44.8 ˆ 38.6 ˆ 21.5 52

STIM202 262 44.75 ˆ 38.6 ˆ 20 55

Accelerometers

STMicroelectronics [24] AIS328DQ 500 4 ˆ 4 ˆ 1.8 —

H3LIS331DL 500 3 ˆ 3 ˆ 1 —

IIS2DLPC 2500 2 ˆ 2 ˆ 0.7 —

IIS3DWB 6300 2.5 ˆ 3 ˆ 0.86 —

LIS2DS12 6400 2 ˆ 2 ˆ 0.86 —

LIS2DUXS12 2500 2 ˆ 2 ˆ 0.74 —

Analog Devices [25] ADXL1004 24000 5 ˆ 5 ˆ 1.8 —

ADXL1001 11000 5 ˆ 5 ˆ 1.8 —

ADXL382 8000 2.9 ˆ 2.8 ˆ 0.87 —

ADXL203 2500 5 ˆ 5 ˆ 2 —

ADXL354 1900 6 ˆ 6 ˆ 2.25 —

ADXL316 1600 4 ˆ 4 ˆ 1.45 —

ADXL355 1000 6 ˆ 6 ˆ 2.25 —

Tronics’s Microsystems SA [26] A3050 120 12 ˆ 12 ˆ 5.5 —

A3140 300 12 ˆ 12 ˆ 5.5 —

A3150 300 12 ˆ 12 ˆ 5.5 —

Bosch Sensorteca[27] BMI323 1677 2.5 ˆ 3.0 ˆ 0.83 —

BMI270 684 2.5 ˆ 3.0 ˆ 0.8 —

BMI088 523 3 ˆ 4.5 ˆ 0.95 —

BMI085 684 3 ˆ 4.5 ˆ 0.95 —

Silicon Sensing [28] CAS211 170 10.4 ˆ 6 ˆ 2.2 —

CAS215 170 10.4 ˆ 6 ˆ 2.2 —

CAS291 170 10.4 ˆ 6.7 ˆ 2.7 —

CAS295 170 10.4 ˆ 6.7 ˆ 2.7 —

Continued on next page
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Table A.1: Commercial off-the-shelf MEMS gyroscopes and accelerometers (Continued)

Gladiator Technologies [29] GA50 300 8.9 ˆ 8.9 ˆ 3.2 0.7

A300D 800 25.4 ˆ 25.4 ˆ 16.5 19.25

A40 140 9832 (volume) —

Safran [30] MS1000 200 8.9 ˆ 8.9 ˆ 3.23 1.5

MS1000T 200 8.9 ˆ 8.9 ˆ 3.23 1.5

SI1000 550 8.9 ˆ 8.9 ˆ 3.23 1.5

VS1000 1150 8.9 ˆ 8.9 ˆ 3.23 1.5

a BMI serial product is an inertial measurement unit (IMU) which includes one triaxial accelerometer and one triaxial
gyroscope.
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Appendix B. Rotation test

The setup of the rotation test platform is shown in Fig. B.6.

Appendix B.1. Additional rotation tests

A sketch of the experimental setup for both constant and oscillatory rotation is shown in Fig. B.7(a.i). A
drawing of a more abstract version of the rotation experiment is shown in Fig. B.7(a.ii). The setups for the
constant and oscillatory rotation experiments are the same, except for the different rotation profiles used.
In these two experiments, the rotation axis vector n was p0, 0, 1q. The initial values ℓx r0s, and

`

ℓei r0s
˘

iPI
,

ℓ “ 1, 2, 3, 4 are given in the caption of Fig. B.7.

Constant rotation. In the constant rotation experiment, the rotation angle θ r¨s is taken as

θ rτ s “ ωmτ, (B.1)

where ωm “ 31.41. Graphs of θ r¨s in (B.1) and its derivative are shown in Figs. B.7(b.i) and (b.ii), re-
spectively. The comparison of the body angular velocity components calculated using

?
AO-algorithm and

AO-algorithm in the constant rotation experiment is shown in Fig. B.8. Fig. B.8 also shows the graphs of
the ideal body angular velocity’s components, i.e. the components of w r¨s given in Eq. (32) in the main
manuscript, where θ r¨s is given by (B.1) with ωm “ 31.41.

