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Abstract

Mild Traumatic Brain Injuries (mTBI) are caused by violent head motions or impacts. Most mTBI prevention strategies
xplicitly or implicitly rely on a “brain injury criterion”. A brain injury criterion takes some descriptors of the head’s motion
s input and yields a prediction for that motion’s potential for causing mTBI as the output. The inputs are descriptors of the
ead’s motion that are usually synthesized from accelerometer and gyroscope data. In the context of brain injury criterion, the
ead is modeled as a rigid body. We present an algorithm for determining the complete motion of the head using data from
nly four head mounted tri-axial accelerometers. In contrast to inertial measurement unit based algorithms for determining
igid body motion, the presented algorithm does not depend on data from gyroscopes, which consume much more power
han accelerometers. Several algorithms that also make use of data from only accelerometers already exist. However, those
lgorithms, except for the recently presented AO (accelerometer-only) algorithm [Rahaman MM, Fang W, Fawzi AL, Wan Y,
esari H (2020): J Mech Phys Solids 104014], give the rigid body’s acceleration field in terms of the body frame, which in
eneral is unknown. Compared to the AO-algorithm the presented algorithm is much more insensitive to bias type errors, such
s those that arise from inaccurate measurement of sensor positions and orientations.
2021 Elsevier B.V. All rights reserved.
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1. Introduction

Mild Traumatic Brain Injury (mTBI) is the most common injury among military personnel and it is estimated
hat as many as 600 per 100,000 people experience mTBIs each year across the world [1,2]. Mild Traumatic Brain
njuries are caused by violent head motions, that may occur from intense blunt impacts to the head in contact sports,
otor vehicle crashes, falls following blasts, etc. In mTBI, the motion of the head causes the soft tissue of the brain

o deform. The magnitude and time rate of brain deformation can cause brain cells to die [3–7].
There have been many strategies aimed at preventing mTBI. In sports, new rules aim to modify player behavior

n order to decrease or eliminate exposure to blunt impacts [8]. Helmets and neck collars are examples of equipment
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that can alter the motion experienced by the head. A jugular vein compression collar aims to change the stiffness
of the brain making it less susceptible to injury [9].

Most mTBI prevention strategies explicitly or implicitly rely on a “brain injury criterion” for their effective
ynthesis, implementation, and evaluation. A brain injury criterion takes some descriptors of the head’s motion as
nput and yields a prediction for that motion’s potential for causing mTBI as the output.

When we refer to any aspect of the head’s motion, we, in fact, are referring to that aspect as it pertains to
he skull’s motion; since it is the skull’s motion that is, at least currently, observable and quantifiable in the field,
ither using video recording equipment or inertial sensor systems. The Young’s modulus of bone from human
kulls generally lies in the 2–13 GPa range [10–12]. In comparison, brain tissue is extremely compliant. Recent
ndentation tests on brain slices that were kept hydrated show that the Young’s modulus of brain tissue lies in the
–2 kPa range (white matter 1.9±0.6 kPa, and gray matter 1.4±0.3 kPa) [13]. Due to this large disparity between
he skull’s and the brain’s stiffnesses, in biomechanical investigations of mTBI the skull is usually modeled as

rigid body [14,15]. Thus, inputs to the brain injury criteria are rigid body motion descriptors, such as angular
elocity time series, translational acceleration time series, etc., or a combination of such time series.

Rigid body motion can be thought of as a composition of translatory and rotatory motions. In initial brain injury
riteria the focus was on the head’s translatory motion. Two of the first published injury criteria are the Gadd Severity
ndex (SI) and the Head Injury Criterion (HIC) [16,17]. Both SI and HIC ignore the head’s rotations and take the
ead’s translational acceleration as their input. Later, however, it was realized that in the context of mTBI the head’s
otations play an even more important role in causing injury than its translations. The first brain injury criterion to
ake the rotational aspect of the head’s motion into consideration was GAMBIT [18]. The input to GAMBIT is the
uple of center-of-mass-acceleration and angular-acceleration time series. Following the development of GAMBIT,
rain injury criteria that use descriptors that only depend on the head’s rotational motion as inputs have also been
ut forward. One such criteria is the Brain Injury Criteria (BrIC) [19]. Aiming to compliment HIC, BrIC only uses
he head’s angular velocity time series as input. We also note that there is currently significant activity in applying
nite element modeling using 2D/3D anatomically consistent discrete geometry head models to evaluate or develop
ew brain injury criteria [20–22].

Irrespective of which existing, or yet to be developed, brain injury criterion will be used in the future, its
uccessful application will hinge on the availability of a robust algorithm for constructing the motion descriptor that
he criterion takes as input from measurable data. Currently, different algorithms are used to obtain the descriptors
aken by the injury criteria as inputs. The inputs to GAMBIT can be obtained from the measurements of one tri-
xial accelerometer and one tri-axial gyroscope mounted in a mouthguard [23] if the center-of-mass-acceleration and
ngular-acceleration are obtained by processing the data using the algorithm in [24]. In another example the input
o BrIC (i.e., angular velocity) is prepared by numerically integrating the angular acceleration, which is determined
y applying the 6DOF algorithm [25] to the data from 12 single-axis accelerometers mounted in a helmet [26].
nterestingly the inputs to most of the currently employed brain injury criteria can be prepared from the knowledge
f a few key rigid body motion descriptors. To make this idea more concrete, consider the following equation,
hich is often used to describe rigid body motion,

x(τ ) = Q(τ )X + c(τ ). (1.1)

In (1.1) τ is a real number that denotes a non-dimensional time instant; X is a column matrix of real numbers
hat denotes the initial position vector of a rigid body material particle; x(τ ) is the column matrix of real numbers
hat denotes that material particle’s position vector at the time instance τ ; Q(τ ) is a time dependent square matrix
f real numbers with positive determinant whose transpose equals its inverse; and c(τ ) is a time dependent column
atrix of real numbers. The matrix Q(τ ) quantifies the rotation or orientation of the rigid body at the time instance
, while c(τ ) quantifies the rigid body’s translation at that time instance. The inputs to most current brain injury
riteria can be computed from a knowledge of the maps Q and c and their first and second-order time derivatives,
.e., Q′, c′, Q′′, c′′. In this manuscript we present an algorithm for determining these maps and their derivatives
sing data from only four tri-axial accelerometers. The only requirement on the accelerometers’ positions is that
ll the accelerometers not lie on the same plane.

The presented algorithm has some similarities to the one recently presented by Rahaman et al. [27]1, which is
eferred to as the AO (accelerometer-only) algorithm. For reasons that will become clear shortly, we refer to the

1 A graphical user interface for applying the AO algorithm to different types of data sets and visualizing its results is freely available [28].
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algorithm that we present in this manuscript as the
√

AO-algorithm. The AO-algorithm also presents a framework for
completely determining the rigid body’s motion, i.e., for constructing the maps Q and c and their time derivatives,
using data only from four tri-axial accelerometers not lying on the same plane. The reasons why it is required
that the accelerometers not lie on a plane in the

√
AO and the AO algorithms are the same. They are discussed in

[27, §2.1, §3.1, §5]. The
√

AO-algorithm has all the advantages of the AO-algorithm.
There are existing algorithms for completely determining a rigid body’s motion using sensor data. However, these

algorithms take data from sensor systems called inertial measurement units (IMUs). These units contain one or more
gyroscopes. One of the primary advantages of the AO and

√
AO algorithms is their non-dependence on gyroscopes.

or a detailed discussion on why accelerometers are preferable over gyroscopes in the context of mTBI please see §1
n [27]. Briefly, gyroscopes’ power requirements are much higher than those of accelerometers (gyroscopes consume
pproximately 25 times more power than accelerometers [29]), and algorithms that aim to construct descriptors of a
igid body’s acceleration using data from gyroscopes add a significant amount of noise to those descriptors [30,31].

Several algorithms exist for constructing inputs to brain injury criteria that too only make use of data from
ccelerometers (Padgaonkar et al. [32], Genin et al. [33] and Naunheim et al. [34]). These algorithms, however,
ive much more limited information than is given by the AO and the

√
AO algorithms. For example, all these

algorithms give the rigid body’s acceleration field in terms of the body frame, which is a set of vectors that are
attached to the rigid body, and hence move with it. These algorithms do not provide any information of how the
body frame is oriented in space. However, that information is critical for constructing inputs for the upcoming
finite element based brain injury criteria. The AO and the

√
AO algorithms provide complete information of how

he body frame is oriented in space. See §1 in [27] for further discussion on the advantages of the AO and the
AO algorithms over other algorithms that also make use of only accelerometer data.
Despite its many advantages we note that the AO-algorithm has one critical limitation. It is quite sensitive to bias

type errors in the accelerometer data. Bias type errors are distinct from random errors in that they do not arise as a
consequence of stochastic processes. For accelerometers, bias type errors can arise as a consequence of inaccurately
defining sensor position and orientation (see Fig. 1). As we explain below, the advantage of the

√
AO-algorithm

ver the AO-algorithm is that it is far less sensitive to bias type errors than the AO-algorithm.
One of the critical steps in the

√
AO and the AO algorithms is the determination of the map τ ↦→ W(τ ). Here

W(τ ) is a time dependent skew-symmetric matrix of real numbers that is related to the rigid body’s angular velocity.
n the AO-algorithm W is determined by numerically integrating the equation ([27, 3.12])

W
′

(τ ) = skew part of P(τ ). (1.2)

Here P(τ ) is a square matrix of real numbers that is to be computed from the accelerometers’ data, relative locations,
and orientations. Due to numerical integration any bias type errors in P will give rise to errors in W that grow with
time. In the

√
AO-algorithm we alternatively determine W by taking the square-root of the equation

W(τ )W(τ ) = symmetric part of P(τ ). (1.3)

We derive (1.3) in Appendix B. Due to the elimination of the numerical integration step associated with the solution
of (1.2), the

√
AO-algorithm gives much better persistent accuracy over time when applied to the data containing

bias type errors, compared to the AO-algorithm.
In Section 2 we present the mathematics and mechanics of rigid body motion from [27, §2] that is needed for the

development of the
√

AO-algorithm. In Section 3 we review the AO-algorithm as preparation for the development
of the

√
AO-algorithm. In Section 4 we detail the

√
AO-algorithm and present a procedure for taking the square

oot of (1.3). In Section 5 we check the validity and robustness of the
√

AO-algorithm. We do so by feeding in
virtual accelerometer data, to which differing amounts of bias and noise type errors have been added, to both the
√

AO and AO algorithms and comparing their predictions. Using those predictions in Section 6 we show that the
√

AO-algorithm is less sensitive to bias type errors than the AO-algorithm. We make a few concluding remarks in
Section 7.

