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A B S T R A C T

Numerous ingenious engineering designs and devices have been the product of bio-inspiration.
Bone, nacre, and other such stiff structural biological materials (SSBMs) are composites that
contain mineral and organic materials interlaid together in layers. In nacre, this lamellar
architecture is known to contribute to its fracture toughness, and has been investigated with the
goal of discovering new engineering material design principles that can aid the development
of synthetic composites that are both strong and tough. The skeletal anchor fibers (spicules) of
Euplectella aspergillum (Ea.) also display a lamellar architecture; however, it was recently shown
using fracture mechanics experiments and computations that the lamellar structure in them
does not significantly contribute to their fracture toughness. An alternate hypothesis—the load
carrying capacity (LCC) hypothesis—regarding the lamellar architecture’s functional significance
in Ea. spicules is that it enhances the spicule’s strength, rather than its toughness. From an
ecology perspective the LCC hypothesis is certainly plausible, since a higher strength would
allow the spicules to more firmly anchor Ea. to the sea floor, which would be beneficial to it
since it is a filter feeding animal. In this paper we present support for the LCC hypothesis from
a solid and structural mechanics perspective, which, compared to the support from ecology,
is far harder to identify but equally, if not more, compelling and valid. We found that when
the spicule functions in a knotted configuration a reduced bending stiffness benefits its load
carrying capacity and that sectioning a cylindrical tube into an assembly of co-axial tubes
can reduce the tube’s bending stiffness for a wide class of materials that are consistent with
the spicules’ axial symmetry. The mechanics theory developed in this paper has applications
beyond providing support for the LCC hypothesis. For example, it makes apparent many design
strategies for reducing the bending stiffness of large industrial cables (e.g., undersea optical
data transmission cables) while maintaining their tensile strength, which has benefits towards
the handling, storage, and transportation of such cables.

. Introduction

Materials found in nature have been studied with the goal of deriving inspiration for the development of novel engineering
tructural materials. Spider silk, bone, antlers, tortoise carapaces, and fish scales are but a few among the list of structures and
aterials of biological origin that have been the subject of such bio-inspired material studies (Chen and Pugno, 2013; Chen et al.,
012). A recent addition to this list includes the skeleton and skeletal structures of the marine sponge Euplectella aspergillum (Ea.).
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Fig. 1. Stiff biological materials with lamellar architectures. (𝖠) The entire skeletal structure of an Ea. sponge (modified from Monn et al. (2015); © 2015
National Academy of Sciences). The basalia spicules, which are identified with a white arrow, are around 50 micrometers in diameter and can be several
centimeters long. (𝖡) A scanning electron microscope (SEM) image showing the cross section of an Ea. basalia spicule reveals its cylindrically layered internal
architecture (modified from Monn et al. (2015); © 2015 National Academy of Sciences). (𝖢) An SEM image showing the organic layer that separates the adjacent
silica layers (modified with permission from Weaver et al. (2007); © 2007 Elsevier). (𝖣) The shell of Haliotis rufescens—the red abalone (image courtesy of John
Varner). (𝖤) An SEM image of nacre from H. rufescens showing its brick-and-mortar layered architecture, where aragonite tablets correspond to the bricks and
protein layers correspond to the mortar (modified with permission from Rabiei et al. (2012); © 2012 Royal Society of Chemistry).

Notably, its fiber-like structures that are composed primarily of silica, called the basalia spicules, have attracted attention owing to
its internal lamellar architecture (see Fig. 1(𝖠) , (𝖡)). Basalia spicules act as anchors to hold the sponge onto the sea floor, and are
roughly 50 micrometers in diameter and several centimeters in length (Monn et al., 2015).

Each fiber is an assembly of approximately 25 co-axial tubular silica layers around a central, cylindrical core, where each adjacent
pair of silica layers is separated by a thin, compliant organic interlayer (see Fig. 1(𝖢)) (Monn et al., 2015; Weaver et al., 2007).
Lamellar architecture consisting of alternating stiff and compliant layers is also found in nacre. In nacre the lamellar architecture
is known to enhance its fracture toughness (Currey, 1977). Therefore, it has been often assumed that the role of the Ea. basalia
spicules’ internal lamellar architecture is to provide the basalia spicules with enhanced fracture toughness.

However, recent direct fracture toughness measurements of the Ea. basalia spicules showed that the basalia spicules’ lamellar
architecture does not provide them with any significant fracture toughness enhancement (Monn et al., 2020). This finding now
reopens the question of what, if any, is the benefit of the basalia spicules’ lamellar architecture to the sponge.

We refer to the maximum tensile force that a (Ea. basalia) spicule is capable of transmitting along its length from the sea floor
to the skeleton as its load carrying capacity (LCC). The more tensile force that the spicules are capable of transmitting from the sea
floor to the animal’s skeleton the better they presumably serve their goal of anchoring the animal firmly to the ocean floor. This
motivated us to put forward the hypothesis in a previous study (Monn et al., 2015) that the lamellar architecture’s primary role
is to contribute to the spicule’s LCC. From here on we will refer to this hypothesis as the LCC hypothesis. The primary evidence
in support of the LCC hypothesis put forward in our previous paper (Monn et al., 2015) was the positive correlation between the
experimentally measured silica layer thicknesses and those in a spicule model in which the thicknesses were chosen to maximize
the model’s LCC. In this paper, we present further arguments in support of the LCC hypothesis and develop a mechanics theory that
can be used to more thoroughly check the validity of the LCC hypothesis once the spicule’s elasticity becomes better characterized.

If a basalia spicule were to remain perfectly straight and have its terminal ends loaded uniformly across its cross-sections, then the
only factor relevant to its LCC would be the strengths and thicknesses of its individual layers. It has been observed that the strength
of ceramics increases with decreasing specimen thicknesses (Griffith, 1921; McKinney and Rice, 1981). Therefore, for the case of
spicules that are subject to simple tensile loading we have immediate support for the LCC hypothesis. However, by studying the
arrangement of the spicules within the mud bulb that is often found at the base of the Ea. skeleton (see Fig. 2(𝖠)), it is reasonable to
conclude that more of the spicules function in a looped configuration within the sediment rather than in an unlooped configuration.
Therefore, the spicule’s LCC in the looped configuration is as relevant as, if not more than, its capacity in an unlooped configuration.
The aim of this paper is to construct and present arguments that provide support for the LCC hypothesis for the case in which the
spicules function in a looped configuration (see Fig. 2 𝖡 ).
2
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Fig. 2. A Euplectella aspergillum (Ea.) basalia spicule in a looped configuration. (A) Ea. basalia spicules anchor the sponge onto the sea floor. (B) Ea. basalia
spicules may form loops as they get tightened around sea floor sediments.

A nonlinear beam model for the spicule predicts that the looped configuration’s LCC, in addition to the layers’ strengths and
thicknesses, will also depend inversely on the spicule’s effective bending stiffness.1

Atomic force microscopy testing (Weaver et al., 2007) reveals that the thin organic layers that separate the siliceous layers are
much more compliant compared to the siliceous layers (see Fig. 1(𝖢)). Motivated by this observation, we simplify our analysis by
assuming that the organic layers do not transmit any shear stresses between the silica layers.

If we model the silica of the layers as being a homogeneous, isotropic, linear elastic material, and overall deformation of the
spicule using small deformation beam theories, then we find that the spicule’s effective bending stiffness is independent of the
number of silica layers. This result, when taken alone, weakens the possibility that (for the case of the looped configuration) the
LCC hypothesis is true. Modeling the spicule silica using a homogeneous isotropic material model seems natural considering that
the spicule seems to have axial symmetry. That is, the spicule would look the same on rotating it by any angle about its long axis.
However, there are many other material models, and not just the isotropic material model, that allow for the existence of axial
symmetry. We introduce and discuss those other material models in Section 3.2.

On considering those more general elastic material models, we found that the stiffness of a spicule can decrease with the
introduction of layers. These more general material models are called helically orthotropic material models (HOMM), and come
under the general class of curvilinear anisotropic material models. Working under the paradigm of HOMM, we found the precise
condition on the elastic constants of a cylindrical tube that on being satisfied guarantees that the cylindrical tube’s bending stiffness
will decrease on splitting the cylindrical tube into four or more co-axial tubes. Currently, the exact elastic characteristics of the
material composing the spicules are not known. Therefore, our result that when the spicules’ elasticity possesses certain curvilinear
anisotropy characteristics then its bending stiffness will decrease with the number of layers provides support to the LCC hypothesis;
this is because, as we mentioned previously, the looped configuration’s LCC depends inversely on its bending stiffness.