The error metric for the body angular velocity measured using
?
AO-algorithm in the trial of the constant

rotation experiments is 0.0068 (or 0.68%), while the error metric for that using AO-algorithm is 0.166 (or
16.60%).

Oscillatory rotation. In the constant rotation experiment, the rotation angle θ r¨s is taken as

θrτ s “
ωmτ1
8

`
4ωmτ1
π3

ÿ

n“1,3,5

p´1qpn`1q{2

n3
cos

„

2nπτ

τ1

ȷ

, (B.2)

where ωm “ 31.41 and τ1 “ 11.62. Graphs of θ r¨s in (B.1) and its derivative are shown in Figs. B.7(c.i) and
(c.ii), respectively. The comparison of the component functions of body angular velocity calculated using?
AO-algorithm and AO-algorithm are shown in Fig. B.9. Fig. B.9 also shows the graphs of the ideal body

angular velocity’s components, i.e. the components of w r¨s given in Eq. (32) in the main manuscript, where
θ r¨s is given by (B.2) with ωm “ 31.41 and τ1 “ 11.62.

The error metric for the body angular velocity measured via the
?
AO-algorithm in the trial of the

oscillatory rotation experiments is 0.038 (or 3.80%), while via AO-algorithm is 1.0956 (or 109.56%).
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Appendix C. Proofs of preliminary results

For completeness, we present proofs of the preliminary results below.

Appendix C.1. Proof of Lemma 4

Lemma 4. For S P Sn and K P Kn,

}S ` K}2F “ }S}2F ` }K}2F .

Proof.

}S ` K}2F “ xS ` K,S ` KyF ,

“ }S}2F ` }K}2F ` 2xS,KyF . (C.1)

From the definition of the Frobenius inner product one can see that xA,ByF “ xAT,BT
yF . Hence,

xS,KyF “ xST,KT
yF ,

“ xS,´KyF ,

“ ´xS,KyF ,

where the second equality is due to K being a skew-symmetric matrix. Therefore, xS,KyF “ 0, and the
result follows from (C.1).

Appendix C.2. Proof of Lemma 5

Lemma 5. Let A P Mn and Q P On. Then

}AQ}F “ }A}F “ }QA}F .

Proof. The Frobenius norm can be written in terms of the trace map Tr r¨s : Mn Ñ R,

Tr rAs “

n
ÿ

i“1

A¨i¨i,

as

}A}F “

c

Tr
”

AAT
ı

. (C.2)

To prove the first equality in the lemma, we express }AQ}2F using the trace map as Tr
“

AQpAQqT
‰

. Which,

owing to the property of the transpose map that pAQqT “ QTAT, simplifies to Tr
”

AQQTAT
ı

. Since we know

from Eq. (4) of the main manuscript that QQT
“ In, this expression further simplifies to Tr

”

AAT
ı

“ }A}2F .

The result follows on taking the positive square root of this equation.
For showing the second equality in the lemma we follow a similar strategy and write }QA}2F in terms of

the trace map as Tr
“

QApQAqT
‰

, or equivalently as Tr
”

QAATQT
ı

. The trace map has the property that

Tr rABs “ Tr rBAs, where A,B P Mn. Using this property and commuting the composition of the first

three matrices, namely QAAT, and the last matrix, namely QT, in Tr
”

QAATQT
ı

we get that }QA}2F “

Tr
”

QTQAAT
ı

. This equation simplifies to }QA}2F “ }A}2F , since QTQ “ In, and Tr
”

AAT
ı

“ }A}2F . The

result follows on taking the positive square root of this equation.
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Appendix C.3. Proof of Lemma 7

Lemma 7. The sets Vn and Ksq
n are the same.