2. Preliminary mathematics and kinematics of rigid body motion

In this section we briefly recapitulate the mathematics and kinematics of rigid body motion from [27, §2] that
√

AO-algorithm.
re needed for the development of the proposed

3
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(

W

Fig. 1. Bias and noise type errors in acceleration component measurements. When there are errors δX and δθ in accurately defining an
accelerometer’s position and orientation, respectively (see (a)), bias type errors can occur in the measurement of acceleration components
(see (b)). Noise type errors in the acceleration component measurements are usually a consequence of seismic, electrical, and other types
of noise.

2.1. Notation

Let E be a finite dimensional, oriented, Hilbert space, i.e., a Euclidean vector space. The Euclidean point space
E has E as its associated vector space. Let o ∈ E be E ’s origin. The spaces E and E are related to each other
such that for any point x ∈ E there exists a vector x ∈ E such that o + x = x . The topological space B serves
as our model for a rigid body that executes its motion in E . For that reason, we refer to E and E as the physical
Euclidean vector space and point space, respectively. The spaces ER and ER are another pair of Euclidean vector
and point spaces, respectively, that are related to each other in the same way that E and E are related to each other.
We refer to ER and ER as the reference Euclidean vector and point spaces, respectively. The spaces E, E , ER, and
ER have the same dimension, which we denote as nsd. The dimension of B is less than or equal to nsd. We call a
select continuous, injective map from B into ER the reference configuration and denote it as κR. The elements of
B are called material particles. We call X = κR(X ), where X ∈ B, the reference position vector of the material
particle X , and we call the set κR(B) =

{
κR(X ) ∈ ER

⏐⏐ X ∈ B
}

the reference body (see Fig. 2). When we refer
to X as a material particle we in fact mean the material particle κ−1

R (X) ∈ B. We model time as a one-dimensional
normed vector space T and denote a typical element in it as τ = τ s, where τ ∈ R and s is a fixed vector in T of
unit norm. We model the rigid body’s motion using the one-parameter family of maps xτ : ER → E (see Fig. 2).
We call xτ the deformation map and x = xτ (X) the material particle X’s position vector at the time instance τ .
The set κτ (B) =

{
xτ (X) ∈ E

⏐⏐ X ∈ κR (B)
}

(see Fig. 2) is called the current body.

2.2. Components

The sets (Ei )i∈I and (ei )i∈I , where I = (1, . . . , nsd), are orthonormal sets of basis vectors for ER and E,
respectively. By orthonormal we mean that the inner product between Ei and E j , or ei and e j , where i, j ∈ I ,
equals δi j , the Kronecker delta symbol, which equals unity iff i = j and zero otherwise. We call X i the component
of X w.r.t. Ei iff X i = X · Ei , where the dot denotes the inner product in ER. The dot in other expressions is to be
similarly interpreted noting the space to which the vectors belong. We call the ordered set (X i )i∈I the component
form of X w.r.t. (Ei )i∈I and denote it as X or MX . We denote the space of all m × n real matrices, where
m, n ∈ N, Mm,n(R); here N and R denote the set of natural numbers and the space of real numbers, respectively.
Thus, X ∈ Mnsd,1(R). We access the i th component, where i ∈ I , of X, which of course is X i , as (X)i . Similarly,
we denote the component of x w.r.t. ei as xi and call x = (xi )i∈I ∈ Mnsd,1(R) the component form of x w.r.t.
ei )i∈I .

Say W and U are two arbitrary, oriented, finite dimensional Hilbert spaces; for instance, they can be ER and E.
e denote the space of all linear maps (transformations/operators) from W to U as L (W,U)2. We denote the norm

2 In our previous paper [27] we denoted the set of bounded linear operators from U to W as B(U,W). As a linear operator on a finite
dimensional normed space is automatically bounded, here we use L (U,W) instead of B(U,W) to denote the set of all linear operators
from U to W.
4
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Fig. 2. Some mathematical quantities used in the description of motion. Illustration of the reference Euclidean vector space ER, reference
ody κR(B), a material particle X , the deformation map xτ , current body κτ (B), the (physical) Euclidean vector space E, and the location
f the material particle X in E, i.e., the material particle X’s spatial position vector x. See Section 2.1 for details.

f a vector w1 in W that is induced by W’s inner product, i.e., (w1 · w1)1/2, as ∥w1∥. For u1 ∈ U, the expression
u1 ⊗ w1 denotes the linear map from W to U defined as

(u1 ⊗ w1) w2 = u1 (w1 · w2) , (2.1)

here w2 ∈ W. If the sets (ui )i∈I and (wi )i∈I provide bases for U and W, respectively, then it can be shown that(
ui ⊗ w j

)
j∈I

)
i∈I

, which we will henceforth abbreviate as
(
ui ⊗ w j

)
i, j∈I

, provides a basis for L (W,U). The

umber Ti j , where i, j ∈ I , is called the component of T ∈ L (W,U) w.r.t. ui ⊗ w j iff Ti j = ui ·
(
Tw j

)
. We call

he nested ordered set
(
Ti j

)
i, j∈I

the component form of T w.r.t.
(
ui ⊗ w j

)
i, j∈I

, and denote it as M T , or, when
ossible, briefly as T. We sometimes access the i th, j th component of T, where i, j ∈ I , as (T)i j .

From here on, unless otherwise specified, we will be following the Einstein summation convention. As per this
onvention a repeated index in a term will imply a sum over that term with the repeated index taking values in I .
or example, the expression X i Ei represents the sum

∑
i∈I X i Ei . And an unrepeated index in a term will signify

set of nsd terms. For example, the term Ei represents the set
{

Ei
⏐⏐ i ∈ I

}
.

.3. Velocities and accelerations

For the case of rigid body motion xτ takes the form

xτ (X) = Qτ X + c(τ ), (2.2)

here Qτ is a proper (orientation preserving), linear isometry from ER into E and c(τ ) = ci (τ )ei , where ci belongs
o the space of twice continuously differentiable real valued functions over R, i.e., to C2 (R,R). The operator Qτ

an be written as Qi j (τ )ei ⊗E j , where Qi j ∈ C2 (R,R) and satisfy Qki (τ )Qk j (τ ) = δi j for all τ ∈ R. We abbreviate
Qi j (τ )

)
i, j∈I

∈ Mnsd,nsd (R), (ci (τ ))i∈I ∈ Mnsd,1(R), and (δi j )i, j∈I ∈ Mnsd,nsd (R) as Q(τ ), c(τ ), and I, respectively.
he component or non-dimensional form of (2.2) is (1.1). Since Qτ is a proper isometry, it follows that Q(τ ), which
e refer to as the rotation matrix, belongs to the special orthogonal group SO(nsd). As a consequence of belonging

to SO(nsd) the matrix Q(τ ) satisfies the equations

QT(τ ) Q(τ ) = I, (2.3a)

and
T
Q(τ ) Q (τ ) = I, (2.3b)

5
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where QT(τ ) is the transpose of Q(τ ), i.e., QT(τ ) =
(
Q(τ )

)T.
We call L (T,E) the physical velocity vector space and denote it as V. It can be shown that the set (vi )i∈I , where

vi ∈ V and are defined such that viτ = τ ei , provides an orthonormal basis for V. The velocity of a material particle
X executing its motion in E lies in V. The velocity of the material particle X at the instant τ , which we denote as
V τ (X), equals the value of the Fréchet derivative3 of the map T ∋ τ ↦→ xX (τ ) ∈ E, where xX (τ ) = xτ (X), at the
time instance τ . Thus, it follows from (2.2) that

V τ (X) = Lτ X + c′(τ ), (2.4)

where Lτ := Q′

i j (τ )vi ⊗ E j and c′(τ ) := c′

i (τ )vi , and Q′

i j and c′

i are the derivatives of Qi j and ci , respectively.

We abbreviate
(

Q′

i j (τ )
)

i, j∈I
∈ Mnsd,nsd (R) and

(
c′

i (τ )
)

i∈I
∈ Mnsd,1(R) as Q′(τ ) and c′(τ ), respectively. Using

(2.4) and (2.2) it can be shown that the velocity at the time instance τ of the material particle occupying the spatial
position x ∈ E at the time instance τ is W τ (x − c(τ )) + c′(τ ), where the linear map W τ : E → V is defined by
the formula

W τ x = Lτ Q∗

τ x, (2.5)

for all x ∈ E. The operator Q∗

τ is the Hilbert-adjoint of Qτ and is equal to Q j i (τ )Ei ⊗ e j . Let the component form
of W τ w.r.t.