The condition which, on being satisfied guarantees that a cylindrical tube’s bending stiffness will decrease on splitting the
cylindrical tube into four or more co-axial tubes is given in (4.7) in Section 4.2. In our numerical experiments we, in fact, found
that when (4.7) is satisfied the bending stiffness reduces even on splitting the tube into just two tubes.

1 We will present this nonlinear beam model elsewhere.
3
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We also derived the condition which, on being satisfied, guarantees that a cylindrical tube’s bending stiffness will not decrease
n being split into any number of layers. This condition is given in (4.8) in Section 4.3. The isotropic material model effectively
lways satisfies this condition. Thus the finding from the small deformation beam theories that the bending stiffness of an isotropic
eam cannot be reduced by splitting it into two or more co-axial tubes is consistent with our result.

The outline of the paper is as follows. In Section 2 we introduce the geometrical notions necessary for describing the various
urvilinear anisotropic elasticity material models that we discuss in this paper. In Section 3 we briefly review the theory of curvilinear
nisotropy and present the various curvilinear anisotropic elasticity material models. Sections 2 and 3 are supporting sections, and
ontain mostly background information. We present three primary results in this paper in Section 4. In Section 4.1 we present a
tructural mechanics model for the spicules based on the work of Jolicoeur and Cardou (1994). Each layer in our structural mechanics
odel for the spicule can be composed of a different helically orthotropic material. In Section 4.2 we present the condition on the

lastic constants of a cylindrical tube that on being satisfied guarantees that the cylindrical tube’s bending stiffness will decrease on
plitting the tube into four or more co-axial tubes. In Section 4.3 we present the condition on the elastic constants of a cylindrical
ube that on being satisfied guarantees that the cylindrical tube’s bending stiffness will not decrease on splitting the tube into any
umber of layers. In Section 5 we discuss the numerical calculations that we carried out for checking the validity of the results
e presented in Sections 4.2 and 4.3. Our arguments and results are based on several assumptions ranging from the mechanical
ehavior of the spicules to the role of shear stresses in bending stiffness. We collect and list the most pertinent assumptions in our
ork in Section 6, so that it is easier to ascertain the validity of our arguments and results in the future.

. Mathematical preliminaries

.1. Geometrical notions

We take that the spicule assumes its physical bent configurations in the space E, which is an affine point space. We take the
uclidean space E to be E’s associated vector translation space. We take some arbitrary point 𝑂 ∈E to be E’s origin.

.1.1. Basis vectors
artesian basis vectors. Let𝓍𝓍𝓍 =

(

𝓍𝓍𝓍𝑖
)

𝑖∈(1,2,3) be an arbitrary, orthonormal set of vectors in E. By orthonormal we mean that𝓍𝓍𝓍𝑖⋅𝓍𝓍𝓍𝑗 = 𝛿𝑖𝑗 ,
for 𝑖, 𝑗 ∈ (1, 2, 3), where 𝛿𝑖𝑗 is the Kronecker delta symbol and is defined to be unity if 𝑖 = 𝑗 and naught otherwise. The Cartesian
co-ordinates of 𝑋 ∈ E, which we denote as 𝖷̆ [𝑋] =

(

𝖷̆𝑖 [𝑋]
)

𝑖∈(1,2,3), are components of the vector 𝑋 − 𝑂 ∈ E with respect to 𝓍𝓍𝓍𝑖.
We call the map E ∋ 𝑋 ↦ 𝖷̆ [𝑋] ∈ R3 the Cartesian co-ordinate map. There also exists the inverse Cartesian co-ordinate map
R3 ∋ 𝖷 ↦ 𝑋̆ [𝖷] ∈E, such that 𝑋̆

[

𝖷̆ [𝑋]
]

= 𝑋.

Cylindrical basis vectors. The cylindrical co-ordinates of 𝑋, which we denote as (𝑟̆ [𝑋] , 𝜃̆ [𝑋] , 𝑧̆ [𝑋]), are defined in the standard
anner using the Cartesian co-ordinates 𝖷̆ [𝑋]. Let ℯℯℯ [𝑋] ∶=

(

ℯℯℯ𝑖 [𝑋]
)

𝑖∈(1,2,3), where

ℯℯℯ1 [𝑋] = cos
[

𝜃̆ [𝑋]
]

𝓍𝓍𝓍1 + sin
[

𝜃̆ [𝑋]
]

𝓍𝓍𝓍2, (2.1a)

ℯℯℯ2 [𝑋] = − sin
[

𝜃̆ [𝑋]
]

𝓍𝓍𝓍1 + cos
[

𝜃̆ [𝑋]
]

𝓍𝓍𝓍2, (2.1b)

ℯℯℯ3 [𝑋] = 𝓍𝓍𝓍3. (2.1c)

The vectors ℯℯℯ [𝑋] are the cylindrical basis vectors.

Helical basis vectors. Let 𝒻𝒻𝒻𝜑 [𝑋] ∶=
(

𝒻𝒻𝒻𝜑;𝑖 [𝑋]
)

𝑖∈(1,2,3), where

𝒻𝒻𝒻𝜑;𝑖 [𝑋] =
∑

𝑗∈(1,2,3)
𝑄⋅𝑖⋅𝑗 [𝜑]ℯℯℯ𝑗 [𝑋] , (2.2)

𝑄⋅⋅ [𝜑] =

⎛

⎜

⎜

⎜

⎝

1 0 0

0 cos [𝜑] − sin [𝜑]

0 sin [𝜑] cos [𝜑]

⎞

⎟

⎟

⎟

⎠

, (2.3)

𝑄⋅⋅ [𝜑] ∈ M3×3 (R)2 and 𝜑 ∈ [0, 𝜋]. We refer to 𝒻𝒻𝒻𝜑 [𝑋] as the helical basis vectors, and to 𝜑 as the helix angle. The reason behind
this is as follows. Consider the space curve 𝛤𝑋;𝜑 [⋅] ∶ R → R3,

𝛤𝑋;𝜑 [𝜉] =
(

𝑟̆ [𝑋] cos
[

𝜃̆ [𝑋] − 𝜉
]

, 𝑟̆ [𝑋] sin
[

𝜃̆ [𝑋] − 𝜉
]

, 𝑟̆ [𝑋] 𝜉 cot [𝜑] + 𝑧̆ [𝑋]
)

.

The curve 𝛤𝑋;𝜑 [⋅] is a helix in R3 with radius 𝑟̆ [𝑋] and pitch 2𝜋𝑟̆ [𝑋] ∕ tan [𝜑] that passes through 𝖷̆ [𝑋]. We define the reference
elix corresponding to 𝛤𝑋;𝜑 [⋅] as 𝑋̆◦𝛤𝑋;𝜑 [⋅] ∶ R → E. The reference helix lies in E and passes through the point 𝑋. The vectors
𝜑 [𝑋] are closely related to the Frenet–Serret frame (Forsyth, 1912) of the reference helix at 𝑋. More specifically, the tangent
ector in the Frenet–Serret frame of the reference helix at 𝑋 equals 𝒻𝒻𝒻𝜑;3 [𝑋], the normal vector equals −𝒻𝒻𝒻𝜑;1 [𝑋], and the bi-normal
ector equals −𝒻𝒻𝒻𝜑;2 [𝑋] (see Fig. 3).

The vector sets
(

ℯℯℯ𝑖 [𝑋]
)

𝑖∈(1,2,3) and
(

𝒻𝒻𝒻𝜑;𝑖 [𝑋]
)

𝑖∈(1,2,3) are, respectively, orthonormal. The set
(

𝒻𝒻𝒻𝜑;𝑖 [𝑋]
)

𝑖∈(1,2,3) can be obtained by
otating

(

ℯℯℯ𝑖 [𝑋]
)

𝑖∈(1,2,3) about ℯℯℯ1 [𝑋] (the radial vector) by −𝜑 (i.e., 𝜑 in the clockwise direction; see Fig. 3).

2 We consider a matrix to be an ordered set of elements where all the elements are ordered sets of the same cardinality. Specially, we denote the ordered
4
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Fig. 3. The geometry of a single cylindrical layer in our model for the spicule. Our spicule model consists of one or more of such cylindrical layers. The various
geometrical quantities illustrated and marked, such as B, ℯℯℯ𝑖 [𝑋], 𝑖 = 1, 2, 3, 𝜑, 𝑋̆◦𝛤𝑋;𝜑 [⋅], etc., are all defined and discussed in Sections 2.1.1 and 3.1.