Proof. Proof that Ksq
n Ď Vn may be found in [16, Appendix C]. The proof relies on the fact that the eigen-

decomposition of K P Kn has pure imaginary eigenvalues (which come in conjugate pairs) and orthogonal
(complex) eigenvectors. Below we show that Vn Ď Ksq

n . (This result can also be found in [31].)

1. Let A P Vn, i.e., A “ NDNT, where N P On, when n is even (resp. odd) D “ diagn rµ1, µ1, . . . , µk, µks

(resp. D “ diagn r0, µ1, µ1, . . . , µk, µks), and k “ n{2 (resp. k “ pn ´ 1q{2).

2. When n is even (resp. odd) we define

K “ diag

„ˆ

0 ´
?

´µ1?
´µ1 0

˙

, . . . ,

ˆ

0 ´
?

´µk?
´µk 0

˙ȷ

15 (C.3a)

ˆ

resp. K “ diag

„

`

0
˘

,

ˆ

0 ´
?

´µ1?
´µ1 0

˙

, . . . ,

ˆ

0 ´
?

´µk?
´µk 0

˙ȷ˙

. (C.3b)

It is straightforward to show that KT
“ ´K, and hence K P Kn. Moreover, a direct calculation16

gives K2
“ D.

3. Let B :“ NKNT, then
BT

“ pNKNT
qT “ NKTNT

“ ´NKNT
“ ´B. (C.6)

The third equality in (C.6) follows from the fact that K is skew-symmetric. Furthermore,

B2
“ pNKNT

qpNKNT
q “ NK2NT

“ NDNT
“ A. (C.7)

The second equality in (C.7) follows from the fact that N is orthogonal; the third from the fact that
K2

“ D (see Step 2); and the last equality from A’s definition. Since we know that B P Kn, from (C.6),
and B2

“ A, from (C.7), it follows from Ksq
n ’s definition that A P Ksq

n .

We briefly comment on the uniqueness of the matrix B in the proof of Lemma 7. In particular, this
matrix may not be unique. Taking the K given in (C.3), multiplying one or more of its diagonal blocks with
´1, and performing an orthogonal similarity transformation on it using N will yield a matrix which too lies
in Kn and squares to A.

Appendix C.4. Proof of Lemma 8

Lemma 8. Let Λ “ diagn rλ1, λ2, . . . , λns where λ1 ě λ2 ě . . . ě λn, and let D “ diagn rµ1, µ2, . . . , µns

where µ1 ě µ2 ě . . . ě µn. Then,

min
QPOn

}Λ ´ QDQT
}F “ }Λ ´ D}F . (11)

15For square matrices A1 P Mn1 , . . . ,Am P Mnm (which may have different sizes n1, . . . , nm, respectively), we let
diag rA1, . . . ,Ams denote the block diagonal matrix

¨

˚

˚

˚

˝

A1 0 ¨ ¨ ¨ 0
0 A2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ Am

˛

‹

‹

‹

‚

P Mř

i ni
, (C.4)

where the 0 entries denote matrices whose entries are all zero (and whose dimensions we infer by context).
16A useful identity for carrying out this calculation is

ˆ

0 ´µ
µ 0

˙2

“

ˆ

´µ2 0
0 ´µ2

˙

, (C.5)

where µ P R.
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Proof. Let Q P On. The matrices Λ and QDQT are both symmetric and have real eigenvalues pλ1, . . . , λnq

and pµ1, . . . , µnq arranged in descending order. Applying [32, Corollary 6.3.8] (where, using the notation
from the reference, we take matrices A and A ` E to be Λ and QDQT, respectively) gives

n
ÿ

i“1

pλi ´ µiq
2 ď }Λ ´ QDQT

}2F .

The left-hand-side is identically }Λ ´ D}2F . Since this inequality holds for any Q P On (and is an equality in
the particular case when Q “ In), the proof follows.

Appendix C.5. Alternate Proof of Lemma 8

We also present a second, longer proof which does not make use of [32, Corollary 6.3.8]. Before stating
the proof, we first discuss an isomorphism between the space of matrices and the space of n-tuples of vectors.