(
vi ⊗ e j

)
i, j∈I

be
(
Wi j (τ )

)
i, j∈I

∈ Mnsd,nsd (R), which we abbreviate as W(τ ). It follows from (2.5)
that Wi j (τ ) = Q′

ik(τ )Q jk(τ ), or equivalently,

W(τ ) = Q′(τ )QT(τ ). (2.6)

We call L (T,V) the physical acceleration vector space and denote it as A. It can be shown that the set (ai )i∈I ,
where ai ∈ A and are defined such that aiτ = τvi , provides an orthonormal basis for A. The acceleration of a
material particle X executing its motion in E lies in A. The acceleration of X at the time instance τ equals the
value of the Fréchet derivative of the map T ∋ τ ↦→ V X (τ ) ∈ V, where V X (τ ) = V τ (X), at the time instance τ .
Thus, it follows from (2.4) that

Aτ (X) = Mτ X + c′′(τ ), (2.7)

where the map Mτ : ER → A is defined by the equation

Mτ := Q′′

i j (τ )ai ⊗ E j (2.8)

and c′′(τ ) := c′′

i (τ )ai , where Q′′

i j and c′′

i are the derivatives of Q′

i j and c′

i , respectively. Let Aτ i (X) be the component

of Aτ (X) w.r.t. ai . We abbreviate the ordered sets (Aτ i (X))i∈I ∈ Mnsd,1(R),
(

Q′′

i j (τ )
)

i, j∈I
∈ Mnsd,nsd (R), and(

c′′

i (τ )
)

i∈I
∈ Mnsd,1(R) as Aτ (X), Q′′(τ ), and c′′(τ ), respectively.

We will predominantly be presenting the ensuing results in component form. The component form can be
converted into physical or dimensional form. Therefore, from here on we will be often omit explicitly using the
qualification “is the component form of” when referring to the component form of a physical quantity. For example,
instead of saying “Aτ (X) as the component form of the acceleration of the material particle X at the time instance
τ”, we will often write “Aτ (X) is the acceleration of the material particle X at the time instance τ”. The acceleration
Aτ (X) can be interpreted as the value of the (non-dimensional) acceleration field Aτ : BR(B) → R3, where we call
BR(B) :=

{
(X1, X2, X3) ∈ R3

⏐⏐ X i Ei ∈ κR(B)
}

the non-dimensional reference body.

3. Review of the AO-algorithm

Let Qτ : A → ER be defined by the equation

Qτ = Q j i (τ )Ei ⊗ a j , (3.1)

then we call the map Aτ : κR(B) → ER defined by the equation

Aτ (X) = Qτ Aτ (X) (3.2)

3 For the definition of Fréchet derivative in the context of the current work see [27, §2.1].
6
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the “Pseudo-acceleration field”. Say Aτ i (X) is the component of Aτ (X) w.r.t. Ei , then we abbreviate
(

Aτ i (X)
)

i∈I
∈

Mnsd,1(R), the component form of Aτ (X) w.r.t. Ei , as Aτ (X). From the definitions of the pseudo acceleration field
Aτ (3.2), and Aτ (X), and the definitions of Aτ (X), and Q(τ ), which are given in Section 2.3, it follows that

Aτ (X) = Q(τ )Aτ (X). (3.3)

In [27, §2.1.1] it was shown that

Aτ (X) = P(τ )X + q(τ ), (3.4)

where

P(τ ) = QT(τ ) Q′′(τ ) (3.5)

is the component form of the linear map Pτ := Qτ ◦ Mτ w.r.t.
(
Ei ⊗ E j

)
i, j∈I

, and q(τ ) ∈ Mnsd,1(R) is the
omponent form of

q(τ ) := Qτ c′′(τ ) (3.6)

w.r.t. (Ei )i∈I . Thus, the acceleration field Aτ is taken to be fully determined once Q(τ ), P(τ ), and q(τ ) have been
computed.

Both the AO and the
√

AO algorithms can be described as consisting of three primary steps. The AO-algorithm’s
hree steps can briefly be described as follows:

O-Step 1 Compute (time discrete versions of) the maps τ ↦→ P(τ ) and τ ↦→ q(τ ) using the measurements and
the geometry of the arrangement of the four tri-axial accelerometers.

O-Step 2 Compute the map τ ↦→ W(τ ), where

W(τ ) := QT(τ )W(τ )Q(τ ), (3.7)

using the map P computed in AO-Step 1 and numerically integrating (1.2). From Lemma B.1 we have
that the matrix W(τ ) belongs to the space of nsd × nsd real skew-symmetric matrices, which we denote
as so(R, nsd).

O-Step 3 Compute the map τ ↦→ Q(τ ) using the W map computed in AO-Step 2 and numerically integrating the
equation

Q′(τ ) = Q(τ )W(τ ). (3.8)

Eq. (3.8) is from [27], where it appears as equation 3.14.

Step one of the
√

AO-algorithm has two sub-steps: the predictor step and the corrector step. The predictor
step is the same as AO-Step 1 of the AO-algorithm. The corrector step is necessary for carrying out step two
of the

√
AO-algorithm. In step two of the

√
AO-algorithm instead of obtaining W from (1.2), as is done in the

AO-algorithm, we obtain it from (1.3). More precisely, in the
√

AO-algorithm W(τ ) is obtained as the square root
f the symmetric part of P(τ ). We use sym(P(τ )) to denote the symmetric part of P(τ ). The derivation of (1.3) is
resented in Appendix B. A procedure for determining W(τ ) as the square root of sym(P(τ )), i.e., for solving (1.3)
or W(τ ) with given P(τ ), is presented in Section 4.2. The goal of step three of the

√
AO-algorithm is to compute

Q using the W computed in step two. It involves using a slightly modified version of the numerical integration
cheme described by equations 3.15, 3.16, and 3.17 in [27, §3.2] to solve (3.8). We discuss it in Section 4.3.

. The
√

AO-algorithm

As we mentioned in Section 3 the
√

AO algorithm consists of three primary steps. Those steps are as follows:

Step 1 Compute (time discrete versions of) the maps τ ↦→ P(τ ) and τ ↦→ q(τ ) using the measurements and the
geometry of the arrangement of the four tri-axial accelerometers (see Section 4.1 for details).

Step 2 Use (1.3) and the P map obtained from Step 1 to solve for τ ↦→ W(τ ). That is, for each τ in a discrete
sequence of time instances, compute W(τ ) as the square root of the symmetric part of P(τ ) (for details see
Section 4.2).

Step 3 Compute (a time discrete version of) the map τ ↦→ Q(τ ) using the W map computed in Step 2 and
numerically integrating (3.8) (details in Section 4.3).
7
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4.1.
√

AO-Algorithm, Step 1 of 3

In §3.1 of [27] a method was presented to estimate P(τ ) and q(τ ) from the accelerometer measurements
corresponding to the time instance τ . Applying that method for each τ in a discrete time sequence yields a numerical
approximation for the maps τ ↦→ P(τ ) and τ ↦→ q(τ ). We present here an augmented version of that method
for computing similar numerical approximations. The primary difference between our method and that presented
in [27] is that the estimate for P(τ ) yielded by our method is certain to retain some of the mathematical properties
that are expected of P(τ ) based on our theoretical analysis. Specifically, it follows from Lemmas C.1 and C.2
hat sym(P(τ )) is a negative semidefinite matrix with its negative eigenvalues, if any, being of even algebraic

ultiplicities. These mathematical properties of P(τ ) are critical for carrying out Step 2 of the
√

AO-algorithm. We
found that experimental noise and errors can cause the estimate for P(τ ) provided by the method presented in [27]
o lose the aforementioned mathematical properties. Our method, on the contrary, ensures that the symmetric part of
he estimated P(τ ) is negative semidefinite and that its negative eigenvalues, when they exist, are of even algebraic

ultiplicities. Once P(τ ) is estimated, our method to estimate q(τ ) is exactly the same as that in [27]. We review
t in 4.1.2.

.1.1. Estimating P(τ )
Our method for estimating P(τ ) can be described as consisting of two steps: a predictor step and a corrector step.

n the predictor step we use the method presented in [27, §3.1] for estimating P(τ ) to compute a prediction for P(τ ).
e denote this prediction as Pp(τ ). In the corrector step we estimate P(τ ) as the sum of Pp(τ ) and a correction

erm, which we construct using Pp(τ ). The correction term is constructed such that the estimated P(τ ) is as close
s possible to Pp(τ ) under the constraint that the estimated P(τ )’s symmetric part is negative semidefinite and its
egative eigenvalues (if they exist) are of even algebraic multiplicities.

redictor step. Say the four tri-axial accelerometers are attached to the rigid body B at the material particles
lX

)
ℓ∈J

, where J := (1, . . . , 4), and let the position vectors of those particles in ER, respectively, be
(
lX

)
ℓ∈J

see Fig. 3). A tri-axial accelerometer is capable of measuring the components of its acceleration in three
utually perpendicular directions. We refer to those directions as the accelerometer’s measurement directions.
he measurement directions are usually marked on the accelerometer package by the manufacturer as arrows

hat are labeled x , y, and z. As B moves in E, the attached accelerometers move with it, and, therefore, the
easurement directions (in E) can change with time. For an accelerometer ℓ, where ℓ ∈ J , we denote its time

arying measurement directions in E using the orthonormal set
(
leτ i

)
i∈I

. Assuming that the accelerometers remain
igidly attached to B, i.e., their positions and orientations w.r.t. B do not change as B moves in E, it can be
hown that Q∗

τ
leτ i , where ℓ ∈ J , i ∈ I , is a constant vector in ER, which we denote as lEi . The position vectors

lX
)
ℓ∈J

and the directions
(
lEi

)
ℓ∈J ,i∈I

are known from the arrangement and orientation of the accelerometers
t the experiment’s beginning.

For ℓ ∈ J , let lA(τ ) :=
(
lα j (τ )lE j · Ei

)
i∈I

(no sum over ℓ), where lαi (τ ), i ∈ I , is the measurement reported
y accelerometer lX for the (non-dimensional) component of its acceleration in the leτ i direction4 at the time
nstance τ . And let lX :=

(
lX · Ei

)
i∈I

. Then, we compute Pp(τ ) as P(τ ) is estimated in [27] using the equation

Pp(τ ) =

((
i∆A(τ )

)T ( j∆X
)) ((i∆Y

) ( j∆Y
)T

)
, (4.1)

where i∆A(τ ) :=
i+1A(τ ) −

1A(τ ), i∆X :=
i+1X −

1X. The ordered sets i∆Y belong to Mnsd,1(R) and are defined by
he equation(1∆Y, . . . , nsd∆Y

)
=

(1∆X, . . . , nsd∆X
)−T

, (4.2)

where (·)−T is the operator that acts on an invertible element of Mnsd,nsd (R) and returns the transpose of its inverse.