2.1.2. Units
Following the formalism introduced in Rahaman et al. (2020) and Deng and Kesari (2021), we take the vectors in E to have

units of length, such as meters or millimeters, and refer to E as the physical matter vector space. Consequently, the vectors in the
sets

(

𝓍𝓍𝓍𝑖
)

𝑖∈(1,2,3),
(

ℯℯℯ𝑖 [𝑋]
)

𝑖∈(1,2,3), and
(

𝒻𝒻𝒻𝜑;𝑖 [𝑋]
)

𝑖∈(1,2,3) all carry units of length, and the components of a vector in E with respect to
any of these sets are dimensionless.

In fact, as per our formalism, in all our physical (Euclidean) vector spaces units will be an intrinsic aspect of the spaces’ vectors
themselves. And all elements of a physical vector space have the same units. For example, say that F is the force Euclidean vector
space, and 𝒻𝒻𝒻1, 𝒻𝒻𝒻2, 𝒻𝒻𝒻3 are an orthonormal set of vectors in F. Then, 𝒻𝒻𝒻𝑖 carry with them units of force. These units can be Newton,
milli-Newton, etc. Consequently, if an arbitrary vector 𝒻𝒻𝒻 ∈ F is equal to ∑

𝑖∈(1,2,3) 𝑓𝑖𝒻𝒻𝒻𝑖, then the components 𝑓𝑖 are dimensionless,
i.e., they belong to R.

We use the map 𝑈 [⋅] to explicitly refer to a vector space’s units. That is, it takes a physical vector space as an argument and
returns the units carried by the elements of that space. For example, 𝑈 [E] can be 𝗆𝖾𝗍𝖾𝗋𝗌, 𝗆𝗂𝖼𝗋𝗈 −𝗆𝖾𝗍𝖾𝗋𝗌, etc., and 𝑈 [F] can be
Newtons, mill-newtons, etc.

3. Mechanics preliminaries

Let B be a manifold homeomorphic to the topological space formed by sweeping a disk around a circle (solid torus). We call
B the material manifold and call its points material particles. Let 𝜅R ∶B→E be a continuous injective map such that 𝜅R

[

B
]

is
a straight tube having an annular cross-section with its axis passing through 𝑂 and parallel to the 𝓍𝓍𝓍3 direction (see Fig. 3). We call
𝜅R the reference configuration, and 𝜅R

[

B
]

the reference body.

3.1. Linear elasticity

As per the generalized Hooke’s law

𝝈 [x] = c [x] 𝝐 [x] , (3.1)

where x ∈B is an arbitrary material particle and 𝝈 [x], 𝝐 [x], and c [x] are, respectively, the Cauchy stress tensor, the infinitesimal
strain tensor, and the elastic stiffness tensor at x. The Hooke’s law can also be expressed as

𝝐 [x] = s [x] 𝝈 [x] , (3.2)
5

where s [x] is the elastic compliance tensor, which is the inverse of c [x].
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Compliance tensor components. We take ℊℊℊ [x] ∶=∶
(

ℊℊℊ𝑖 [x]
)

𝑖∈(1,2,3) to be an arbitrary set of orthonormal vectors in E. For example,
it can be ℯℯℯ

[

𝜅R [x]
]

or 𝒻𝒻𝒻𝜑
[

𝜅R [x]
]

(henceforth, when there is no risk of confusion, we will denote these set of orthonormal vectors
simply as ℯℯℯ [x] and 𝒻𝒻𝒻𝜑 [x]). We denote the components of s [x] with respect to bases related to ℊℊℊ [x] as 𝑠ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x], where
, 𝑗, 𝑘, 𝑙 ∈ (1, 2, 3). In general 𝑠ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [⋅] denotes one of the 81 real valued functions over B. It is a standard exercise to show
hat these 81 functions are not independent and can be expressed using only 21 functions. We denote those 21 functions as
ℊℊℊ
(𝑖,𝑗) [⋅] ∶ B → R, 𝑖 ∈ (1,… , 6) and 1 ≤ 𝑗 ≤ 𝑖. We also define the functions 𝑠ℊℊℊ(𝑖,𝑗) [⋅] where 𝑖 ∈ (1,… , 6) and 𝑖 < 𝑗 ≤ 6 as 𝑠ℊℊℊ(𝑗,𝑖) [⋅].
he numbers 𝑠ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x] and 𝑠ℊℊℊ(𝑖,𝑗) [x] are related to each other as

𝑠ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x] = 𝑠ℊℊℊ(𝗏𝗈𝗂[𝑖,𝑗],𝗏𝗈𝗂[𝑘,𝑙]) [x] , (3.3)

here 𝗏𝗈𝗂 ∶ (1, 2, 3)2 → (1,… , 6), 𝗏𝗈𝗂 [𝑖, 𝑖] = 𝑖, 𝗏𝗈𝗂 [2, 3] = 4, 𝗏𝗈𝗂 [1, 3] = 5, 𝗏𝗈𝗂 [1, 2] = 6, and when 𝑗 < 𝑖, 𝗏𝗈𝗂 [𝑖, 𝑗] = 𝗏𝗈𝗂 [𝑗, 𝑖]. As the reader
ight have deduced the function 𝗏𝗈𝗂 [⋅] implements the Voigt notation.

ompliance matrices. We term the symmetric matrix 𝑠ℊℊℊ [x] ∶=
(

𝑠ℊℊℊ(𝑖,𝑗) [x]
)

𝑖,𝑗∈(1,…,6)
the compliance matrix. In particular, we refer

o 𝑠𝓍𝓍𝓍 [x], 𝑠ℯℯℯ [x], and 𝑠𝒻𝒻𝒻𝜑 [x], respectively, as the Cartesian compliance matrix, the cylindrical compliance matrix, and the helical
ompliance matrix at x.

tiffness tensor components. We denote the components of c [x] with respect to bases related to ℊℊℊ [x] as 𝑐ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x], where
, 𝑗, 𝑘, 𝑙 ∈ (1, 2, 3). Similar to the case of compliance tensor components, the functions 𝑐ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [⋅] ∶ B → R can be expressed
sing only 21 functions, which we denote as 𝑐ℊℊℊ(𝑖,𝑗) [⋅] ∶B → R, 𝑖 ∈ (1,… , 6) and 1 ≤ 𝑗 ≤ 𝑖. We also define the functions 𝑐ℊℊℊ(𝑖,𝑗) [⋅] where
∈ (1,… , 6) and 𝑖 < 𝑗 ≤ 6 as 𝑐ℊℊℊ(𝑗,𝑖) [⋅]. The numbers 𝑐ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x] and 𝑐ℊℊℊ(𝑖,𝑗) [x] are related to each other as

𝑐ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x] = 𝑐ℊℊℊ(𝗏𝗈𝗂[𝑖,𝑗],𝗏𝗈𝗂[𝑘,𝑙]) [x] . (3.4)

tiffness matrices. We term the symmetric matrix 𝑐ℊℊℊ [x] ∶=
(

𝑐ℊℊℊ(𝑖,𝑗) [x]
)

𝑖,𝑗∈(1,…,6)
the stiffness matrix. In particular, we refer to 𝑐𝓍𝓍𝓍 [x],

𝑐ℯℯℯ [x], and 𝑐𝒻𝒻𝒻𝜑 [x] as, respectively, the Cartesian stiffness matrix, the cylindrical stiffness matrix, and the helical stiffness matrix
at x.

Inverse stiffness matrices (𝐶ℊℊℊ [x])3. We define the inverse stiffness matrix 𝐶ℊℊℊ [x] = 𝖨𝗇𝗏
[

𝑐ℊℊℊ [x]
]

. Here, 𝖨𝗇𝗏 [⋅] is the standard matrix
inversion operation. Thus, 𝐶ℊℊℊ [x] belongs to the set of 6 × 6 matrices of real numbers, M6×6 (R). In particular, 𝐶𝓍𝓍𝓍 [x], 𝐶ℯℯℯ [x],
and 𝐶𝒻𝒻𝒻𝜑 [x] are, respectively, by definition 𝖨𝗇𝗏

[

𝑐𝓍𝓍𝓍 [x]
]

, 𝖨𝗇𝗏
[

𝑐ℯℯℯ [x]
]

, and 𝖨𝗇𝗏
[

𝑐𝒻𝒻𝒻𝜑 [x]
]

. We refer to 𝐶𝓍𝓍𝓍 [x], 𝐶ℯℯℯ [x], and 𝐶𝒻𝒻𝒻𝜑 [x],
respectively, as the Cartesian inverse stiffness matrix, the cylindrical inverse stiffness matrix, and the helical inverse stiffness matrix
at x.

The procedure for computing
(

𝑠ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x]
)

𝑖,𝑗,𝑘,𝑙∈(1,2,3)
, 𝑠ℊℊℊ [x],

(

𝑐ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x]
)

𝑖,𝑗,𝑘,𝑙∈(1,2,3)
, 𝑐ℊℊℊ [x], and 𝐶ℊℊℊ [x] from one another

is outlined in Fig. 8.