The Euclidean space ĂMn. Consider the set ĂMn :“

n-times
hkkkkkkkkkkikkkkkkkkkkj

Rn ˆ Rn ˆ . . .Rn. Let rX “ px1, . . . , xnq and rY “

py1, . . . , ynq belong to ĂMn. Define the function x¨, ¨y„ : ĂMn ˆ ĂMn Ñ R,

xrX, rYy„ “

n
ÿ

i“1

xxi, yiy. (C.8)

It can be shown that ĂMn together with x¨, ¨y„ is a Euclidean vector space. In fact, the inner product spaces

pMn, x¨, ¨yF q and
´

ĂMn, x¨, ¨y„

¯

are isomorphic. For example, there exists the bijective, linear, inner product

preserving map iso r¨s : Mn Ñ ĂMn,

iso rXs “

´

pXj1qjPI , pXj2qjPI , . . . , pXjnqjPI

¯

, (C.9)

where Xij is the i-jth component of X. Note that the map iso r¨s is also a homeomorphism. The inverse of
iso r¨s can be explicitly written as

iso´1 rpy1, . . . , ynqs “ pyiq
T
iPI . (C.10)

Proof.

1. We begin by showing the minimization problem in (11) is equivalent to maximizing g r¨s : On Ñ R,
where

g rYs “ xΛ,YDYT
yF .

Note that the function g r¨s is continuous, and that its domain, namely On, is a compact subset17 of
the Euclidean vector space Mn. Therefore, there exists a Y‹

P On such that

max
YPOn

g rYs “ g rY‹
s .

p1.aq Via matrix algebra and the definition of the Frobenius inner product and norm,

}Λ ´ QDQT
}2F “ xΛ ´ QDQT,Λ ´ QDQT

yF ,

“ }Λ}2F ` }QDQT
}2F ´ 2xΛ,QDQT

yF ,

“ }Λ}2F ` }D}2F ´ 2xΛ,QDQT
yF ,

“ }Λ}2F ` }D}2F ´ 2g rQs . (C.11)

For the third equality, we used Lemma 5 to equate }QDQT
}F with }D}F .

17For anyQ P On, we have }Q}F “
?
n, which follows from Eq. (1.2) of the main manuscript. ThereforeOn is bounded. The set

On is also closed since it is the pre-image of the closed set t0u Ă Mn under the continuous map Mn Q Y ÞÑ
`

YTY ´ In
˘

P Mn,
where 0 is the matrix whose entries are all zero.
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p1.bq It follows from (C.11) and the definition of Y‹ that

min
QPOn

}Λ ´ QDQT
}F “ }Λ ´ Y‹D Y‹ T

}F . (C.12)

2. Completing the proof now requires us to show that g rIns “ g rY‹
s, i.e. In is a maximizer of g r¨s. For

ease of computations, we will instead show that g̃ r¨s “ g ˝ iso´1 r¨s, which is defined over the set

rOn “

!

py1, . . . , ynq P ĂMn : xyi, yjy “ δij , i, j P I
)

,

achieves its maximum value at rIn “ isorIns. By the use of isomorphism, In is also a maximizer of g r¨s.

p2.aq A more explicit form of g̃ r¨s is

g̃ rpy1, . . . , ynqs “ xΛ, iso´1 rpy1, y2, . . . , ynqs D iso´1 rpy1, y2, . . . , ynqs
T

yF ,

“

n
ÿ

i“1

µixyi,Λyiy, (C.13)

where we recall that each yi P Rn.

