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Mechanobiology relates cellular processes to mechanical signals,
such as determining the effect of variations in matrix stiffness with
cell tractions. Cell traction recorded via traction force microscopy
(TFM) commonly takes place on materials such as polyacrylamide-
and polyethylene glycol-based gels. Such experiments remain limited
in physiological relevance because cells natively migrate within
complex tissue microenvironments that are spatially heterogeneous
and hierarchical. Yet, TFM requires determination of the matrix
constitutive law (stress–strain relationship), which is not always
readily available. In addition, the currently achievable displace-
ment resolution limits the accuracy of TFM for relatively small
cells. To overcome these limitations, and increase the physiological
relevance of in vitro experimental design, we present a new ap-
proach and a set of associated biomechanical signatures that are
based purely on measurements of the matrix’s displacements with-
out requiring any knowledge of its constitutive laws. We show that
our mean deformation metrics (MDM) approach can provide signif-
icant biophysical information without the need to explicitly deter-
mine cell tractions. In the process of demonstrating the use of our
MDM approach, we succeeded in expanding the capability of our
displacement measurement technique such that it can now measure
the 3D deformations around relatively small cells (∼10 micrometers),
such as neutrophils. Furthermore, we also report previously un-
seen deformation patterns generated by motile neutrophils in 3D
collagen gels.
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Mechanical cues within the cellular microenvironment reg-
ulate numerous fundamental functions including cell ad-

hesion, deformation, and generation of traction (1–6). Analysis
of cellular force generation, and its role in regulating homeo-
stasis across a variety of cellular phenotypes and experimental
platforms, has received much attention over the last three de-
cades (7–13). Experimental quantification of cellular forces has
produced several cell traction measurement techniques, ranging
from surface wrinkle detection and flexure of micropillars to
traction force microscopy (TFM) (12, 14–20). In TFM, measured
cell-induced displacements are converted into tractions using var-
ious mathematical frameworks (14, 15, 17, 18, 21, 22). Both two-
and 3D TFM techniques have steadily increased in sophistication
and now feature high-spatial displacement resolution and advanced
computational formalisms to connect this displacement informa-
tion to complex material constitutive laws (17, 23, 24).
To successfully perform TFM, it is critical to know the stress–

strain constitutive behavior of the matrix surrounding the cell.
Although many TFM substrates feature relatively simple artificial
gel constructs, such as polyacrylamide and polyethylene glycol,
these constructs are impenetrable by cells and obviate measures
obtained while cells are in a 3D setting (as would be the case within

a bodily tissue). Most physiologically important matrices have
complicated, hierarchical microstructures and tend to be spatially
heterogeneous. In addition, many cells apply significant forces
leading to large matrix deformations that require more compli-
cated, nonlinear constitutive laws for accurate calculation (17, 24–
28). Moreover, to generate a quantitative map of tractions exerted
by a moving cell, the mechanical properties of the surrounding
matrix must be resolved at the cellular level. Taken together, sig-
nificant experimental challenges exist for accurately deducing the
microconstitutive laws for many physiologically realistic matrices
and, by extension, the ability to map tractions onto small cells is
lacking. Furthermore, and perhaps most importantly, many cells are
known to actively remodel the matrix as they move through it. As a
result, the constitutive laws are constantly evolving, making a one-
time measurement of the matrix material properties insufficient for
accurate determination of cell tractions in real time.
To circumvent this fundamental hurdle of requiring a mate-

rial’s constitutive law, we present an alternate, kinematics-based
quantification method that correlates cellular deformations to
biological function. Based solely on the displacement field in the
surrounding matrix, we define tensor-valued mean deformation
metrics (MDM) that quantify the overall shape change of the cell
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(e.g., contractility, mean volume change, and rotation). Because
of its kinematic nature, the mean deformation metric approach does
not aim to provide any information about the cell tractions. Rather,
the approach should be viewed as a distinct, immediately applicable
methodology complimentary to TFM for investigations in which the
material properties of the extracellular matrix are unknown.
Thus, the mean deformation metric approach provides a sig-