3.2. Material models

If 𝐶ℊℊℊ [⋅] is a constant function then we say that B has ℊℊℊ-homogeneity. More specifically, if 𝐶ℯℯℯ [⋅] is a constant function then we
say that B has cylindrical homogeneity, and if 𝐶𝒻𝒻𝒻𝜑 [⋅] is a constant function then we say that B has helical homogeneity. Most
applications of linear elasticity restrict themselves to the case where 𝐶𝓍𝓍𝓍 [⋅] is a constant. This is the case of B being ‘‘homogeneous’’.
We will refer to this case as B having Cartesian homogeneity.

We note that when 𝐶ℊℊℊ [⋅] is a constant function, 𝑐ℊℊℊ [⋅], 𝑐ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [⋅], 𝑠
ℊℊℊ [⋅], and 𝑠ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [⋅] are constant functions as well.

3.2.1. Cylindrically, helically, and cartesian orthotropic, transversely-isotropic, cubic, and isotropic materials
Cylindrically, helically, and cartesian orthotropic materials. We say that B is orthotropic iff in addition to 𝐶ℊℊℊ [⋅] being a constant
function, its constant value has the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝐸1

− 𝜈12
𝐸1

− 𝜈13
𝐸1

0 0 0

− 𝜈12
𝐸1

1
𝐸2

− 𝜈23
𝐸2

0 0 0

− 𝜈13
𝐸1

− 𝜈23
𝐸2

1
𝐸3

0 0 0

0 0 0 1
𝜇23

0 0

0 0 0 0 1
𝜇13

0

0 0 0 0 0 1
𝜇12

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.5)

3 in many cases, what we refer to as inverse stiffness matrices are referred to as compliance matrices; one instance of this is the work by Jolicoeur and
6

ardou (1994).
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where 𝐸1, 𝐸2, 𝐸3, 𝜈12, 𝜈13, 𝜈23, 𝜇12, 𝜇13, and 𝜇23 are real constants such that the matrix (3.5) is positive definite. We denote the set
of material properties (𝐸1, 𝐸2, 𝐸3, 𝜈12, 𝜈13, 𝜈23, 𝜇12, 𝜇13, 𝜇23) as 𝑀́ . In particular, if ℊℊℊ [x] = ℯℯℯ [x] then we say that B is cylindrically
rthotropic (ℯℯℯ-orthotropic), if ℊℊℊ [x] = 𝒻𝒻𝒻𝜑 [x] then that it is helically orthotropic (𝒻𝒻𝒻𝜑-orthotropic), and if ℊℊℊ [x] = 𝓍𝓍𝓍 then that it is

Cartesian orthotropic (𝓍𝓍𝓍-orthotropic).

Cylindrically, helically, and cartesian transversely isotropic materials. We say that B is transversely isotropic iff in addition to 𝐶ℊℊℊ [⋅]
eing a constant function its constant value has the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝐸𝑝

− 𝜈𝑝
𝐸𝑝

− 𝜈𝑝𝑡
𝐸𝑝

0 0 0

− 𝜈𝑝
𝐸𝑝

1
𝐸𝑝

− 𝜈𝑝𝑡
𝐸𝑝

0 0 0

− 𝜈𝑝𝑡
𝐸𝑝

− 𝜈𝑝𝑡
𝐸𝑝

1
𝐸𝑡

0 0 0

0 0 0 1
𝜇𝑡

0 0

0 0 0 0 1
𝜇𝑡

0

0 0 0 0 0 2
(

𝜈𝑝+1
)

𝐸𝑝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.6)

where 𝐸𝑝, 𝐸𝑡, 𝜈𝑝, 𝜈𝑝𝑡, and 𝜇𝑡 are real constants such that the matrix (3.6) is positive definite. We denote the set of material properties
𝐸𝑝, 𝐸𝑡, 𝜈𝑝, 𝜈𝑝𝑡, 𝜇𝑡

)

as 𝑀̃ . In particular, if ℊℊℊ [x] = ℯℯℯ [x] then we say that B is cylindrically transversely isotropic (ℯℯℯ-transversely
isotropic), if ℊℊℊ [x] = 𝒻𝒻𝒻𝜑 [x] then that it is helically transversely isotropic (𝒻𝒻𝒻𝜑-transversely isotropic), and if ℊℊℊ [x] = 𝓍𝓍𝓍 then that it
is Cartesian transversely isotropic (𝓍𝓍𝓍-transversely isotropic).

Cylindrically, helically, and cartesian cubic materials. We say that B is cubic iff in addition to 𝐶ℊℊℊ [⋅] being a constant function its
constant value has the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝐸𝑐

− 𝜈𝑐
𝐸𝑐

− 𝜈𝑐
𝐸𝑐

0 0 0

− 𝜈𝑐
𝐸𝑐

1
𝐸𝑐

− 𝜈𝑐
𝐸𝑐

0 0 0

− 𝜈𝑐
𝐸𝑐

− 𝜈𝑐
𝐸𝑐

1
𝐸𝑐

0 0 0

0 0 0 1
𝜇𝑐

0 0

0 0 0 0 1
𝜇𝑐

0

0 0 0 0 0 1
𝜇𝑐

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.7)

here 𝐸𝑐 , 𝜈𝑐 , and 𝜇𝑐 are real constants such that the matrix (3.7) is positive definite. We denote the set of material properties
𝐸𝑐 , 𝜈𝑐 , 𝜇𝑐

)

as 𝑀̀ . In particular, if ℊℊℊ [x] = ℯℯℯ [x] then we say that B is cylindrically cubic (ℯℯℯ-cubic), if ℊℊℊ [x] = 𝒻𝒻𝒻𝜑 [x] then that it
is helically cubic (𝒻𝒻𝒻𝜑-cubic), and if ℊℊℊ [x] = 𝓍𝓍𝓍 then that it is Cartesian cubic (𝓍𝓍𝓍-cubic).

Cylindrically, helically, and cartesian isotropic materials. We say that B is isotropic iff in addition to 𝐶ℊℊℊ [⋅] being a constant function,
ts constant value has the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝐸 − 𝜈

𝐸 − 𝜈
𝐸 0 0 0

− 𝜈
𝐸

1
𝐸 − 𝜈

𝐸 0 0 0

− 𝜈
𝐸 − 𝜈

𝐸
1
𝐸 0 0 0

0 0 0 2(𝜈+1)
𝐸 0 0

0 0 0 0 2(𝜈+1)
𝐸 0

0 0 0 0 0 2(𝜈+1)
𝐸

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.8)

here 𝐸 and 𝜈 are real constants such that the matrix (3.8) is positive definite. We denote the set of material properties (𝐸, 𝜈) as 𝑀̄ .
n particular, if ℊℊℊ [x] = ℯℯℯ [x] then we say that B is cylindrically isotropic (ℯℯℯ-isotropic), if ℊℊℊ [x] = 𝒻𝒻𝒻𝜑 [x] then that it is helically
sotropic (𝒻𝒻𝒻𝜑-isotropic), and if ℊℊℊ [x] = 𝓍𝓍𝓍 then that it is Cartesian isotropic (𝓍𝓍𝓍-isotropic).

.2.2. Interdependence between the materials models
In Section 3.2.1 we discussed material models in which the material is either orthotropic, transversely isotropic, cubic, or isotropic

n the helical, cylindrical, or Cartesian basis. These 12 material models are represented by the 12 boxes in Fig. 4. However, it can
e shown that if a material is isotropic in one of the three bases, then it is also isotropic in the other two bases. We highlight this
dentification by drawing a box around the helically, cylindrically, and Cartesian isotropic material models in Fig. 4. Also, it can
e shown that if a material is transversely isotropic in the cylindrical basis then it is also transversely isotropic in the Cartesian
asis, and vice versa. We highlight this identification by drawing a box around the cylindrically and Cartesian transversely isotropic
7
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Fig. 4. Interdependence between the material models considered in this paper. The following observations can be made: (A) It can be seen that within a set of
material models that have ℊℊℊ-homogeneity, the isotropic, cubic, and transversely isotropic material models are all special cases of the orthotropic material model.
This is marked with solid arrows ( ) for material models with helical homogeneity, with dashed arrows ( ) for those with cylindrical homogeneity,
and with dotted arrows ( ) for those with Cartesian homogeneity. (B) Each arrow with a kite tip ( ) marks the relationship between a helically
homogeneous material model and a cylindrically homogeneous material. For example, the arrow pointing from the cylindrically orthotropic material model to
the helically orthotropic material model shows that the cylindrically orthotropic material model is a subset of the helically orthotropic material model. (C) Each
arrow with a triangular tip ( ) marks the relationship between a cylindrically homogeneous material model and a Cartesian homogeneous material model.
For example, the arrow pointing from the Cartesian transversely isotropic material model to the cylindrically transversely isotropic material model shows that
the former is a subset of the latter.

material models in Fig. 4. Due to these identifications each of the 12 material models fall into one of following 9 categories.