3. We first show Step 2 for the case where λ1 ą λ2 ą . . . ą λn and µ1 ą µ2 ą . . . ą µn and λi, µi ‰ 0 for
all i P I.

p3.aq Let rY
‹
be a global maximum of g̃ r¨s. The set rOn is a smooth manifold and g̃ r¨s is smooth

everywhere on rOn. Hence, Ỹ
‹
is a stationary point of g̃ r¨s.

p3.bq A necessary condition for py‹
1, y

‹
2, . . . , y

‹
nq :“ rY

‹
to be a stationary point of g̃ r¨s is that for each

i P I
Big̃

”

rY
‹
ı

`

n
ÿ

m“1

n
ÿ

k“1

LmkBiHmk

”

rY
‹
ı

“ 0 P Rn, (C.14a)

where
Hij ry1, y2, . . . , yns :“ xyi, yjy ´ δij , (C.14b)

i, j P I. In (C.14a), the quantities Big̃
”

rY
‹
ı

, BiHmk

”

rY
‹
ı

, respectively, denote

Bg̃
”

rY
‹
ı

Byi
:“

¨

˝

Bg̃
”

rY
‹
ı

Bryi¨1
, . . . ,

Bg̃
”

rY
‹
ı

B yi¨n

˛

‚, (C.14c)

BHmk

”

rY
‹
ı

Byi
:“

¨

˝

BHmk

”

rY
‹
ı

Byi¨1
, . . . ,

BHmk

”

rY
‹
ı

Byi¨n

˛

‚. (C.14d)

The quantities Lmk, m, k P I, in (C.14a) are components of a real symmetric matrix. That is,
Lmk “ L¨m¨k, where L P Sn.

p3.cq It follows from (C.13) and (C.14) that

2µiΛy
‹
i ´ 2

n
ÿ

k“1

Liky
‹
k “ 0, (C.15)

holds for each i P I. Taking the inner product of (C.15) with y‹
j , noting that xy‹

k, y
‹
jy “ δkj , and

simplifying we get that
Lij “ µixy

‹
j ,Λy

‹
i y, (C.16)

where i, j P I. Computing Lij and Lji from (C.16) and setting them equal to each other, since
they are the components of a symmetric matrix, we get that

µixy
‹
j ,Λy

‹
i y “ µjxy‹

i ,Λy
‹
jy,

“ µjxΛTy‹
i , y

‹
jy,

“ µjxΛy‹
i , y

‹
jy. (C.17)
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The second equality in (C.17) follows from the definition of the matrix transpose. The third
equality in (C.17) follows because Λ is a diagonal matrix, and hence a symmetric matrix. Thus,
by the symmetry of the inner products, pµi ´ µjq xy‹

j ,Λy
‹
i y “ 0 for any i, j P I. By assumption,

µi ‰ µj when i ‰ j, and so
xy‹

j ,Λy
‹
i y “ 0, (C.18)

for i ‰ j. Along with (C.16), we must have that Lij “ 0 for i ‰ j.
p3.dq Given Lij “ 0 for i ‰ j and Lii “ µixy‹

i ,Λy
‹
i y, (C.15) may be simplified to

2µi pIn ´ y‹
i b y‹

i qΛy‹
i “ 0, (C.19)

where y‹
i b y‹

i P Mn such that py‹
i b y‹

i q
¨m¨n “ y‹

i¨my‹
i¨n. Because µi ‰ 0, it must either be the

case that Λy‹
i “ 0, or Λy‹

i and y‹
i are parallel. We can rule out the former: because λj ‰ 0 for all

j P I, then Λy‹
i “ 0 implies that xy‹

i , y
‹
i y “ 0, which contradicts the fact that py‹

1, . . . , y
‹
nq P rOn

and therefore xy‹
i , y

‹
i y “ 1. Thus,

Λy‹
i “ αy‹

i , (C.20)

for some α P R.
p3.eq Let pe1, . . . , enq be the canonical set of basis vectors of Rn. That is, for each i P I, ei “ pδikqkPI .