4 Or to be mathematically precise, in the la ∈ A direction that is defined such that
(
l

)
l

τ i aτ i s s = eτ i .

8



Y. Wan, A.L. Fawzi and H. Kesari Computer Methods in Applied Mechanics and Engineering 390 (2022) 114271

C

w

a

d

w
f
p
w
a
r
w
N
s
i
e
(

Fig. 3. Schematic of the locations and orientations of four tri-axial accelerometers (left) and their motion (right).
Source: modified from [27].
© 2020 Elsevier.

orrector step. In Appendix D.1 we show that sym(P(τ )) allows itself to be decomposed as

N(τ ) D(τ ) NT(τ ), (4.3a)

here N(τ ) ∈ Mnsd,nsd (R) is an orthogonal matrix, i.e.,

NT(τ )N(τ ) = I, (4.3b)

nd D(τ ) ∈ Mnsd,nsd (R) is a diagonal matrix that for nsd = 2 and 3, respectively, has the form

D(τ ) = diag
(
−λ(τ )2, −λ(τ )2) and diag

(
0, −λ(τ )2, −λ(τ )2) , (4.3c)

where λ(τ ) ∈ R and the function diag(·) : Fnsd → Mnsd,nsd (F), where F is either R or C, is defined such that
iag(a1, . . . , ansd ) is a diagonal matrix with diagonal entries a1, . . . , ansd .

The matrix sym(P(τ )) allowing the decomposition (4.3) is critical for carrying out Step 2 of the
√

AO-algorithm.
In an ideal scenario, in which there are no experimental errors or noise in the accelerometer measurements, Pp(τ )

ould be the same as P(τ ). However, due to the experimental noise and other errors Pp(τ ) will generally be different
rom P(τ ). In general, such a deviation would not be of much consequence, since, experimental measurements of
hysical quantities, more often than not, are different from the true values of those quantities. Thus, generally,
e would, as done by [27], take Pp(τ ) to be the final estimate for P(τ ) and no longer distinguish between Pp(τ )

nd P(τ ). However, in the present case the deviation of Pp(τ ) from P(τ ) has an important consequence which
equires us to not take Pp(τ ) as P(τ )’s final estimate. The important consequence is that in general sym(Pp(τ ))
ill not allow a decomposition of the form (4.3). In general, it will only allow itself to be decomposed as
p(τ ) diag

(
λi (τ ), . . . , λnsd (τ )

)
NT

p(τ ), where Np(τ )’s columns are the eigenvectors of sym(Pp(τ )) that are chosen
uch that Np(τ ) is orthogonal and their corresponding eigenvalues λi (τ ) ∈ R form a non-increasing sequence,
.e., λ1(τ ) ≥ · · · ≥ λnsd (τ ). Therefore, instead of taking Pp(τ ) as the final estimate of P(τ ) we derive the final
stimate for P(τ ), as we detail next, using Pp(τ ) so that its symmetric part does allow a decomposition of the form

4.3).

9
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We take the skew-symmetric part of our final estimate for P(τ ) to be the same as that of Pp(τ ). We take its
ymmetric part to be

Np(τ ) Ď(τ ) NT
p(τ ), (4.4a)

here

Ď(τ ) := diag
(

0, −λ̌(τ )2, −λ̌(τ )2
)

, (4.4b)

ith

λ̌(τ ) :=

{√
−

λ2(τ )+λ3(τ )
2 , λ2(τ ) + λ3(τ ) ≤ 0,

0, λ2(τ ) + λ3(τ ) > 0,
(4.4c)

for nsd = 3, and

Ď(τ ) := diag
(
−λ̌(τ )2, −λ̌(τ )2

)
, (4.4d)

with

λ̌(τ ) :=

{√
−

λ1(τ )+λ2(τ )
2 , λ1(τ ) + λ2(τ ) ≤ 0,

0, λ1(τ ) + λ2(τ ) > 0,
(4.4e)

for nsd = 2.
The orthogonal matrix Np(τ ) and the eigenvalues λi (τ ) can be obtained from the spectral or symmetric-Schur

[35, §8] decomposition of sym(Pp(τ )). Since sym(Pp(τ )) is a real symmetric matrix, it is always possible to carry
out sym(Pp(τ ))’s spectral or symmetric Schur decomposition.

To summarize, we take P(τ )’s final estimate to be

Pp(τ ) + ∆P(τ ), (4.5a)

where

∆P(τ ) := sym
(
P̌(τ ) − Pp(τ )

)
, (4.5b)

with

P̌(τ ) := Np(τ )Ď(τ )NT
p(τ ). (4.5c)

It can be ascertained that the symmetric part of our final estimate for P(τ ), namely P̌(τ ), allows a decomposition
f the form (4.3). In fact, that decomposition is precisely the one given by (4.4). For nsd = 2 or 3 it can be shown
hat P̌(τ ) is the best approximation, in the Frobenius norm, to sym(Pp(τ )) in the set of nsd × nsd real symmetric
egative-semidefinite matrices whose negative eigenvalues (when they exist) are of even algebraic multiplicities.

.1.2. Estimating q(τ )
After estimating P(τ ) as described in Section 4.1.1 using (4.5) we estimate q(τ ) as

lĀ(τ ) − P(τ ) lX, (4.6)

here l is some particular integer in J .

.2.
√

AO-Algorithm, Step 2 of 3

In Appendix D.2 we show using P(τ )’s decomposition (4.3) that W(τ ) can be computed from (1.3) as

W(τ ) = ±

{
N(τ ) ⋆ (λ(τ )) NT(τ ), nsd = 2,

N(τ ) ⋆ ((λ(τ ), 0, 0)) NT(τ ), nsd = 3,
(4.7)

here the map ⋆ · is defined in Appendix A.
( )

10
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Using the decomposition (4.4) for the symmetric part of our final estimate for P(τ ) and similar calculations as
hose used in Appendix D.2, it can be shown that if we compute our final estimate for W(τ ) as

±

⎧⎨⎩Np(τ ) ⋆
(
λ̌(τ )

)
NT

p(τ ), nsd = 2,

Np(τ ) ⋆
((

λ̌(τ ), 0, 0
))

NT
p(τ ), nsd = 3,

(4.8)

hen it and our final estimate for P(τ ) will satisfy (1.3).
We take the time discrete versions of the W and P maps to be constant over each time interval ∆τn :=

[n∆τ, (n + 1)∆τ ), where n ∈ (0, 1, . . .) and ∆τ ∈ R. We denote the values of these two maps over ∆τn as
W(n) and P(n), respectively. The quantity W(0) is known from initial conditions. For n > 0 we compute W(n)

sing (4.8). Using the positive and negative signs in (4.8) will give us two different estimates for W(n). Among
hose two estimates we choose the one that is closer to W’s value over the previous time interval. To be precise,
e choose the estimate that gives a lower value for the metric m(W(n), W(n − 1)), where m : so(R, nsd)2

→ R,

m(W(n), W(n − 1)) = arccos

⎛⎝ ⋆
(
W(n)

)
· ⋆

(
W(n − 1)

)
∥ ⋆

(
W(n)

)
∥∥ ⋆

(
W(n − 1)

)
∥

⎞⎠ . (4.9)

The metric (4.9) is a measure of the difference between W(n) and W(n − 1). Our criterion for choosing between
he two estimates given by (4.8) is essentially based on the assumption that in most practical scenarios W should

be a continuous function of time, and on the ansatz that due to the continuity of W the true W(n) would be the one
hat is closer to W(n − 1) when ∥ ⋆

(
W(n − 1)

)
∥ is large.

If W(n − 1) = 0 or when ∥ ⋆
(
W(n − 1)

)
∥ is small, then our above criterion for choosing between the two

estimates for W(n) cannot be used. In such cases we first derive a prediction for W(n) by applying the AO-algorithm
o the previous time interval and then choose the estimate that is closer to that prediction.

.3.
√

AO-Algorithm, Step 3 of 3

We use a slightly modified version of the numerical integration scheme described by equations 3.15, 3.16, and
3.17 in [27, §3.2] to solve (3.8). As we did with W and P, we assume that the discrete version of Q remains
onstant over each time interval ∆τn and denote its constant values as Q(n), where n ∈ (0, 1, . . .). The matrix Q(0)
s taken to be known from the initial conditions of the experiment. For n > 0 the matrix Q(n) is computed as

Q(n) = Q(n − 1) e
∆τ W

n−
1
2 , (4.10a)

where the map e(·) : so(R, nsd) → SO(nsd) is defined by the equation5

e(·)
= I + sinc (∥⋆ (·)∥) (·) +

1
2

(
sinc

(
∥⋆ (·)∥

2

))2

(·)2 , (4.10b)

nd

Wn−
1
2

:=
1
2

(
W(n) + W(n − 1)

)
. (4.10c)

The difference between the integration scheme (4.10) and that given by 3.15, 3.16, and 3.17 in [27, §3.2]
s the manner in which Wn−

1
2

is computed. In Rahaman et al.’s integration scheme, Wn−
1
2

is computed as

W(n − 1) +
∆τ

2 skew(P(n − 1)), whereas we compute it using (4.10c). Here we use skew(P(n − 1)) to denote
the skew-symmetric part of the matrix P(n − 1).