(mm.i) helically orthotropic,
(mm.ii) helically transversely isotropic,
(mm.iii) helically cubic,
(mm.iv) cylindrically orthotropic,
(mm.v) cylindrically cubic,
(mm.vi) helically/cylindrically/Cartesian isotropic,
(mm.vii) cylindrically/Cartesian transversely isotropic,
(mm.viii) Cartesian orthotropic,
(mm.ix) Cartesian cubic.

The above 9 cases, however, are not completely independent of each other. For example, if a material is cylindrically orthotropic
then it is also helically orthotropic. That is, the set of all cylindrically orthotropic materials is a subset of the set of all helically
orthotropic materials. We highlight this subset relationship by drawing an arrow from the box representing cylindrically orthotropic
material model to the box representing helically orthotropic material model in Fig. 4. We identify all other subset relationships in
Fig. 4 by drawing arrows in a similar fashion.

Following the different paths identified by the arrows in Fig. 4 it can be seen that leaving out the Cartesian orthotropic material
model (mm.viii) and the Cartesian cubic material model (mm.ix), all other material models are special cases of the helically orthotropic
8

material model (mm.i).
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Fig. 5. Three-dimensional schematics of 𝑁-layer cylindrical assembly. (𝖠) General view and cross section view for 𝑁 = 1. (𝖡) General view and cross section
view for 𝑁 = 2. (𝖢) General view and cross section view for 𝑁 = 3. (𝖣) Cross section view of an arbitrary 𝑁-layer cylindrical structure. Inner and outer radii
for the 1st layer, 𝑛th layer and 𝑁th layer are marked in the figure.

Fig. 6. Schematic of the problem studied in Jolicoeur and Cardou (1994). The system is an assembly of cylindrical tubes, made of helically orthotropic materials,
that is subjected to an axial force 𝑃 , twisting moment 𝐶, and bending moments 𝑀1, 𝑀2. The hypotheses of the problem are: the strains in the cylinder are
small; the axial load (𝑃 ), the moments (𝑀1, 𝑀2, and 𝐶), and the curvature of the assembly’s deformed central axis do not vary in the 𝓍𝓍𝓍3-direction; there is no
resultant shear force on any of the assembly’s cross-sections; and the stresses and strains only depend on 𝑟 and 𝜃. Jolicoeur and Cardou use a stress function
approach to solve the problem.

4. Results

4.1. A structural mechanics model for lamellar spicules

Building on the work of Lekhnitskii (1981), Jolicoeur and Cardou (1994) developed and studied a structural mechanics model
for a tight fitting assembly of concentrically arranged tubes which we will refer to henceforth as the JC model. The assembly can
include a tight fitting solid cylinder at its center. Each of the tubes have the shape, position, and orientation of 𝜅R

[

B
]

(see Fig. 3).
We denote the total number of tubes in the assembly as 𝑁 ∈ Z≥1, and the inner and outer radii of the 𝑛th tube, where 𝑛 ∈ (1,… , 𝑁),
as 𝑟𝑛−1 𝑈 [E] and 𝑟𝑛 𝑈 [E], respectively, where 0 < 𝑟𝑛−1 < 𝑟𝑛4. An illustration of the assembly is shown in Fig. 5. The cross-sections
can support bending moments (marked as 𝑀1 and 𝑀2 in Fig. 6), twisting moment (marked as 𝐶 in Fig. 6), and an axial force (𝑃 in
Fig. 6).

We will be referring to the tubes also as cylindrical layers, or simply as layers. Jolicoeur and Cardou consider two cases, one
in which the internal contacting surfaces are able to freely slip with respect to each other, and another in which they can have no
relative slip. In both cases the surfaces do not undergo any relative normal motion.

4.1.1. Particularization of the JC model
We use a particularized form of the JC model to understand the bending behavior of the spicules that we discussed in Section 1.

In our particularization we ignore the twisting moment and the axial force. We also ignore the central cylinder, since the spicule’s
central core is not exactly a solid cylinder, but, rather, is closer to being a hollow cylinder; albeit, one in which the inner radius is

4 For example, if 𝑈 [E] was 𝖼𝖾𝗇𝗍𝗂𝗆𝖾𝗍𝖾𝗋𝗌, and the inner and outer radii of the 10th tube in an assembly of 20 tubes were 10 and 15 millimeters, respectively,
then in that case 𝑟 = 1.0 and 𝑟 = 1.5.
9
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quite small. The core has a proteinaceous filament running along its length at its center (Weaver and Morse, 2003). We also take
the internal surfaces to be freely slipping. Considering the spicules’ geometry, internal structure, material properties, and loading,
which we discussed in Section 1, this particularization is as applicable as the complete JC model for modeling the mechanics of the
spicule while at the same time being substantially simpler than it.

To apply the JC model, and our particularization of it, it is necessary that each tube be composed of a helically orthotropic
aterial. (The JC model, however, does not apply to all helically orthotropic materials, see Section 4.1.2.) We found that if a
aterial is helically homogeneous then it is also cylindrically homogeneous. For this reason and by the definition of cylindrical
omogeneity (see Section 3.2), each layer’s 𝐶ℯℯℯ [⋅] is a constant function. We denote the constant value of the 𝑛th layer’s 𝐶ℯℯℯ [⋅] as

𝐶ℯℯℯ
𝑛

5. We refer to 𝐶ℯℯℯ
𝑛 as the 𝑛th layer’s cylindrical inverse stiffness matrix6.

As per our particularization of the JC model, which we will from here on refer to simply as the JC model, a spicule’s bending
stiffness is related to its layers’ thicknesses and material properties as

K𝑁 [𝑥]𝑈 [F]𝑈 [E]2 , (4.1a)

where

𝑥 =
((

𝑟𝑛−1, 𝑟𝑛 − 𝑟𝑛−1, 𝐶
ℯℯℯ
𝑛
))

𝑛=(1,…,𝑁) , (4.1b)

and F denotes the force vector space in our problem.
The function K𝑁 , which appears in (4.1), is defined as K𝑁 ∶

(

R>0,R>0,M6×6 (R)
)𝑁

→ R,

K𝑁 [𝑥] ∶=
𝑁
∑

𝑛=1
k

[

𝑥⋅𝑛
]

. (4.2)

In (4.2), the function k is defined as k ∶ R>0 × R>0 ×M6×6 (R) → R,

k [𝑎, 𝑡, 𝑠] = 𝛾 [𝑠] 𝐼 [𝑎, 𝑡, 2] +
4
∑

𝑖=1
𝛼 [𝑠]⋅𝑖 𝐾 [𝑎, 𝑡, 𝑠]⋅𝑖 𝐼

[

𝑎, 𝑡, 𝑚 [𝑠]⋅𝑖
]

, (4.3a)

where 𝐼 ∶ R>0 × R>0 × R → R,

𝐼 [𝑎, 𝑡, 𝑚] = 𝗉𝗈𝗐 (𝑎, 𝑚 + 2) − 𝗉𝗈𝗐 (𝑎 + 𝑡, 𝑚 + 2) . (4.3b)

In (4.2) the argument ‘‘𝑥⋅𝑛’’ is to be interpreted as ‘‘the 𝑛th component of 𝑥’’. In general, we use the notation that when 𝑦 ∈M𝑚×𝑛 (R),
hen 𝑦⋅𝑖⋅𝑗 , where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, is the 𝑖 − 𝑗th component of 𝑦.