nificant advantage to laboratories and investigators who may not
have the means to conduct sophisticated material characteriza-
tion measurements at cellular length scales. The method is also
well-suited for studies using primary cells for which fluorescent
transfection approaches, such as in the use of FRET-based force
sensors (29), are not applicable.
We present the formulation of the MDM and validate our

technique using well-established analytical solutions, demon-
strating our technique is accurate to within 1%. Next, we apply
our MDM approach to analyze neutrophil-generated collagen
matrix displacement fields obtained using confocal microscopy
and fast iterative digital volume correlation (FIDVC) (30). In the
process of demonstrating the MDM approach, we solved the chal-
lenging problem of resolving local displacements around neutrophils
(which are only 10 μm in size) with submicron resolution, and sub-
sequently revealed previously unknown deformation patterns during
the migration of neutrophils through a 3D collagen matrix.

MDM
The motion and the deformation of the cell and the surrounding
matrix are described using the framework of continuummechanics as

xðX , tÞ= uðX , tÞ+ X , [1]

where X is the particle’s position vector in the cell’s initial or
reference configuration, x is its position vector at time t, and u is
the vector-valued displacement field.
The shape and size changes (strain measures) of infinitesimal

material volume, surface, and line elements containing the par-
ticle X can be determined using the deformation gradient tensor

FðX , tÞ=∇xðX , tÞ, [2]

where the operator ∇ gives the gradient of a vector-valued function
with respect to X . Considering the highly heterogeneous and com-
plicated nature of the cell, it is unlikely that F will be well-defined
at each of the cell’s material points. Consequently, we define a
mean deformation gradient tensor, hFi, for the entire cell as

hFi := 1
volðV0Þ

Z
V0

F  dV , [3]

where dV is an infinitesimal volume element of the cell in its ref-
erence configuration V0 and volðV0Þ is the volume of V0. We
believe that hFi, which is defined for the entire cell, is more
meaningful than F, which is defined pointwise. Mean deformation
gradient tensors, defined in a way similar to ours, were used by Hill
(31) in the development of theories of effective mechanical behav-
ior of heterogeneous media, such as polycrystals and composites.
The quantity hFi is a very useful metric for understanding the

cell’s overall deformation. An important advantage of using hFi
is that it can be computed solely from the displacements of the
cell’s surface points. Specifically, it can be shown using the di-
vergence theorem that

hFi= 1
volðV0Þ

Z
∂V0

x⊗ n  dA, [4]

where ∂V0 is the boundary of V0, dA is an infinitesimal element
of ∂V0, n is the unit vector normal to dA, and the symbol ⊗

denotes the dyadic product. For computing hFi using Eq. 4, we
approximate the position vectors of the cell’s surface points using
the position vectors of their nearby matrix points.
Analogous to hFi, we define the mean displacement gradient

h∇ui as

h∇ui := 1
volðV0Þ

Z
V0

∇u  dV , [5]

h∇ui= 1
volðV0Þ

Z
∂V0

u⊗ n  dA. [6]

It follows from Eqs. 3 and 5 that the mean deformation and
displacement gradients are related as

hFi= I+ h∇ui. [7]

Once hFi is determined, standard continuum mechanics calcula-
tions provide the mean compressibility, contractility, and rota-
tion of the cell. The determinant of hFi, written as dethFi= hJi, is
a measure of the mean compressibility, or volume change ratio,
of the cell. Using the polar decomposition theorem hFi can be
written as hFi= hRihUi, where hRi is a proper orthogonal tensor
and hUi is a symmetric, positive-definite tensor. The tensors hRi
and hUi can be termed the mean rotation and mean right stretch
tensor, respectively.
The contractility (stretch or compression) of the cell in these

primary directions is given by the eigenvalues of hUi, denoted as
hλii, i= 1, 2, 3. The mean rotation of the cell hθi is computed as

coshθi= trðhRiÞ− 1
2

, [8]

where trðhRiÞ is the trace of the mean rotation tensor hRi. The
cumulative rotation hΘi is then defined as the time-integral of mean
rotation, or

hΘi=
Z t

0
jhθðτÞijdτ. [9]