5 This equation is the corrected version of equation 3.17 in [27, §3.2], which has two typos in it.
11
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5. In silico validation, evaluation and comparison of the
√

AO-algorithm

In this section, we check the validity and robustness of the
√

AO-algorithm. We do that by feeding in virtual
accelerometer data, to which differing amounts of bias and noise type errors have been added, to the

√
AO and AO

algorithms, and comparing their resulting predictions. We discuss the creation of the virtual accelerometer data in
Section 5.1, and simulating bias and noise type errors in Section 5.2. We compare the predictions in Section 5.3.

5.1. Virtual accelerometer data from the simulation of a rigid ellipsoid impacting an elastic half-space

The virtual accelerometer data we use for the comparison is from the numerical simulation of a rigid ellipsoid
impacting an elastic half-space. This simulation is presented and discussed in detail in [27], starting in §4. However,
for the readers convenience we give a very brief description of that simulation here.

In the simulation an ellipsoid, B, is dropped onto an elastic half-space, H , under the action of gravity with the
initial angular and translational velocities prescribed (see Fig. 5). In the simulation the Euclidean point space E ,
in which the ellipsoid and the half-space, respectively, execute their motion and deformation, is taken to be three
dimensional, i.e., nsd = 3. The vectors Ei and ei , i ∈ I , are taken to have units of meters and s to have units of
econds. Hence vi and ai , i ∈ I , have units of meters-per-second and meters-per-second-squared, respectively.

The reference configuration of the ellipsoid is given in Fig. 4. In ER the ellipsoid occupies the region
(X1, X2, X3)

⏐⏐ (X1/a)2
+ (X2/b)2

+ (X3/c)2
≤ 1

}
, where (a, b, c) = (0.15, 0.10, 0.08). The half-space when it

is undeformed in E occupies the region x3 < 0. The initial location and orientation of B w.r.t. H in E are shown
in Fig. 5. They correspond to the initial conditions Q(0) = diag (1, 1, 1) and c(0) = (0, 0, 0.75).

The mechanics of H is modeled using the theory of small deformation linear elasto-statics and taking H ’s
Young’s modulus and Poisson’s ratio to be 104 Pa and 0.3, respectively. The ellipsoid is rigid and homogeneous.
Its density and total mass are 1989.44 kg/m3 and 10 kg, respectively.

The ellipsoid’s dynamics are obtained by numerically solving its linear and angular momentum balance equations.
The force in those equations arises due to the action of gravity on B and B’s interaction with H ; and the torque
exclusively from B’s interaction with H . The interaction between B and H is modeled using the Hertz contact
theory, e.g., [36,37]. For details on effecting a numerical solution to the balance equations see [27, §B1.1]. For
more details regarding the contact modeling see [27, §B1.2].

Four virtual accelerometers are taken to be rigidly attached to the ellipsoid’s material particles lX , ℓ ∈ J . The
locations and orientations of those accelerometers w.r.t. B in ER are shown in Fig. 4. Their position vectors lX
and orientations

(
lEi

)
i∈I

, ℓ ∈ J , are given in the caption of Fig. 4. The acceleration of any of the ellipsoid’s
aterial particles can be obtained from the simulation results using the procedure outlined in [27, §B2]. For i ∈ I ,

he values of 1αi , which is the component of 1X ’s acceleration in the 1eτ i direction, or to be more precise the 1aτ i
irection (see footnote 4 and Fig. 5), at a sequence of time instances are shown in Fig. 6(a).

.2. Adding synthetic errors to virtual accelerometer data

The acceleration components lαi , ℓ ∈ J , from the simulation do not contain any errors; other than, of course,
he errors that arise due to numerical discretization of the balance equations, numerical round-off, etc. However,
hose type of errors are of insignificant magnitude. Using the error free virtual accelerometer data lαi , ℓ ∈ J , from

the simulation we generate virtual error-inclusive accelerometer data lαError
i , ℓ ∈ J , as

lαError
i (τ ) =

lαi (τ ) + ητ . (5.1)

In Eq. (5.1) ητ denotes a particular realization of the Ornstein–Uhlenbeck (OU) process [38]. We will describe
hortly what we mean by a “realization”. The OU process is a continuous time and state stochastic process that is
efined by the integral equation

ητ1+τ2 − ητ1 = β

∫ τ1+τ2

τ1

(µ − ητ ) dτ + σ

∫ τ1+τ2

τ1

dWτ , (5.2)

where the second integral on the right is an Itô integral and Wτ is the Wiener process [39]. The real number µ is
called the mean value, σ ≥ 0 the diffusion coefficient, and β > 0 the drift coefficient. The symbols τ1, τ2 denote any

wo (non-dimensional) time instances. Since the OU process is a stochastic process, a given set of OU parameters,

12
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Fig. 4. Accelerometer arrangement and orientation in numerical simulation of a rigid ellipsoid impacting an elastic half-space (see Section 5.1
for details). In the reference point space ER the ellipsoid, B, occupies the region

{
(X1, X2, X3)

⏐⏐ (X1/a)2
+ (X2/b)2

+ (X3/c)2
≤ 1

}
,

here (a, b, c) = (0.15, 0.10, 0.08). Four virtual accelerometers are, respectively, attached to the ellipsoid’s material particles lX ,
∈ J . The reference position vectors of lX , ℓ ∈ J , are, respectively, cE3, bE2, a E1, and −a E1, where (Ei )i∈I are shown

in the figure as well. The accelerometers’ orientations are given by
(
lEi

)
i∈I , ℓ ∈ J . The component representation of

(1Ei
)

i∈I

w.r.t. (Ei )i∈I is ((0, 1, 0) , (1, 0, 0) , (0, 0, 1)); of
(2Ei

)
i∈I is

((
−

2
√

229
, 225

229 , − 30
229

)
,
(

15
√

229
, 30

229 , − 4
229

)
,
(

0, 2
√

229
, 15

√
229

))
; of

(3Ei
)

i∈I

is
(
(0, 1, 0) ,

(
5

√
26

, 0, − 1
√

26

)
,
(

1
√

26
, 0, 5

√
26

))
; and of

(4Ei
)

i∈I is
(
(0, 1, 0) ,

(
−

5
√

26
, 0, − 1

√
26

)
,
(
−

1
√

26
, 0, 5

√
26

))
. We apply the

√
AO-

algorithm to the accelerometer data from the four virtual accelerometers lX , ℓ ∈ J to predict the acceleration of the material particle 5X .
The reference position vector of 5X is −cE3.

ource: modified from [27].
2020 Elsevier.

.e., a particular set of µ, σ , and β values, define an entire family or population of real valued functions on R. For
given OU parameter set, a particular realization of the OU process is obtained by drawing η0 from a Gaussian

istribution of mean µ and variance σ 2/ (2β) and solving (5.2). As a consequence of (5.1), lαError
i , ℓ ∈ J , too are

stochastic processes.
For i ∈ I and ℓ ∈ J , when µ ̸= 0 and σ = 0, any particular realization of lαError

i will contain only bias type
errors. A representative realization of 1αError

2 for µ = 5, σ = 0, and β = 103 is shown in Fig. 6(b). Alternatively,
when µ = 0 and σ ̸= 0 any particular realization of lαError

i will only contain noise type errors. A representative
1 Error 2 3
realization of α2 for µ = 0, σ = 10 , and β = 10 is shown in Fig. 6(c). In general when µ and σ are both

13
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5

Fig. 5. Configuration of the rigid ellipsoid at different time instances in the simulation of it impacting an elastic half space (see Section 5.1 for
details). In the simulation, the ellipsoid, B, is dropped onto an elastic half-space, H , under the action of gravity with the initial angular and
translational velocities prescribed. The ellipsoid’s initial position in E is prescribed by taking c(0) = (0, 0, 0.75), and Q(0) = diag (1, 1, 1).
ts initial velocities are prescribed by setting ⋆(W(0)) = (5, 5, 5), and c′(0) = (0.75, 0, 0).
ource: modified from [27].

2020 Elsevier.

Table 1
The mean and standard deviation of the error measure ϵ2 for 200
realizations of the accelerometer data only containing bias type error
with σ = 0. In this case, as the value of standard deviation is quite
small compared to the value of mean, we do not show the value in
the table.

µ
ϵ2 × 103 (mean±std)

√
AO-algorithm AO-algorithm

0 0.01 0.02

0.1 8.87 41.02

0.2 17.73 83.63

0.5 44.22 220.28

1 87.88 471.14

non-zero, realizations of lαError
i will contain both bias and noise type errors. A representative realization of 1αError

2
for µ = 5, σ = 102, and β = 103 is shown in Fig. 6(d).

From here on unless otherwise specified the value of β will always be equal to 103.

.3. Comparison of
√

AO and AO algorithms using virtual error-inclusive accelerometer data

We compare the predictions of the
√

AO and AO algorithms for the following categories of OU parameter sets.

Category I Exclusively bias type errors: µ = 0, 0.1, 0.2, 0.5, and 1, and σ = 0 (see Table 1).
14
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Fig. 6. The acceleration components 1αi (τ ), i ∈ I , of the virtual accelerometer 1X before and after addition of synthetic errors (see
Section 5.2 for details). (a) shows the acceleration components before the addition of synthetic errors. (b)–(d) show the error-inclusive
acceleration component 1αError

2 , which is generated by adding different errors to the acceleration component 1α2. In (b), (c), and (d) the error
time signals are particular realizations of the OU process for the OU parameter sets (µ, σ, β) = (5, 0, 103), (0, 102, 103), and (5, 102, 103),
respectively. The error in (b) corresponds to Category I (exclusively bias type errors); in (c) to Category II (exclusively noise type errors);
and in (d) to Category III (a combination of bias and noise type errors).
15
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Table 2
The mean and standard deviation of the error measure ϵ2 for 200
realizations of the accelerometer data only containing noise type error
with µ = 0.