The functions 𝛼 ∶M6×6 (R) → R4, 𝑚 ∶M6×6 (R) → R4, and 𝛾 ∶M6×6 (R) → R, which appear in (4.3a) are, respectively, defined
n Appendix B.2.1, Appendix B.2.2, and Appendix B.2.3. The function 𝐾 ∶ R>0 × R>0 ×M6×6 (R) → M4×1 (R), which appears in

(4.3a), is defined as

𝐾 [𝑎, 𝑡, 𝑠] = 𝖨𝗇𝗏 [𝐴] 𝑏, (4.4a)

where 𝐴 ∈M4×4 (R),

𝐴 =

(

(

𝗉𝗈𝗐
(

𝑎 + 𝑡, ̌̌𝑚𝑖

)

∣ 𝑖 ∈ (1,… , 4)
)

,
(

𝗉𝗈𝗐
(

𝑎, ̌̌𝑚𝑖

)

∣ 𝑖 ∈ (1,… , 4)
)

,
(

𝑔𝑖 𝗉𝗈𝗐
(

𝑎 + 𝑡, ̌̌𝑚𝑖

)

∣ 𝑖 ∈ (1,… , 4)
)

,
(

𝑔𝑖 𝗉𝗈𝗐
(

𝑎, ̌̌𝑚𝑖

)

∣ 𝑖 ∈ (1,… , 4)
)

)

,

(4.4b)

𝑚𝑖 = 𝑚 [𝑠]⋅𝑖 , 𝑖 ∈ (1,… , 4), (4.4c)

𝑔𝑖 = 𝑔 [𝑠]⋅𝑖 , 𝑖 ∈ (1,… , 4), (4.4d)

and 𝑏 ∈M4×1 (R),

𝑏 =
(

−𝜇1,−𝜇1,−𝜇2,−𝜇2
)

, (4.4e)

𝜇𝑖 = 𝜇 [𝑠]⋅𝑖 , 𝑖 ∈ (1, 2). (4.4f)

5 For clarification, we note that the components of 𝐶ℯℯℯ
𝑛 are referred to as the strain coefficients in the work by Lekhnitskii (1981).

6 We have defined the cylindrical inverse stiffness matrix in Section 3.1. However, in order to get a more intuitive feel for the components of 𝐶ℯℯℯ
𝑛 imagine

that we cut out a cube of material of infinitesimal size from the 𝑛th layer about the material particle x such that the cube’s normals are aligned with the
cylindrical basis vectors at x, i.e., with the ℯℯℯ [x] directions. Then if we were to conduct a uniaxial tensile test on that cube by pulling on its faces that were
perpendicular to the ℯℯℯ x direction, then the Young’s modulus we would measure in that test would be 1∕𝐶ℯℯℯ 𝑈 F ∕𝑈 E 2.
10
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As per our notation, 𝑚 [𝑠]⋅𝑖 in (4.4c) denotes the 𝑖th component of 𝑚 [𝑠], which belongs to R4. The symbols 𝑔 [𝑠]⋅𝑖, and 𝜇 [𝑠]⋅𝑖
ppearing, respectively, in (4.4d), and (4.4f) are to be interpreted similarly. As per the new notation we introduce in Appendix A.2,
he symbol ̌̌𝑚𝑖, which appears in (4.4b), stands for the expression 𝑚𝑖 −2. The functions 𝑔 ∶M6×6 (R) → R4, which appears in (4.4d),
nd 𝜇 ∶M6×6 (R) → R2, which appears in (4.4f), are defined in Appendix B.3.1 and Appendix B.3.2, respectively.

.1.2. Admissible material properties
Jolicoeur and Cardou state that their theory applies whenever a layer is composed of a helically orthotropic material. However,

e found that the JC model, and consequently our particularization of it, does not apply to some special types of helically orthotropic
aterials.

In Section 3.2.1 we presented 12 material models, and in Section 3.2.2 these models were sorted into 9 categories. These 9
ategories are listed as mm.i–ix in Section 3.2.2 with mm.i being the helically orthotropic material model. We further identified in
ection 3.2.2 that mm.ii–mm.vii are special cases of mm.i. Within these 7 categories of helically orthotropic material models, we found
hat the JC model is inapplicable when the layer is composed of an mm.vi (helically/cylindrically/Cartesian isotropic) material or an
m.vii (cylindrically/Cartesian transversely isotropic) material.

This restriction that the JC model cannot be applied to mm.vi and mm.vii materials arises as a consequence of the requirement that
or the JC model to be well-posed the conditions

𝑚𝑖 ≠ 0, 𝑖 = 1, 2, (4.5a)
|

|

𝑚1
|

|

≠ |

|

𝑚2
|

|

, (4.5b)

nd

𝑚𝑖 ≠ 2, 𝑖 = 1, 2 (4.5c)

need to be satisfied. We refer to the conditions (4.5) as the m-conditions. It is necessary that (𝑚1, 𝑚2) satisfy (4.5a) since otherwise
he matrix 𝐴 (see (4.4b)) would be singular. For the same reason (𝑚1, 𝑚2) need to satisfy (4.5b). The parameters (𝑚1, 𝑚2) need to
atisfy (4.5c) since otherwise the 2 × 2 matrix 𝐵⋅⋅ in (B.8), which needs to be inverted to obtain 𝜇𝑖, will be singular (see Appendix D.2
or details).

It can be shown that (4.5c) is violated if a layer is composed of an mm.vi or an mm.vii material.
In summary, for the JC model and our particularization of it to apply, it is necessary that a layer’s material belongs to mm.i–mm.v.

owever, belonging to mm.i–mm.v may not be sufficient for the JC model to be applicable. Irrespective, we will only be considering
hose helically orthotropic materials for which the JC model is applicable.

.2. Sufficient conditions for reduction of bending stiffness

Suppose an assembly consisting of layers with admissible material properties is subject to a bending moment and as a result
ttains a curvature of 𝜅1𝑈 [E]−1 in the 𝓍𝓍𝓍1 direction on the central axis. Now keeping the curvature constant, say we were to create
cylindrical cut in the 𝑛th layer at radius 𝑟𝑐 ∈

(

𝑟𝑛−1, 𝑟𝑛
)

; that is, make the shear components of the traction vector on the surface
𝑟𝑐 = {𝑋 ∈ 𝜅R

[

B
]

∣ 𝑟̆ [𝑋] = 𝑟𝑐} vanish by allowing the component of the displacement field parallel to 𝑆𝑟𝑐 to be discontinuous
cross 𝑆𝑟𝑐 . If creating such a cut reduces the bending moment on the assembly, then we say that the cut reduces the assembly’s
ending stiffness. (A.1) We assume the assembly’s bending stiffness can be reduced by creating a cut at a cylindrical surface in the
th layer iff there exist shear stresses on that surface prior to the creation of the cut.

Let us denote the component in the ℯℯℯ2 direction of the traction vector on the surface element perpendicular to the ℯℯℯ1 direction
nd centered around 𝑋 as 𝜏𝑛⋅1⋅2 [𝑋]. Similarly, 𝜏𝑛⋅1⋅3 [𝑋] denotes the component in the ℯℯℯ3 direction. It follows from the JC model
hat

𝜏𝑛⋅1⋅2 [𝑋] = 𝜅 [𝑋] 𝑓𝑛 [𝑟̆ [𝑋]] , (4.6a)

𝜏𝑛⋅1⋅3 [𝑋] = 𝜅 [𝑋]ℎ𝑛 [𝑟̆ [𝑋]] , (4.6b)

here

𝜅 [𝑋] =
(

𝜅𝑥 cos
[

𝜃̆ [𝑋]
]

+ 𝜅𝑦 sin
[

𝜃̆ [𝑋]
])

, 𝜅𝑥, 𝜅𝑦 ∈ R, (4.6c)

𝑓𝑛 [𝑟] =

(

−
4
∑

𝑖=1
𝐾𝑛⋅𝑖 𝗉𝗈𝗐

(

𝑟, 𝑚̌𝑛⋅𝑖
)

− 𝜇𝑛⋅1𝑟

)

, (4.6d)

ℎ𝑛 [𝑟] =

( 4
∑

𝑖=1
𝐾𝑛⋅𝑖 𝑔𝑛⋅𝑖 𝗉𝗈𝗐

(

𝑟, 𝑚̌𝑛⋅𝑖
)

+ 𝜇𝑛⋅2𝑟

)

, (4.6e)

𝐾𝑛⋅𝑖 = 𝐾
[

𝑟𝑛−1, 𝑟𝑛 − 𝑟𝑛−1, 𝐶
ℯℯℯ
𝑛
]

⋅𝑖 , (4.6f)

𝑚𝑛⋅𝑖 = 𝑚
[

𝐶ℯℯℯ
𝑛
]

⋅𝑖 , (4.6g)

𝜇𝑛⋅𝑖 = 𝜇
[

𝐶ℯℯℯ
𝑛
]

⋅𝑖 . (4.6h)
11
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We found that when

𝐶ℯℯℯ
𝑛⋅3⋅4 ≠ 0 ∨ 𝐶ℯℯℯ

𝑛⋅1⋅3 ≠ 𝐶ℯℯℯ
𝑛⋅2⋅3, (4.7)

then for almost all 𝑟𝑐 in (𝑟𝑛−1, 𝑟𝑛) creating a cut would decrease the assembly’s bending stiffness. In (4.7), the symbol ∨ is a logical
‘‘or" operator. The use of logical operators, such as ∨ appearing in (4.7), is explained in Appendix A.5.