Results and Discussion
Validation. Validation of the MDM was performed using four ca-
nonical mechanics examples of well-known analytical forms (Fig.
1 A–D): simple stretch (case A; Fig. 1A), axial rotation (case B;
Fig. 1B), simple shear (case C; Fig. 1C), and the Eshelby inclusion
solution (case D; Fig. 1D). The Eshelby inclusion problem is a
convenient analytical comparison with cells embedded in a 3D
matrix. The problem considers an infinite, isotropic, linear-elastic
extracellular matrix with Poisson’s ratio ν and Young’s Modulus
E. The matrix is initially stress-free, with all displacement and strain
values initially at zero. A single spherical cell, or inclusion, in the
matrix then undergoes a transformation strain (or eigenstrain) eT ,
which is resisted by the matrix outside the region. Because the
sphere is embedded in the material, strain eM and displacement u
fields are induced in the matrix. The final strain field in the in-
clusion is given by the sum of the transformation and matrix strain,
eC (Fig. 1 E–H). The strain field eC inside and on the surface of the
inclusion is constant, whereas the displacement is found by taking
the dot product of eC with the position vector x. The displacement
field outside the inclusion u has a closed-form solution given by
(32–34) and is a function only of the inclusion radius (32 voxels),
transformation strain eT , spatial position x, and Poisson’s ratio
(chosen as ν= 0.2). For each case, the mean deformation gradient
tensor, hFi was calculated from the analytical displacement field
and surface normals using Eqs. 6 and 7. The test surface for the
deformation was a sphere, meshed using recursive subdivision
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starting from an icosahedron. For cases A to C, the number of
subdivisions was two resulting in 320 discrete triangles, and for case
D, the number of subdivisions was four, resulting in 5,120 discrete
surface triangles. Error from the analytical solution was on the
order of 10−12 for cases A to C, because of numerical error, and on
the order of 10−5 for the Eshelby inclusion solution (case D), pre-
dominantly because of the assumption of small-strain conditions.

Application of the MDM Approach for the Directional Contractility,
Compressibility, and Rotation of Cells. We resolve the spatiotem-
poral surface features of cell-induced matrix deformations of a
small, migrating human neutrophil (<10 μm) in a fibrous 3D col-
lagen matrix. Specifically, we encapsulate primary human neutro-
phils in a reconstituted type I collagen gel of a final concentration of
2.2 mg/mL, resulting in the fibrillar microstructure shown (Fig. 2A
and Fig. S1 A and B). The collagen fibers are visualized in blue via
confocal reflectance microscopy, and the neutrophil is visualized
via the membrane stain 1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindo-
carbocyanine Perchlorate (DiI; Life Technologies) in red. Simul-
taneous injection of 0.5-μm carboxylate-modified green fluorescent
spherical particles (Fig. 2A, Right) during collagen polymeriza-
tion serves as means for tracking the 3D matrix deformations
imparted by the locomoting cell. To determine the cell-induced
3D displacement field, we use our previously developed FIDVC
algorithm (30). This algorithm converts the motion of fiduciary
markers obtained from time-lapse confocal image volumes into
a 3D displacement field of matrix deformations around the