Since λi ‰ λj for i ‰ j and xy‹
i , y

‹
i y “ 1, then (C.20) implies that for each i P I the vector y‹

i has to
be equal to ˘ej where j P I. The constraint that xy‹

i , y
‹
jy “ 0 for i ‰ j implies that two different

y‹
i cannot correspond to the same canonical basis vector. Hence, it follows that py‹

1, . . . , y
‹
nq has

to be of the form
`

˘eσr1s,˘eσr2s, . . . ,˘eσrns

˘

, where σ r¨s is a permutation on I.
p3.fq Thus, the stationary points of g̃ r¨s, which includes the global maximizer py‹

1, . . . , y
‹
nq, belong to

the finite set
␣`

˘eσr1s,˘eσr2s, . . . ,˘eσrns

˘

: σ r¨s is a permutation on I
(

. (C.21)

The image of this set under g̃ r¨s is

#

n
ÿ

i“1

µiλσris : σ r¨s is a permutation on I

+

, (C.22)

which must contain the maximum value of g̃ r¨s. The maximal element of this finite set is
ř

i λiµi
18.

p3.gq The maximal element of the set (C.22) corresponds to the identity permutation. Hence, it follows

from (C.21) that the set of all rY
‹
, i.e., the set of all global maximizers of g̃ r¨s, equals

S̃‹
n “ tp˘e1,˘e2, . . . ,˘enqu , (C.23)

among which is rIn.

4. In this step we relax the conditions we required on λi in Step 3, and assume only that λi are non-
increasing. However, we still require µi to be strictly decreasing and non-zero.

p4.aq For any ε ą 0, define λipεq “ λi ` εpn ` 1 ´ iq, and let Λε “ diagn rλ1pεq, λ2pεq, . . .s. When ε is
sufficiently small, we guarantee that λipεq ą λi`1pεq and λipεq ‰ 0 hold for all i. That is, for ε
sufficiently small λi pεq satisfy the same conditions that λi did in Step 3.

p4.bq Define g̃ε r¨s : rOn Ñ R as

g̃ε rpy1, . . . , ynqs “

n
ÿ

i“1

µixyi,Λεyiy. (C.24)

It follows from (C.13) that

g̃ε

”

rY
ı

“ g̃
”

rY
ı

` ε
n
ÿ

i“1

µixyi, diagn rn, n ´ 1, . . . , 1s yiy,

18This is because pλiqiPI and pµiqiPI are descending lists of numbers. To elaborate further note that if a1 ě a2 and b1 ě b2,
then pa1 ´ a2qpb1 ´ b2q ě 0 implies that a1b1 ` a2b2 ě a1b2 ` a2b1.
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where we recall that rY :“ py1, . . . , ynq. For the second term, we have

ε
n
ÿ

i“1

µixyi, diagn rn, n ´ 1, . . . , 1s yiy ď ε
n
ÿ

i“1

|µi|nxyi, yiy “ εn
n
ÿ

i“1

|µi|,

which is a constant that is independent of rY. Hence,

ˇ

ˇ

ˇ
g̃ε

”

rY
ı

´ g̃
”

rY
ı
ˇ

ˇ

ˇ
ď εn

n
ÿ

i“1

|µi|. (C.25)

p4.cq Recall that rIn belongs to the set S̃‹
n defined in (C.23). Then, for any rY

g̃
”

rIn
ı

´ g̃
”

rY
ı

“

´

g̃
”

rIn
ı

´ g̃ε

”

rIn
ı¯

`

´

g̃ε

”

rIn
ı

´ g̃ε

”

rY
ı¯

`

´

g̃ε

”

rY
ı

´ g̃
”

rY
ı¯

. (C.26)

Using (C.25) for the first and third terms, we bound the previous equation from below:

g̃
”

rIn
ı

´ g̃
”

rY
ı

ě

´

g̃ε

”

rIn
ı

´ g̃ε

”

rY
ı¯

´ 2εn
n
ÿ

i“1

|µi|. (C.27)

Note that g̃ε r¨s satisfies all the conditions imposed on g r¨s in Step 3, and hence g̃ε r¨s achieves its

global maxima at rIn. That is, g̃ε
”

rIn
ı

ě g̃ε

”

rY
ı

for all rY P rOn. Then it follows from (C.27) that

g̃
”

rIn
ı

´ g̃
”

rY
ı

ě ´2εn
n
ÿ

i“1

|µi|. (C.28)

Since ε ą 0 can be arbitrarily small, the above inequality implies that

g̃
”

rIn
ı

´ g̃
”

rY
ı

ě 0. (C.29)

We could have chosen any rY
‹

P S̃‹
n and arrived at the same conclusion; thus we can also conclude

that S̃‹
n is the set of global maximizers of g̃ r¨s even in this more general case.