Proposition 1. In Appendix D.1 we show that if there exist three or more interior cylindrical surfaces within the 𝑛th layer such that 𝜏𝑛⋅1⋅2
vanishes then that layer’s 𝜇𝑛⋅𝑖, 𝑖 = 1, 2 and 𝐾𝑛⋅𝑖, 𝑖 = 1,… , 4 are naught. (Proposition.2) It follows from (B.7) that when a layer’s 𝜇𝑖, 𝑖 = 1, 2
vanish then 𝐶ℯℯℯ

𝑛⋅3⋅4 = 0 ∧𝐶ℯℯℯ
𝑛⋅1⋅3 = 𝐶ℯℯℯ

𝑛⋅2⋅3. Taking Propositions 1 and 2 in conjunction implies that when (4.7) holds then there are at most two
interior cylindrical surfaces within the 𝑛th layer where 𝜏𝑛⋅1⋅2 vanishes. In other words, when (4.7) holds there is shear stress at almost all 𝑟
in (𝑟𝑛−1, 𝑟𝑛). In conjunction with our assumption (A.1), this result implies that when (4.7) holds creating a cut of an arbitrary radius 𝑟 in
(𝑟𝑛−1, 𝑟𝑛) would almost always lead to decrease in the assembly’s bending stiffness. We give other interpretations of our result in Section 5.

4.3. Sufficient conditions for there being no bending stiffness reduction with the introduction of a cylindrical cut

We also found that when

𝐶ℯℯℯ
𝑛⋅3⋅4 = 0 ∧ 𝐶ℯℯℯ

𝑛⋅1⋅3 = 𝐶ℯℯℯ
𝑛⋅2⋅3, (4.8)

then the assembly’s bending stiffness cannot be reduced by creating a cylindrical cut in the 𝑛th layer. In (4.8), the symbol ∧ is a
logical ‘‘and" operator. The proof of this result is as follows. The matrix 𝐵⋅⋅

[

𝐶ℯℯℯ
𝑛
]

, where 𝐵⋅⋅ [⋅] is defined in (B.8), is invertible. As we
stated in Section 4.1.2, we only consider those helically orthotropic material properties for which the JC model remains applicable,
and if 𝐵⋅⋅

[

𝐶ℯℯℯ
𝑛
]

were not invertible then the JC model would be inapplicable. As a consequence of 𝐵⋅⋅
[

𝐶ℯℯℯ
𝑛
]

being invertible, when
(4.8) holds then it follows from (B.7) that 𝜇𝑛⋅1 = 0 and 𝜇𝑛⋅2 = 0. In fact, when (4.8) holds in addition to 𝜇𝑛⋅1, 𝜇𝑛⋅2, the constants 𝐾𝑛⋅𝑖
also vanish. This is a consequence of (4.4) and the matrix 𝐴 in (4.4) being invertible. The invertibility of 𝐴 is guaranteed for the
same reason that was discussed for the invertibility of 𝐵⋅⋅

[

𝐶ℯℯℯ
𝑛
]

. It follows from (4.6a)–(4.6e) that when 𝐾𝑛⋅𝑖 and 𝜇𝑛⋅𝑖 vanish then
there are no shear stresses on any cylindrical surfaces within the 𝑛th layer. This result in conjunction with our assumption (A.1)
implies that when (4.8) holds then the assembly’s bending stiffness cannot be reduced by creating a cylindrical cut anywhere in the
𝑛th layer.

4.4. Particularization to specific material models

The primary result of this paper is (4.7), which gives sufficiency conditions for when layering a cylindrical tube would decrease
its bending stiffness. Recall that we stated in Section 4.1.2 that the JC model and our particularization of it only applies to mm.i–v.
Therefore, the result (4.7) also strictly only applies to mm.i–v. In order to check the condition in (4.7) for a particular material
we need to know that material’s 𝐶ℯℯℯ

𝑛 . However, the elastic properties of mm.i–v are usually reported in terms of the sets of elastic
constants that we discussed in Section 3.2.1 and not in terms of 𝐶ℯℯℯ

𝑛 ’s components. For example, the elastic properties of a helically
transversely isotropic material (mm.ii) are given in terms of 𝐸𝑝, 𝐸𝑡, 𝜈𝑝, 𝜈𝑝𝑡, and 𝜇𝑡. For that reason in the remainder of this section
we will express (4.7) for each of the material models mm.i–v in terms of the set of elastic constants that we introduced for them in
Section 3.2.1.

4.4.1. (MM.I) Helically orthotropic material
Let the assembly’s 𝑛th layer be composed of a helically orthotropic material. The helical inverse stiffness matrix of a helically

orthotropic material in terms of the elastic constants 𝑀́ is the matrix given in (3.5), which we refer to as 𝐶𝑀́
(

𝒻𝒻𝒻𝜑
)

˃𝒻𝒻𝒻𝜑 . Using
𝐶𝑀́

(

𝒻𝒻𝒻𝜑
)

˃𝒻𝒻𝒻𝜑 and following the process detailed in Appendix C.2 we can obtain the cylindrical inverse stiffness matrix of a helically
orthotropic material in terms of 𝑀́ . We refer to that matrix as 𝐶𝑀́

(

𝒻𝒻𝒻𝜑
)

˃ℯℯℯ. On substituting 𝐶ℯℯℯ
𝑛⋅𝑖⋅𝑗 in (4.7) with the 𝑖− 𝑗 component of

𝐶𝑀́
(

𝒻𝒻𝒻𝜑
)

˃ℯℯℯ and simplifying we get that the sufficient condition for a reduction in the assembly’s bending stiffness on introducing a
cut in the 𝑛th layer is (4.9a)∨(4.9b), where (4.9a) and (4.9b) are, respectively,

2 cos2 𝜑 sin𝜑
𝐸3

−
2 cos𝜑 sin3 𝜑

𝐸2
− 1

4

(

1
𝜇23

−
2𝜈23
𝐸2

)

sin 4𝜑 ≠ 0 (4.9a)

and

−
4𝜈13 cos2 𝜑

𝐸1
+

𝜈23(3 + cos 4𝜑)
𝐸2

−
4𝜈12 sin

2 𝜑
𝐸1

−
(

1
𝐸2

+ 1
𝐸3

− 1
𝜇23

)

sin2 2𝜑 ≠ 0. (4.9b)
12



Journal of the Mechanics and Physics of Solids 181 (2023) 105405S. Kochiyama et al.

m
w
s

b

S
c

4

o
c

4.4.2. (MM.II) Helically transversely isotropic material
Let the assembly’s 𝑛th layer be composed of a helically transversely isotropic material. The helical inverse stiffness matrix of

a helically transversely isotropic material in terms of the elastic constants 𝑀̃ is the matrix given in (3.6), which we refer to as
𝐶𝑀̃

(

𝒻𝒻𝒻𝜑
)

˃𝒻𝒻𝒻𝜑 . Using 𝐶𝑀̃
(

𝒻𝒻𝒻𝜑
)

˃𝒻𝒻𝒻𝜑 and following the process detailed in Appendix C.2 we can obtain the cylindrical inverse stiffness
atrix of a helically transversely isotropic material in terms of 𝑀̃ . We refer to that matrix as 𝐶𝑀̃

(

𝒻𝒻𝒻𝜑
)

˃ℯℯℯ. Substituting 𝐶ℯℯℯ
𝑛⋅𝑖⋅𝑗 in (4.7)

ith the 𝑖− 𝑗 component of 𝐶𝑀̃
(

𝒻𝒻𝒻𝜑
)

˃ℯℯℯ and simplifying we get that the sufficient condition for a reduction in the assembly’s bending
tiffness on introducing a cut in the 𝑛th layer is (4.10a)∨(4.10b), where (4.10a) and (4.10b) are, respectively,

2 cos3 𝜑 sin𝜑
𝐸𝑡

−
2 cos𝜑 sin3 𝜑

𝐸𝑝
− 1

4

(

1
𝜇𝑡

−
2𝜈𝑝𝑡
𝐸𝑝

)

sin 4𝜑 ≠ 0 (4.10a)

and

−

(

(−𝐸𝑝𝐸𝑡 + (𝐸𝑝 + 𝐸𝑡)𝜇𝑡) cos2 𝜑 + 𝐸𝑡𝜇𝑡(𝜈𝑝 + 𝜈𝑝𝑡 cos 2𝜑)
)

sin2 𝜑
𝐸𝑝𝐸𝑡𝜇𝑡

≠ 0. (4.10b)