σ
ϵ2 × 103 (mean±std)

√
AO-algorithm AO-algorithm

0 0.01 0.02

1 1.03 ± 0.09 1.16 ± 0.21

10 10.22 ± 0.64 11.46 ± 1.80

50 52.79 ± 3.33 56.87 ± 7.79

100 115.85 ± 10.11 112.83 ± 15.54

Table 3
The mean and standard deviation of the error measure ϵ2 for 200
realizations of the accelerometer data containing bias and noise type
errors with σ = 10.

µ
ϵ2 × 103 (mean±std)

√
AO-algorithm AO-algorithm

0 10.22 ± 0.64 11.46 ± 1.80

0.1 13.42 ± 1.14 42.61 ± 5.05

0.2 20.19 ± 1.43 84.52 ± 5.57

0.5 45.18 ± 1.47 221.08 ± 6.02

1 88.27 ± 1.44 472.26 ± 6.47

Category II Exclusively noise type errors: µ = 0, and σ = 0, 1, 10, 50, and 102 (see Table 2).
Category III Both bias and noise type errors: µ = 0, 0.1, 0.2, 0.5, and 1, and σ = 10 (see Table 3).

For a given OU parameter set we generate a large number of lαError
i , ℓ ∈ J , realizations. We apply the

√
AO

and AO algorithms to each of those realizations and derive a population of predictions for the acceleration of the
material particle 5X (see Fig. 4). We denote the error-free (non-dimensional) acceleration of 5X , which we know
from the rigid-ellipsoid-impact-simulation’s results, at the time instance τ as 5A(τ ) ∈ M3,1 (R). The components of
5A(τ ), i.e.,

(
5A(τ )

)
i , i ∈ I , for a sequence of time instances are, respectively, shown in subfigures (a), (b), and (c)

in each of Figs. 7–9. They are shown using thick gray curves.
Since the predictions of the

√
AO and AO algorithms are derived by, respectively, feeding the

√
AO and AO

algorithms the stochastic processes lαError
i , ℓ ∈ J , they too, in fact, are stochastic processes. Representative

ealizations of the predictions from the
√

AO (resp. AO) algorithm for different OU parameter sets are, respectively,
hown in Figs. 7–9 in green (resp. red).

. Results and discussion

.1. Category I

Among the OU parameter sets belonging to Category I the set corresponding to the most amount of error
is (µ, σ ) = (1.0, 0.0). Representative realizations of the predictions from the

√
AO and AO algorithms for this

parameter set are, respectively, shown in green and red in Fig. 7. In Fig. 7 the realization of the
√

AO-algorithm’s
prediction appears to be more accurate than that of the AO-algorithm’s prediction, especially with increasing time.
In order to make a more quantitative comparison between the

√
AO and AO algorithms’ predictions, we focus on
16
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Fig. 7. Comparison of the predictions from the
√

AO and AO algorithms for the acceleration of the material particle 5X (see Fig. 4) in the
rigid ellipsoid impact simulation (see Section 5.1 for details). Both the

√
AO and AO algorithms were fed the same virtual error-inclusive

accelerometer data. The data was generated by adding a particular realization of the OU process to the virtual accelerometer data from
the rigid ellipsoid impact simulation. The OU realization corresponded to the OU parameter set (µ, σ, β) = (1, 0, 103). Subfigures (a), (b),
and (c), respectively, show the comparison for the component of 5X ’s acceleration in the ei , i ∈ I , directions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
17
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Fig. 8. Comparison of the predictions from the
√

AO and AO algorithms for the acceleration of the material particle 5X (see Fig. 4) in the
rigid ellipsoid impact simulation (see Section 5.1 for details). Both the

√
AO and AO algorithms were fed the same virtual error-inclusive

accelerometer data. The data was generated by adding a particular realization of the OU process to the virtual accelerometer data from the
rigid ellipsoid impact simulation. The OU realization corresponded to the OU parameter set (µ, σ, β) = (0, 102, 103). Subfigures (a), (b),
and (c), respectively, show the comparison for the component of 5X ’s acceleration in the ei , i ∈ I , directions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
18
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Fig. 9. Comparison of the predictions from the
√

AO and AO algorithms for the acceleration of the material particle 5X (see Fig. 4) in the
rigid ellipsoid impact simulation (see Section 5.1 for details). Both the

√
AO and AO algorithms were fed the same virtual error-inclusive

accelerometer data. The data was generated by adding a particular realization of the OU process to the virtual accelerometer data from the
rigid ellipsoid impact simulation. The OU realization corresponded to the OU parameter set (µ, σ, β) = (1, 10, 103). Subfigures (a), (b), and
(c), respectively, show the comparison for the component of 5X ’s acceleration in the ei , i ∈ I , directions. The predictions of the

√
AO

algorithm when fed just the virtual accelerometer data, i.e., with no added errors, is also shown in (a), (b), and (c) using black open circles.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
19



Y. Wan, A.L. Fawzi and H. Kesari Computer Methods in Applied Mechanics and Engineering 390 (2022) 114271

a

w

p
(

p
µ

a

(

the time interval [0, 1] and make use of the metrics

ϵ2

(√
AO

)
:=

∥
√

AO
(

5A
)
−

5A∥2

∥5A∥2
, (6.1)

ϵ2 (AO) :=
∥AO

(
5A

)
−

5A∥2

∥5A∥2
, (6.2)

where ∥ f ∥2 :=

√∫ 1
0 ∥ f (τ )∥2 dτ ; and R ∋ τ ↦→

√
AO

(
5A

)
(τ ) ∈ M3,1(R), and R ∋ τ ↦→ AO

(
5A

)
(τ ) ∈ M3,1(R)

re, respectively, particular realizations of the
√

AO and AO algorithms’ predictions for R ∋ τ ↦→
5A(τ ) ∈ M3,1(R).

The metric ϵ2

(√
AO

)
(resp. ϵ2 (AO)) is constructed such that the smaller its value the more accurate the realization

used in computing it. The values of ϵ2

(√
AO

)
and ϵ2 (AO) for the realizations shown in Fig. 7 are, respectively,

8.79% and 47.11%. The metric ϵ2

(√
AO

)
’s smaller value in comparison to that of ϵ2 (AO) corroborates our earlier

assertion that among the
√

AO
(

5A
)

and AO
(

5A
)

shown in Fig. 7 the realization
√

AO
(

5A
)

is more accurate. This
comparison between the

√
AO and AO algorithms’ predictions’ particular realizations prompts us to hypothesize

that the
√

AO algorithm is more accurate than the AO algorithm.
In order to compare the

√
AO and AO algorithms’ predictions in a more well-balanced and comprehensive manner

e calculated ϵ2

(√
AO

)
and ϵ2 (AO), respectively, for a large number of realizations (population size N = 200) of

the predictions from the
√

AO and AO algorithms. The mean values of the thus generated populations of ϵ2

(√
AO

)
and ϵ2 (AO) are 8.788% and 47.114%, respectively (see row number 5 of Table 1). The mean value of the population
of ϵ2

(√
AO

)
being lower than the mean value of the population of ϵ2 (AO) further supports our earlier hypothesis

that
√

AO-algorithm is more accurate than the AO-algorithm.
To recall, the discussion so far in this section exclusively relates to the (µ, σ ) parameter set (1.0, 0.0). We

erformed analysis similar to the one discussed in the previous paragraph for the parameter sets (0.0, 0.0), (0.1, 0.0),
0.2, 0.0), and (0.5, 0.0) as well. The means of ϵ2

(√
AO

)
’s and ϵ2 (AO)’s populations for these other parameter

sets are, respectively, given in the first and second columns of Table 1. It can be seen from Table 1 that the means
of the ϵ2

(√
AO

)
populations are consistently smaller than those of ϵ2 (AO) populations across all the parameter

sets considered. Furthermore, in Table 1 the difference between the means of a ϵ2

(√
AO

)
population and a ϵ2 (AO)

opulation corresponding to the same parameter set increases with the amount of error, i.e., with the magnitude of
in the present category. Thus for the category of exclusively bias type errors, in addition to the

√
AO-algorithm

ppearing to be more accurate than the AO-algorithm, it further appears that the
√

AO-algorithm’s performance
over the AO-algorithm increases with increasing amount of error.

6.2. Category II

In Category II we consider the (µ, σ ) parameter sets (0.0, 0.0), (0.0, 1.0), (0.0, 10.0), (0.0, 50.0), and (0.0, 100.0).
The means of ϵ2

(√
AO

)
’s and ϵ2 (AO)’s populations for these parameter sets are, respectively, given in the first

and second columns of Table 2. It can be seen from Table 2 that the means of the ϵ2

(√
AO

)
populations are

approximately the same as those of ϵ2 (AO) populations across all the parameter sets considered. Thus, for the
category of exclusively noise type errors the

√
AO-algorithm appears to perform on par with the AO-algorithm.

Among the OU parameter sets belonging to Category II the set corresponding to the most amount of error is
µ, σ) = (0.0, 100.0). Representative realizations of the predictions from the

√
AO and AO algorithms for this

parameter set are, respectively, shown in green and red in Fig. 8. In Fig. 8, at least at the earlier time instances, the√
AO and AO algorithms’ predictions’ realizations are almost indistinguishable from one another. However, at later

time instances the
√

AO-algorithm seems to be performing better than the AO-algorithm. (This feature is likely
not reflected in the results presented in Table 2 because they are calculated only using data from the initial time
instances, or, to be more precise, from the [0, 1] time interval.) Based on this observation we venture to speculate that
even when the errors are predominantly of the noise type, the

√
AO-algorithm will eventually begin to outperform

the AO-algorithm.
20
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t

t
√

6.3. Category III

In Category III we consider the (µ, σ ) parameter sets (0.0, 10.0), (0.1, 10.0), (0.2, 10.0), (0.5, 10.0), and
(1, 10.0). The means of ϵ2

(√
AO

)
’s and ϵ2 (AO)’s populations for these parameter sets are, respectively, given in the

first and second columns of Table 3. Among the OU parameter sets belonging to Category III the set corresponding
o the most amount of error is (µ, σ ) = (1.0, 10.0). Representative realizations of the predictions from the

√
AO

and AO algorithms for this parameter set are, respectively, shown in green and red in Fig. 9.
It can be seen from Table 3 that the means of the ϵ2

(√
AO

)
populations are consistently smaller than those of

ϵ2 (AO) populations across all the parameter sets considered. Furthermore, in Table 3 the difference between the
means of a ϵ2

(√
AO

)
population and a ϵ2 (AO) population corresponding to the same parameter set increases with

he amount of error, i.e., with the magnitudes of σ and µ. Thus, in Category III the relative performance of the
AO and AO algorithms is very similar to that in Category I.
From the discussion in Section 6.1 we know that the AO-algorithm is more sensitive to bias type errors than

the
√

AO-algorithm and from the discussion in Section 6.2 we know that the
√

AO and AO algorithms are,
approximately, equally sensitive to noise type errors. From the results in this section it appears that the

√
AO-

algorithm outperforms the AO-algorithm as long as the errors have some bias type component in them, irrespective
of what the amount of the noise type component in them is.