5. Finally, we relax the conditions on µi as well. That is, we consider a g̃ r¨s in which we only require
that λi and µi each be a non-increasing sequence. The procedure we follow is similar to the one in the
previous step.

p5.aq As we did for λi in Step 4, we construct a perturbed sequence µipεq, where µipεq :“ µi`εpn`1´iq.
Again, for ε sufficiently small µipεq will be a strictly decreasing sequence and µipεq ‰ 0 for each
i P I. We define Dpεq “ diagn rµ1pεq, . . . , µnpεqs.

p5.bq Let g̃ϵ r¨s : rOn Ñ R,
g̃ε rpy1, . . . , ynqs “ xΛ,YDpεqYT

yF , (C.30)

where Y “ iso´1 ry1, . . . , yns. Similar to the previous step, it can be shown with (C.13) that

g̃ϵ

”

rY
ı

“ g̃
”

rY
ı

`

n
ÿ

i“1

εpn ` 1 ´ iqxyi,Λyiy. (C.31)

For the second term,
|xyi,Λyiy| ď max

j
|λj |xyi, yiy “ max

j
|λj |. (C.32)

Thus,

ˇ

ˇ

ˇ
g̃ϵ

”

rY
ı

´ g̃
”

rY
ı
ˇ

ˇ

ˇ
ď εmax

j
|λj |

n
ÿ

i“1

pn ` 1 ´ iq,

“
1

2
npn ` 1qεmax

j
|λj |. (C.33)
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p5.cq Using calculations similar to those in Step (4.c) we get from (C.33)

g̃
”

rIn
ı

´ g̃
”

rY
ı

ě

´

g̃ϵ

”

rIn
ı

´ g̃ϵ

”

rY
ı¯

´ npn ` 1qεmax
j

|λj |, (C.34)

where rIn is an element of S̃‹
n. Note that g̃ϵ r¨s satisfies all the conditions imposed on g̃ r¨s in Step 4,

hence g̃ϵ r¨s achieves its global maximum at rIn. That is, g̃ϵ
”

rIn
ı

ě g̃ϵ

”

rY
ı

for all rY P rOn. Thus,

g̃
”

rIn
ı

´ g̃
”

rY
ı

ě ´2ϵn
?
n

n
ÿ

i“1

|λi|. (C.35)

Using arguments similar to those we used towards the end of Step (4.c) it can be concluded from
(C.35) that even this more general g̃ r¨s achieves its maximum value on the set S̃‹

n.
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Figure 5: Body angular velocity in the punctuated rotation experiment. Subfigures (a)–(c), respectively, show graphs of the
body angular velocity’s three components. (These are equivalently the components of the angular velocity w.r.t. the body basis
vectors, which are attached to the rigid body and rotate with it. The body basis vectors are illustrated, e.g., by the three
arrows attached to the top corner of the gray cuboid (the rigid body) in the inset in (a).) Each component is graphed thrice:
once from the ideal body angular velocity, specifically the w r¨s given by (32) and (31c) for ωm “ 31.41 and τ1 “ 5.81, using a

thick, solid, slightly transparent line; once from the body angular velocity yielded by the
?
AO algorithm, namely rw r¨s, using a

thin, solid, opaque line; and finally from the body angular velocity yielded by the AO-algorithm, namely AO-rw r¨s, using hollow
markers. See §5.4 for details. Subfigure (d) shows the magnitude of the angular velocity. It too is similarly graphed thrice.
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Figure B.6: Rotation test platform. Four triaxial accelerometers are mounted to a sensor holder. The sensor holder is rotating,
driven by a feedback control BLDC motor, which is controlled by the computer.
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Figure B.7: Set-up and geometry parameters of the constant and oscillatory rotation experiment. (a.i) shows a sketch of
the rigid body rotation experiment. (a.ii) shows the initial configuration of the rigid body in both constant and oscilla-
tory experiment. The components of four accelerometer’s initial position vectors are 1x r0s “ p0.064, 0.001,´0.016q,2x r0s “

p´0.031,´0.055,´0.016q, 3x r0s “ p´0.032, 0.055,´0.016q, and 4x r0s “ p´0.015, 0.001, 0.103q. The components
of