neutrophil (Fig. 2B). Full-field displacement can then be mapped
to the rendered cell surface via interpolation (Fig. 2C). Our
FIDVC algorithm accurately measures large material defor-
mations, which we find significant during neutrophil locomotion
in collagen because the local displacement gradient, ∇u, is non-
negligible (Fig. S2 A–G). The FIDVC algorithm spatially refines
the correlation windows, therefore allowing the capture of sig-
nificantly higher spatial resolutions while increasing signal-to-
noise and computational efficiency compared with our previous
digital volume correlation (DVC) method (35). The displace-
ment sensitivity in our study was 0.04, 0.06, and 0.18 μm (x1, x2,
and x3, respectively), with a chosen spatial grid resolution set to
eight voxels (∼1.7 for x1 and x2 and 2.4 μm for x3). The typical
computation time on a graphics processing unit-equipped personal
computer to determine the 3D cellular deformation field between
two successive 512 × 512 × 128 voxel volumes is approximately
1–2 min. Whereas the FIDVC natively provides a detailed full-
field map of the entire matrix displacements in the vicinity of the
cell, many practical applications require simpler biomechanical
classification metrics. In traditional TFM studies, these metrics
include simple scalar quantities such as root-mean-squared
tractions, total forces, strain energies, and contractility measures
such as the trace of the dipole tensor (7, 15, 18, 36). However,
computation of these metrics requires the constitutive behavior
of the matrix. The MDM approach, on the other hand, can
provide biomechanical metrics without the use of the matrix
constitutive law or having to solve a large system of equations.
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calculated analytically from the inclusion eigenstrain eT . For visualization purposes, the displacement field is interpolated onto random locations as vector
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All of the biomechanical metrics in the MDM approach are
defined solely using the displacement data from the cell–matrix
boundary and the geometry of the cell–matrix boundary, which
allows the approach to maintain an inherently low measurement
noise floor that is significantly smaller than current state-of-the-
art cell–matrix quantification methodologies (15, 17, 18, 37).
We determined hFi from Eq. 7 for naïve (N) and lipopoly-

saccharide (LPS)-treated (L) neutrophils undergoing either che-
mokinesis (K) or chemotaxis (T). The mean compressibility hJi for
the different phenotypes is shown in Fig. 3A. Principal directions
in which the cell stretches/contracts are given by the eigenvectors
hN ii of hUi, whereas cell contractility in these directions is given
by the eigenvalues of hUi, hλii, where i= 1, 2, 3. The mean con-
tractilities hλii are plotted for the different neutrophil phenotypes
in Fig. 3B. Examination of the contractility in conjunction with the
cell compressibility reveals that neutrophils behave isochorically,
contracting along two of the principal directions hN1i and hN2i
while extending along the third axis hN3i (Fig. 3B and Fig. S2I).
Such behavior is indicative of a contractile, integrin-dependent
mode of motility as opposed to a pushing, or integrin-independent
mechanism (38). These observations are consistent with recent
findings showing that integrins continue to play a significant
regulatory role for traction generation and motility under con-
finement in the presence of ligands (39). Using the simple MDM,
we detect statistically significant differences between naïve and
LPS-activated human neutrophils. LPS-activated neutrophils
demonstrate a significant increase in overall contractility (Fig. 3B
and Fig. S2G) and a trend toward a greater capacity to undergo
changes in volume (Fig. 3A).
The mean rotation hθi of the different types of cells is shown

in Fig. 3 E and F. The figure shows, for the first time to our
knowledge, that neutrophils in the presence of LPS undergo
significant rotatory motion, as quantified by a marked increase in
the average rotation angle (Fig. 3E) and cumulative rotation (Fig.
3F). We find statistically significant increases across all evaluated

biomechanical metrics (Fig. 3 A–F) for both chemokinesis (K) and
chemotaxis (T).
The capability to deduce cell mean compressibility, directional

cell contractility, and cell rotations from displacement information
is an important feature of the MDM approach. The information
contained in these mean metrics is challenging to capture by cur-
rent TFM methodologies or 3D image reconstruction algorithms.

Resolving Local Displacements Around Neutrophils with Submicron
Resolution Using FIDVC. Full-field vector maps of displacement
fields obtained from FIDVC calculations during neutrophil mi-
gration through collagen show complex distributions (Fig. 2B
and Movie S1). Areas of large displacement (yellow) occur in
close proximity to the cell surface ∂V (gray) and quickly decay in
the far-field. To clearly interpret surface localization of the dis-
placement field, we interpolate u onto a discretized triangular
mesh structure of the cell surface with normal, n (Fig. 4A), and
decouple the surface normal u⊥ and tangential uk components
(Fig. 4 C and D). Tangential displacements are represented with
streamlines to assist in visualizing deformation patterns. The ca-
nonical inclusion problem by Eshelby (33) was used as quantitative
validation of the full-field displacement interpolation procedure,
matching the analytical solution to within 10−3 percent error (Fig. 1
and Fig. S3).
The surface displacement field (Fig. 4A) varies spatially across