7. Concluding remarks

1. The results discussed in Section 6 show that the
√

AO-algorithm provides a valid approach to determine the
complete motion of a rigid body using only data from four tri-axial accelerometers. We plan on carrying
out more simulations in the future for gauging the robustness of the

√
AO algorithm. Those simulations

will be more complicated than the one we considered in this paper, e.g., in the future simulations we will
consider non-symmetric geometries for the rigid body and non-planar surfaces for the elastic solid. The
√

AO-algorithm’s practical validity in the field too still remains to be explored. In the future, we plan to
conduct an experimental evaluation of the

√
AO-algorithm to compliment its in silico validation that we

presented in this paper.
2. The comparison in Section 6 shows that for the cases we considered the

√
AO-algorithm is less sensitive

to bias type errors compared to the AO-Algorithm. However, we have not provided a mathematical proof
that the

√
AO-algorithm is better than the AO-algorithm with regard to bias type errors. Thus, though the

comparison presented in Section 6 provides strong support to the hypothesis that the
√

AO-algorithm is less
sensitive to bias type errors than the AO-algorithm, it by no means provides a proof for the hypothesis. A
definitive resolution to the question of whether the hypothesis is true requires an error analysis of both the
√

AO-algorithm as well as the AO-algorithm. We currently have not carried out such analyses. Nevertheless,
irrespective of the relative merit of the

√
AO over the AO algorithm, it is quite clear from its derivation and

the results discussed in Section 6 that it provides a valid approach for determining the complete motion of a
rigid body from accelerometer data.

3. The
√

AO-algorithm retains all the benefits of the AO-algorithm. Both algorithms provide the complete
motion of the rigid body in the fixed laboratory frame. Without integration or differentiation, both algorithms
are able to determine the pseudo acceleration field, providing the magnitude of acceleration for all material
particles. Both algorithms can be applied to any arrangement of four tri-axial accelerometers as long as they
do not lie in the same plane. There is no restriction on the orientation of the tri-axial accelerometers.

4. In the in silico validation, evaluation, and comparison of the
√

AO-algorithm that we set up in Section 5 we
used the OU process to model experimental errors. Even more specifically, we took the magnitude of the
parameter µ in the OU process as a measure of the bias type errors in the OU process’ realizations. There
of course exist bias type errors that cannot be modeled in this manner. Thus, our evaluation of the relative
sensitivities of the

√
AO and the AO algorithms to bias type errors was carried out using a limited form of

bias type errors. A more general method to represent bias type errors in the virtual accelerometer data would
provide a more comprehensive comparison of the relative sensitivities of the

√
AO and the AO algorithms

to bias type errors.
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5. We envision the
√

AO algorithm being used in design efforts that are aimed at providing better protection
against mTBI. Design efforts that are aimed at providing better protection against mTBI, typically make use
of brain injury criteria. Currently, several finite element (FE) based brain injury criteria are being developed
with an aim of providing a better estimate of a motion’s potential for causing injury, e.g., see [40]. Strain and
strain rate have been shown to play an important role in brain injury. The FE based injury criteria connect
the risk of injury to time histories of different stress and strain fields within the head. Application of the FE
based injury criteria requires simulating the motion that is being evaluated on a computational head model
and determining the time histories of the stress and strains fields within it. The developed

√
AO algorithm

provides a means for accurately simulating varieties of motions that are important in the context of mTBI.
Since, it makes it possible to measure even 3D motions that are difficult to reproduce outside of the laboratory,
such as the landing of a paratrooper.
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Appendix A. Definition of the map ⋆ (·)

For nsd = 2, the map ⋆ (·) : so(R, 2) → R is defined by the equation ⋆ (·) = (·)21. The inverse of ⋆ (·) is the
map ⋆−1 (·) : R → so(R, 2) defined by the equation

⋆ (α) =

(
0 −α

α 0

)
. (A.1)

For nsd = 3, the map ⋆ (·) : so(R, 3) → M3,1(R) is defined by the equation ⋆ (·) = ((·)32 , (·)13 , (·)21). The
inverse of ⋆ (·) is the map ⋆−1 (·) : M3,1(R) → so(R, 3) defined by the equation

⋆ ((α1, α2, α3)) =

⎛⎝ 0 −α3 α2
α3 0 −α1

−α2 α1 0

⎞⎠ . (A.2)

To make our notation appear less cumbersome we denote ⋆−1 (·) too as ⋆ (·). Whether we mean ⋆ (·) or ⋆−1 (·)

will be clear from the argument of ⋆ (·).

Appendix B. Derivation of (1.3), i.e., proof of the statement that square of W(τ ) is equal to the symmetric
part of P(τ )

The following lemmas can be shown to be equivalent to some of the standard results in the mechanics of rigid
solids, see the work in [41, §2.5.2] and [42, §6.4], which treats the rigid body motion in a modern continuum
mechanics style; or see the work in [43, §9.4] and [44, §15], which treats the rigid body motion from a perspective
of geometric mechanics. However, at a cursory level, due to our notation and formalism, those results might appear
to be different from the below lemmas. The differences in notation and formalism are primarily due to the fact that
in our work we distinguish between the vector spaces to which the various physical quantities, e.g., the rotation
operation, belong and the (non-dimensional) matrix vector spaces to which the component representations of those
quantities belong. For that reason, we believed that it would be helpful to the reader if we presented the following
lemmas using the notation and formalism that we use in the current work.
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B.1. Skew symmetry of W(τ )

emma B.1. The matrix W(τ ), defined in (3.7), is skew-symmetric.

Proof. It can be shown using W(τ )’s definition (3.7) and Eqs. (2.6) and (2.3a) that

W(τ ) = QT(τ ) Q′(τ ). (B.1)

Differentiating (2.3a) we get(
QT

)′

(τ ) Q(τ ) + QT(τ ) Q′(τ ) = 0. (B.2)

Noting that
(
QT

)′

(τ ) =
(
Q′

)T (τ ) we see that the first term on the left hand side of (B.2) is equal to
(
Q′

)T (τ ) Q(τ ),
which, in fact, is equal to the transpose of the second term on the left hand side of (B.2). Thus, it follows from
(B.2) that sym

(
QT(τ ) Q′(τ )

)
= 0. That is, that QT(τ ) Q′(τ ) is skew-symmetric. The result that W(τ ) too is

skew-symmetric now immediately follows from (B.1).

B.2. Derivation of equation (1.3)

Lemma B.2. The symmetric part of P(τ ) is equal to the square of W(τ ).

roof. Differentiating (2.3a) twice and rearranging we get that(
QT

)′′

(τ ) Q(τ ) + QT(τ ) Q′′(τ ) = −2
(
QT

)′

(τ ) Q′(τ ). (B.3)

Eq. (B.3) on noting that the first and second terms on its left hand side are in fact transposes of each other
simplifies to

sym
(
QT(τ ) Q′′(τ )

)
= −

(
QT

)′

(τ ) Q′(τ ). (B.4)

Writing the term on the right hand side of (B.4) as −

(
QT

)′

(τ ) I Q′(τ ), and then using (2.3b) and replacing the

in the resulting equation with Q(τ )QT(τ ), we get

sym
(
QT(τ ) Q′′(τ )

)
= −

((
QT

)′

(τ ) Q(τ )
) (

QT(τ ) Q′(τ )
)

. (B.5)

oting that
(
QT

)′

(τ ) =
(
Q′

)T (τ ) we see that the first factor on the right hand side of (B.5) is equal to

Q′
)T (τ ) Q(τ ), which is the transpose of the second factor on the right hand side of (B.5), namely QT(τ ) Q′(τ ).

e, however, know from (B.1) that this second factor is equal to W(τ ). Thus, we get from (B.5) that

sym
(
QT(τ ) Q′′(τ )

)
= −W

T
(τ ) W(τ ), (B.6a)

which simplifies on using Lemma B.1 to

sym
(
QT(τ ) Q′′(τ )

)
= W

2
(τ ). (B.6b)

Using (3.5) and replacing the quantity QT(τ ) Q′′(τ ) appearing on the left hand side of (B.6b) with P(τ ), we get

sym (P(τ )) = W
2
(τ ). (B.7)

Appendix C. The matrix sym (P(τ )) is negative semidefinite and its negative eigenvalues, if they exist, have
even algebraic multiplicities

The entries of W(τ ) and sym (P(τ )) are all real numbers. However, in this section we consider W(τ ) and
ym (P(τ )) to be elements of Mnsd,nsd (C), where Mnsd,nsd (C) is the space of all nsd × nsd matrices whose entries

elong to C, the space of complex numbers.