`

1ei r0s
˘

iPp1,2,3q
are pp´1, 0, 0q , p0,´1, 0q , p0, 0, 1qq; of

`

2ei r0s
˘

iPp1,2,3q
are pp0.50, 0.86, 0q , p´0.86, 0.50, 0q , p0, 0, 1qq; of

`

3ei r0s
˘

iPp1,2,3q
are pp0.50,´0.86, 0q , p0.86, 0.50, 0q , p0, 0, 1qq; of

`

4ei r0s
˘

iPp1,2,3q
are pp´1, 0, 0q , p0,´1, 0q , p0, 0, 1qq; and of

pei r0sqiPp1,2,3q are pp1, 0, 0q , p0, 1, 0q , p0, 0, 1qq. Subfigures (b.i) and (b.ii), respectively, shows the variation of the rotation

angle and its derivative over time in the constant rotation experiment. Subfigures (c.i) and (c.ii), respectively, shows the varia-
tion of the rotation angle and its derivative over time in the oscillatory rotation experiment.

31



0.50.50.50.50.50.50.5 1.0 1.5 2.0 2.5 3.0

10

8

6

4

2

0

2

0.50.5 1.01.0 1.5 2.02.0 2.5 3.03.0

2

1

0

1

2

3

4

a

b

c

d

0.0 0.5 1.0 1.5 2.0 2.5 3.0200.0200.0

22

24

26

28

30

32

0.0 0.5 1.0 1.5 2.0 2.5 3.0200.0200.0

22

24

26

28

30

32

1.8 2. 2.2
6

2

2

1.8 2. 2.2
1

1

3

1.8 2. 2.2
24

28

32

1.8 2. 2.2
24

28

32

0

0

0

0

Figure B.8: Body angular velocity in the constant rotation experiment. Subfigures (a)–(c), respectively, show graphs of the
body angular velocity’s three components. (These are equivalently the components of the angular velocity w.r.t. the body basis
vectors, which are attached to the rigid body and rotate with it. The body basis vectors are illustrated, e.g., by the three arrows
attached to the top corner of the gray cuboid (the rigid body) in the inset in (a).) Each component is graphed thrice: once
from the ideal body angular velocity, specifically the w r¨s given by Eq. (32) in the main manuscript and (B.1) for ωm “ 31.41

using a thick, solid, slightly transparent line; once from the body angular velocity yielded by the
?
AO algorithm, namely rw r¨s,

using a thin, solid, opaque line; and finally from the body angular velocity yielded by the AO-algorithm, namely AO-rw r¨s, using
hollow markers. Subfigure (d) shows the magnitude of the angular velocity. It too is similarly graphed thrice.
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Figure B.9: Body angular velocity in the oscillatory rotation experiment. Subfigures (a)–(c), respectively, show graphs of the
body angular velocity’s three components. (These are equivalently the components of the angular velocity w.r.t. the body basis
vectors, which are attached to the rigid body and rotate with it. The body basis vectors are illustrated, e.g., by the three arrows
attached to the top corner of the gray cuboid (the rigid body) in the inset in (a).) Each component is graphed thrice: once from
the ideal body angular velocity, specifically the w r¨s given by Eq. (32) in the main manuscript and (B.2) for ωm “ 31.41 and
τ1 “ 11.62 using a thick, solid, slightly transparent line; once from the body angular velocity yielded by the

?
AO algorithm,

namely rw r¨s, using a thin, solid, opaque line; and finally from the body angular velocity yielded by the AO-algorithm, namely

AO-rw r¨s, using hollow markers. Subfigure (d) shows the magnitude of the angular velocity. It too is similarly graphed thrice.
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