the entire surface of the cell and is visually viewpoint-dependent,
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complicating feature analysis for the viewer. To address this issue,
we use the homolographic Mollweide mapping technique to cast
3D surface data into viewpoint-independent 2D contour plots
(Fig. 4 E–G). For illustration, the Earth’s topological data (Fig.
4B) is mapped from a spherical projection of the neutrophil
surface into a familiar 2D globe map (Fig. 4E). We apply the
same Mollweide mapping to the decoupled surface normal and
tangential displacements (Fig. 4 C and D and Movie S2) on the
neutrophil surface to visualize the complex local out-of-plane and
in-plane deformations in convenient 2D contour maps (Fig. 4 F
and G). Detailed examination of specific regions along the cell
surface reveal previously undocumented deformation structures
reminiscent of sink, source, and saddle point flow structures (Fig.
4 H and I) commonly found in moving fluids. To our knowledge,
these are the first observations of such well-defined deformation
structures within the cell-generated displacement fields of a
moving leukocyte.

Conclusion
We present a new approach for quantifying cell–matrix interactions
in mechanically complex microenvironments, such as 3D collagen
gels, based purely on kinematic measurements. Similar to tradi-
tional TFM, we establish a set of new mean kinematic metrics to
describe significant phenotypical differences between naïve and
LPS-activated human neutrophils. Because our technique does not
require any knowledge of the mechanical properties of the sur-
rounding matrix, it can be applied to virtually any complex tissue
including fibrous networks, multilayer scaffolds, and any transparent
living tissue. Applications include investigations in which cells ac-
tively remodel the matrix during the time window of observation.
The main limitation of the MDM approach, owing to its kine-

matic nature, is the inability to discern matrix stiffness effects which
can only be calculated when the mechanical properties of the matrix
are known. In cases where the mechanical properties are known, the
FIDVC-derived displacement data can either be quantified using the

presented MDM approach or be directly converted to traction
data using, for example, our 3D viscoelastic TFM algorithm
(see the MDM–TFM comparison chart; Fig. S5) (24).
In parallel to the MDM approach, we resolved spatially varying

deformation features across cells about one order of magnitude
smaller than what had been shown possible previously. By using 3D
surface and cartographic projection methods, we were able to re-
veal previously unknown 3D cell–matrix displacement patterns,
such as source- and sink-type patterns. It is known that any con-
tinuous field defined on a 2-sphere will show features that are
similar to the source and sink patterns that we observed on the
neutrophil cell surfaces. However, we believe that the number of
source and sink patterns and their relative spatial arrangement
could contain biologically significant information, such as infor-
mation about the cell’s motility and adhesion mechanisms.

Materials and Methods
Three-Dimensional Collagen Gel Preparation for Neutrophil Chemotaxis. Neu-
trophils were isolated from healthy human volunteers using previously
established protocols (39). Institutional review board approval was obtained
from the Rhode Island Hospital’s Committee on Protection of Human Sub-
jects to allow donation of venous blood. Informed consent was obtained in
accordance with the Declaration of Helsinki. Neutrophil chemotaxis was in-
duced via a custom-built three-well planar chemokine diffusion system (Fig.
S1); 3D collagen (type I, rat tail; BD Biosciences) matrices were prepared at a
2.2 mg/mL concentration with the addition of 6% (wt/vol) of 0.5-μm yellow-
green carboxylate-modified microspheres (Life Technologies). Vybrant DiI-
stained (Life Technologies) cells were suspended in Leibovitz’s L-15 (phenol-
free; Life Technologies) medium with 2 mg/mL glucose added for a final
concentration of 106 cells/mL and then added to the collagen matrix solution.