23



Y. Wan, A.L. Fawzi and H. Kesari Computer Methods in Applied Mechanics and Engineering 390 (2022) 114271

L

P
a
s
a

a

g

C

L

P

T

(

a

e

t

C.1. Negative semi-definiteness of sym (P(τ ))

emma C.1. The matrix sym (P(τ )) is negative semidefinite.

roof. The matrix sym (P(τ )) is self-adjoint since it is equal to its transpose, which, as all of sym (P(τ ))’s entries
re real, is equal to its conjugate-transpose, i.e., to its adjoint. Hence it follows from [45, 7.31] that the matrix
ym (P(τ )) is negative semidefinite iff the inner product ⟨sym (P(τ )) X, X⟩, where X ∈ Mnsd,1(C) but is otherwise
rbitrary, is always non-positive.

It follows from (1.3) that

⟨sym (P(τ )) X, X⟩ = ⟨W
2
(τ )X, X⟩. (C.1)

Since we know from Lemma B.1 that W(τ ) is skew-symmetric, we can write W
2
(τ ) on the right hand side of (C.1)

s −W
T
(τ ) W(τ ). On doing so and using the properties of the inner product we get

⟨sym (P(τ )) X, X⟩ = −⟨W(τ )X, W(τ )X⟩. (C.2)

It also follows from the properties of the inner product that ⟨W(τ )X, W(τ )X⟩ is always non-negative. Therefore we
et from (C.2) that ⟨sym (P(τ )) X, X⟩ is always non-positive, or equivalently that sym (P(τ )) is negative semidefinite.

.2. Form of the eigenvalues of sym (P(τ ))

emma C.2. The matrix sym (P(τ ))’s negative eigenvalues, if they exist, have even algebraic multiplicities.

roof. Say S ∈ Mnsd,nsd (C) then S is said to be normal when it commutes with its conjugate-transpose S H,
i.e., when S S H

= S H S. Note that

W(τ )W
T
(τ ) = W(τ )

(
−W(τ )

)
=

(
−W(τ )

)
W(τ ) = W

T
(τ )W(τ ). (C.3)

he first and third equalities in (C.3) follow from the fact that W(τ ) is skew-symmetric (Lemma B.1). Since all the
entries of W(τ ) are real, the transpose of W(τ ) is equal to its conjugate-transpose. For this reason it follows from
C.3) that W(τ ) W

H
(τ ) = W

H
(τ )W(τ ), or equivalently that W(τ ) is normal.

Since W(τ ) is normal it follows from the Complex Spectral Theorem [e.g., see 45, 7.24] that there exists a unitary
matrix U(τ ) ∈ Mnsd,nsd (C) such that U H (τ )W(τ )U(τ ) = diag (µi (τ ))i∈I , where µi (τ ) ∈ C and diag (µi (τ ))i∈I is

diagonal matrix whose diagonal entries are µ1(τ ), µ2(τ ) . . . , µnsd (τ ). That is,

U H (τ )W(τ )U(τ ) =

⎛⎜⎜⎜⎝
µ1(τ ) 0 . . . 0

0 µ2(τ ) . . . 0
...

...
. . .

...

0 0 . . . µnsd (τ )

⎞⎟⎟⎟⎠ . (C.4)

The complex numbers µi (τ ), not necessarily distinct, are the eigenvalues of W(τ ) and the columns of U(τ ) are the
igenvectors of W(τ ). To be more specific,

W(τ )ui (τ ) = µi (τ )ui (τ ) (no sum over i), (C.5)

where ui (τ ) =
(
(U(τ )) j i

)
j∈I

. Applying the operation of complex-conjugation to both sides of (C.5) and noting
hat the entries of W(τ ) are all real we get that

W(τ )u∗

i (τ ) = µ∗

i (τ ) u∗

i (τ ) (no sum over i), (C.6)

where µ∗

i (τ ) and u∗

i (τ ) are, respectively, the complex-conjugates of µi (τ ) and ui (τ ). It follows
from (C.6) that if µi (τ ) is an eigenvalue of W(τ ) then so is µ∗

i (τ ). Thus (µi (τ ))i∈I has the form
ς

(
z1(τ ), z∗

1(τ ), z2(τ ), z∗

2(τ ), . . . , zk(τ ), z∗

k (τ ), α1(τ ), α2(τ ), . . . , αl(τ )
)
, where ς (·) is the permutation operation,

zi (τ ) ∈ C with Im (zi (τ )) ̸= 0, z∗

i (τ ) is the complex-conjugate of zi (τ ), 0 ≤ k ≤ ⌊nsd/2⌋6, αi (τ ) ∈ R, and

6 Here ⌊·⌋ is the floor function.
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= nsd − 2k. It is not necessary that the complex numbers zi (τ ) be distinct from one another. The same is the case
with the real numbers αi (τ ).

Taking the square on both sides of (C.4) and using our knowledge about the form of (µi (τ ))i∈I we get that(
U H (τ )W(τ )U(τ )

)2
= diag ς

(
z1

2 (τ ), z∗

1
2 (τ ), . . . , zk

2 (τ ), z∗

k
2 (τ ), α2

1(τ ), . . . , α2
l (τ )

)
. (C.7)

he expression on the left hand side of (C.7) can be simplified as
(

U H (τ )W(τ )U(τ )
)2

= U H (τ )W(τ )U(τ )

U H (τ )W(τ )U(τ ) = U H (τ )W
2
(τ )U(τ ) = U H (τ )sym (P(τ )) U(τ ), where the second equality follows from the

act that U(τ ) is a unitary matrix, and the third equality from (1.3). Thus we can get from (C.7) that

U H (τ )sym (P(τ )) U(τ ) = diag ς
(

z1
2 (τ ), z∗

1
2 (τ ), . . . , zk

2 (τ ), z∗

k
2 (τ ), α2

1(τ ), . . . , α2
l (τ )

)
, (C.8a)

which implies that ui (τ ) are the eigenvectors of sym (P(τ )) as well, but with their corresponding eigenvalues being(
z1

2 (τ ), z∗

1
2 (τ ), . . . , zk

2 (τ ), z∗

k
2 (τ ), α2

1(τ ), . . . , α2
l (τ )

)
. We know from Lemma C.1 that all of sym (P(τ ))’s

igenvalues are non-positive. Therefore, each z i (τ ) must be of the form λi (τ )
√

−1, where λi (τ ) ∈ R and λi (τ ) ̸= 0,
and αi (τ ) = 0. Hence, we get from (C.8a) that

U H (τ )sym (P(τ )) U(τ ) = diag ς
(
−λ2

1(τ ), −λ2
1(τ ), . . . ,−λ2

k(τ ), −λ2
k(τ ), 0, . . . , 0

)
, (C.9)

here, to reiterate, 0 ≤ k ≤ ⌊nsd/2⌋ and λi (τ ), when they exist, are non-zero and not necessarily distinct. It can be
oted from this last assertion that all of sym (P(τ ))’s negative eigenvalues, specifically those corresponding to λi (τ ),
re of even geometric multiplicities. For the case of symmetric matrices, algebraic and geometric multiplicities
re one and the same. Therefore, sym (P(τ ))’s negative eigenvalues, when they exist, are also of even algebraic
ultiplicities.

ppendix D. Calculating W(τ ) as the square-root of sym (P(τ ))

.1. A spectral decomposition of sym (P(τ ))

Since sym (P(τ )) is a real symmetric matrix it follows from the Real Spectral Theorem [45, 7.29] that it can be
ecomposed as

N(τ ) D(τ ) NT(τ ), (D.1)

here D(τ ) and N(τ ) belong to Mnsd,nsd (R). We first describe N(τ ) and then D(τ ), in the next paragraph. The matrix
(τ ) :=

(
n1(τ ), . . . , nnsd (τ )

)T where ni (τ ) ∈ Mnsd,1(R) are sym (P(τ ))’s eigenvectors that are constructed such that
i (τ ) · n j (τ ) = δi j , or equivalently

N(τ )NT(τ ) = I. (D.2)

Using (C.9) it can be shown that for nsd = 1, D(τ ) = (0); for nsd = 2, D(τ ) = diag (0, 0) or
iag

(
−λ2

1(τ ), −λ2
1(τ )

)
, where λ1(τ ) ̸= 0; and for nsd = 3, D(τ ) = diag (0, 0, 0) or diag ς

(
−λ2

1(τ ), −λ2
1(τ ), 0

)
.

The last two results can be summarized by saying that when nsd = 2,

D(τ ) = diag
(
−λ2(τ ), −λ2(τ )

)
, (D.3)

where λ(τ ) ∈ R, and when nsd = 3, D(τ ) = diag ς (−λ(τ )2, −λ(τ )2, 0). Without loss of generality, we can choose
the order of ni (τ ) so that their respective eigenvalues form a non-increasing sequence7. Therefore, for concreteness
in the case of nsd = 3 we take

D(τ ) =

⎛⎝0 0 0
0 −λ2(τ ) 0
0 0 −λ2(τ )

⎞⎠ . (D.4)

7 The matrix W(τ ) as the square root of sym P(τ ) does not depend on the order of n (τ ). Different orders will lead to the same W(τ ).
( ) i
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D.2. Calculation of W(τ ) from sym (P(τ )) using (1.3)

Let

F(τ ) := NT(τ ) W(τ ) N(τ ). (D.5)

It can be shown using F(τ )’s definition, Eqs. (D.2), and (1.3), and sym (P(τ ))’s decomposition that is derived in
Appendix D.1 and summarized in (4.3) that

F2(τ ) = D(τ ). (D.6)

Substituting D(τ ) in (D.6) from (D.3) and (D.4) for then noting from Lemma B.1 and F(τ )’s definition that F(τ )
is skew-symmetric, it can be shown that for nsd = 2 and 3

F(τ ) = ± ⋆ (λ(τ )) (D.7)

and

F(τ ) = ± ⋆ ((λ(τ ), 0, 0)) , (D.8)

respectively. Eq. (4.7) follows from (D.5), (D.7), and (D.8).
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