Chemotaxis, Chemokinesis, and LPS Activation. For naïve neutrophil chemo-
taxis experiments, both wells contained Leibovitz’s L-15 with 2 mg/mL glucose.
The left well also contained 100 μL of the chemoattractant, Formyl-Met-Leu-Phe
(fMLF) (Sigma-Aldrich), for a final concentration of 1 μM (Fig. S1A). LPS activa-
tion was initiated through the addition of 100 ng/mL ultrapure LPS (LPS-EB;
InvivoGen). Live-cell imaging took place 5 min after the introduction of either
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Fig. 4. Measurement of 3D surface displacements exerted by a chemotactic neutrophil and its associated homolographic 2D projections. (A) Vector cone plot
of the 3D displacement field interpolated onto the surface ∂V (gray) of the neutrophil, color-coded by magnitude juj. (B) Elevation data of the Earth projected
onto ∂V to illustrate the spatial position of surface data. (C) Contour plot of the normal component of u ðu⊥Þwith respect to ∂V , color-coded by direction and
magnitude (red is outward and blue is inward normal surface displacement). (D) Streamline plot of the tangential displacement component uk along ∂V ,
color-coded by magnitude with arrowheads pointing along the vector field. (Scale bar, 5 μm.) (E) Mollweide mapping of the spherical projection of Earth’s
elevation data in B to allow for user-friendly visualization of all 3D data onto a plane. Dashed grid lines represent spacing of 45° along latitude and lon-
gitude lines. Data interior to the solid white circle are located on the front hemisphere (x1 > cell centroid on ∂V), whereas data outside lie on the back
hemisphere ðx1 < cell centroid on ∂VÞ of the cell. (F and G) Mapped contour plot of u⊥ in C and streamline plot of uk in D using the Mollweide projection in E.
(H and I) Magnified view of F and G highlighting sink-like (green triangle) (Top), source-like (green star) (Middle), and saddle-like (green plus symbol)
(Bottom) features of uk and u⊥.
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chemokine or chemokine plus activation solution for each respective experi-
ment. Chemokinesis experiments were performed by adding 1 μM fMLF to both
wells in addition to adding 1 μM fMLF into the collagen mixture recipe before
polymerization to establish a uniform chemokine concentration profile across
the sample before imaging.

Microscopy and Live-Cell Imaging. Three-dimensional image stacks were ac-
quired using aNikonA-1 confocal systemmounted on a Ti-Eclipse inverted optical
microscope controlled by NIS-Elements Nikon Software. A Plan Fluor 40× air
objective (NA = 0.6; Nikon) mounted on a piezo objective positioner was used for
all cell experiments, which allowed imaging speeds of 30 frames per second using
a resonant scanner. Yellow-green fluorescent microspheres (0.5 μm; Life Tech-
nologies) were dispersed throughout the collagen matrix and excited with
an Argon (488 nm) laser. DiI-stained cells were excited with a red HeNe diode
(561 nm) laser. Confocal image stacks of 512 × 512 × 128 voxels (108 × 108 ×
38 μm3) were recorded every 2–3 min with a z-step of 0.30 μm. To ensure
physiological imaging conditions within the imaging chamber, temperature was
controlled at 37 °C as previously described (17, 39). For reflectance microscopy, an
APO 40× water immersion objective (NA = 1.15; Nikon) with z-step = 0.25 μm
was used to obtain typical imaging volumes of 167 × 167 × 81 voxels (52 × 52 ×
20 μm3).

Measurement of Cell-Induced Displacements. Cell-induced full-field displace-
ments were measured using the method described by Toyjanova et al. (17);
3D time-lapse images of fluorescent beads embedded in the collagen matrix

were captured using laser-scanning confocal microscopy (LSCM). The
incremental motion, or displacements, of the fluorescent beads was
tracked between time points using our previously developed FIDVC al-
gorithm (30).

Calculating Discretized Cell Surfaces. The 3D cellular surface boundary was
determined from volumetric images of the fluorescently labeled cell membrane.
A median filter with a 5 × 5 × 5 window was applied to the raw volumetric
image to reduce noise. Following a contrast adjustment where 1% of intensity
values get saturated, a binary image was generated by setting all intensity
values less than 50% of the maximum intensity of the image to 0 (black)
and all others to 1 (white). The final binary mask of the cell was generated
by removing all but the largest connected component. The triangular
surface mesh of the binary mask was computed using the marching cubes
algorithm (40) and then smoothed using the algorithm developed by
Taubin (41).
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