4.4.3. (MM.III) Helically cubic material
Let the assembly’s 𝑛th layer be composed of a helically cubic material. The helical inverse stiffness matrix of a helically cubic

material in terms of the elastic constants 𝑀̀ is the matrix given in (3.7), which we refer to as 𝐶𝑀̀
(

𝒻𝒻𝒻𝜑
)

˃𝒻𝒻𝒻𝜑 . Using 𝐶𝑀̀
(

𝒻𝒻𝒻𝜑
)

˃𝒻𝒻𝒻𝜑 and
following the process detailed in Appendix C.2 we can obtain the cylindrical inverse stiffness matrix of a helically cubic material in
terms of 𝑀̀ . We refer to that matrix as 𝐶𝑀̀

(

𝒻𝒻𝒻𝜑
)

˃ℯℯℯ. Substituting 𝐶ℯℯℯ
𝑛⋅𝑖⋅𝑗 in (4.7) with the 𝑖− 𝑗 component of 𝐶𝑀̀

(

𝒻𝒻𝒻𝜑
)

˃ℯℯℯ and simplifying
we get that the sufficient condition for a reduction in the assembly’s bending stiffness on introducing a cut in the 𝑛th layer is
(4.11a)∨(4.11b), where (4.11a) and (4.11b) are, respectively,

(

2
𝐸𝑐

− 1
𝜇𝑐

+
2𝜈𝑐
𝐸𝑐

)

sin(4𝜑) ≠ 0, (4.11a)

and
(

2
𝐸𝑐

− 1
𝜇𝑐

+
2𝜈𝑐
𝐸𝑐

)

cos2 𝜑 sin2 𝜑 ≠ 0. (4.11b)

4.4.4. (MM.IV)Cylindrically orthotropic material
Let the assembly’s 𝑛th layer be composed of a cylindrically orthotropic material. The cylindrical inverse stiffness matrix of a

cylindrically orthotropic material in terms of the elastic constants 𝑀́ is the matrix given in (3.5), which we refer to as 𝐶𝑀́(ℯℯℯ) ˃ℯℯℯ.
Substituting 𝐶ℯℯℯ

𝑛⋅𝑖⋅𝑗 in (4.7) with the 𝑖− 𝑗 component of 𝐶𝑀́(ℯℯℯ) ˃ℯℯℯ, we get that the sufficient condition for a reduction in the assembly’s
ending stiffness is 0 ≠ 0∨(4.12), where (4.12) is given by

𝜈13
𝐸1

≠
𝜈23
𝐸2

. (4.12)

ince of course the condition 0 ≠ 0 can never be satisfied, in the case of cylindrically orthotropic materials the sufficient
ondition (4.7) reduces to (4.12).

.4.5. (MM.V) Cylindrically cubic material
The condition (4.7) is never satisfied. We arrive at this result in the following manner. Let the assembly’s 𝑛th layer be composed

f a cylindrically cubic material. The cylindrical inverse stiffness matrix of a cylindrically cubic material in terms of the elastic
onstants 𝑀̀ is the matrix given in (3.7), which we refer to as 𝐶𝑀̀(ℯℯℯ) ˃ℯℯℯ. Substituting 𝐶ℯℯℯ

𝑛⋅𝑖⋅𝑗 in (4.7) with the 𝑖 − 𝑗 component of
𝐶𝑀̀(ℯℯℯ) ˃ℯℯℯ we get that the sufficient condition for a reduction in the assembly’s bending stiffness on introducing a cut in the 𝑛th layer
is 0 ≠ 0 ∨ − 𝜈𝑐

𝐸𝑐
≠ − 𝜈𝑐

𝐸𝑐
, which, of course, can never be satisfied.

That (4.7) is never true is equivalent to saying that 𝐶ℯℯℯ
𝑛⋅3⋅4 = 0∧𝐶ℯℯℯ

𝑛⋅1⋅3 = 𝐶ℯℯℯ
𝑛⋅2⋅3. As discussed in Section 4.3, this implies that for the

of case of a layer composed of a cylindrically cubic material there will be no reduction in bending stiffness on introducing a cut in
that layer.

5. Discussion

Using the equations given in Section 4.1.1, we numerically computed the bending stiffnesses of several artificial assemblies
that contained different number of layers and different material models. We checked the theoretical results that we presented in
Sections 4.2 and 4.3 by comparing the bending stiffnesses of two assemblies, where one of them could be considered to have been
obtained by introducing a cylindrical cut in one of the layers of the other assembly. In all our comparisons we found the bending
stiffnesses of the two assemblies to be consistent with the results we presented in Sections 4.2 and 4.3. We discuss a few of the
representative calculations that we undertook to check our results in Section 5.1.

To be consistent with the result presented in Section 4.2 it is only required that when (4.7) is satisfied in a layer the assembly’s
bending stiffness decrease for ‘‘almost all’’ choices of the cylindrical cut’s radius in that layer. A more concrete interpretation of
13
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our result in Section 4.2 is that when a layer satisfies (4.7) and if the bending stiffness of the assembly does not decrease with
the first or the second choice of the cylindrical surface to make the cut in the layer, then it must decrease with the third choice
for the cylindrical cut in the layer. Alternatively, our result in Section 4.2 can also be interpreted to mean that if an assembly’s
bending stiffness does not decrease with the introduction of first two cylindrical cuts in a layer that satisfies (4.7), then the bending
stiffness is guaranteed to decrease with the introduction of an additional third cut. A final interpretation can be that creating three
simultaneous cylindrical cuts in a layer satisfying (4.7) guarantees a decrease in the assembly’s bending stiffness. In all our numerical
calculations we found that the bending stiffness decreased with our very first choice for the cylindrical surface to make the cut.

To be consistent with the result presented in Section 4.3 it is only required that when the elastic constants of a layer satisfy the
ondition (4.8) then introducing a cylindrical cut in that layer does not reduce the assembly’s bending stiffness. In all our calculations
e found this, in fact, to be the case.

.1. Bending stiffness reduction

Fig. 7 shows the bending stiffnesses of assemblies in which all the layers are composed of the same helically orthotropic material.
he bending stiffnesses of assemblies composed of mm.i–v are, respectively, shown in subfigures (𝖡)–(𝖥).

In all the assemblies the inner and out radii, 𝑟0 and 𝑟𝑁 , were taken to be 1 𝑈 [E] and 2 𝑈 [E], respectively. We created the
eometry of an assembly of 𝑁 + 1 layers by taking an assembly containing 𝑁 layers and cutting its 𝑘th layer into two layers of
qual thickness, where

𝑘 = 2
(

𝑁 − 𝗉𝗈𝗐
(

2, ⌊log2 [𝑁]⌋
))

+ 1, (5.1)

and ⌊⋅⌋ is the floor function. As a consequence of creating each assembly’s geometry in this fashion, the assembly containing 𝑁
layers can always be thought of as having been created by introducing a cylindrical cut in an assembly containing 𝑁 −1 layers (see
ig. 7(𝖠)). Therefore the validity of the results presented in Sections 4.2 and 4.3 can be checked by directly comparing the bending
tiffnesses of the 𝑁 and 𝑁 − 1 layer assemblies.

In the subfigures of Fig. 7 each point corresponds to a different assembly, with the abscissa and ordinate of the point providing the
ssembly’s number of layers, 𝑁 , and the assembly’s normalized bending stiffness, respectively. The normalized bending stiffness of
n assembly is the quantity K𝑁 [𝑥] ∕K1 [𝑥], where, recall that, K𝑁 [𝑥] is the 𝑁-layer-assembly’s non-dimensional bending stiffness

and 𝑥 encapsulates the assembly’s internal geometry and material property information (see (4.1b)).
Recall that the subfigures (𝖡)–(𝖥) correspond to the material models mm.i–v, respectively. Leaving out mm.v for each material

model we consider two sets of elastic constants: one for which (4.7) is satisfied, and the other for which (4.8) is satisfied. For mm.v
we consider two sets of elastic constants both of which satisfy (4.8), since the elastic constants for this material model can never
satisfy (4.7).

In each subfigure, the results for the set of elastic constants for which (4.7) is satisfied are shown in blue, whereas the results for
the set of elastic constants for which (4.8) is satisfied are shown in red. For each material model we give the values for the two sets
of elastic constants used in the corresponding subfigure. The elastic constants that we use for each material model are the ones that
we introduced for them in Section 3.2. Calculation of K𝑁 [𝑥] requires calculating the 𝐶ℯℯℯ

𝑛 from the given elastic constant values.
The procedure for doing so is detailed in the caption of Fig. 7.

From the relative position of the blue points in each subplot it can be noted that when (4.7) was satisfied the creation of a cut
has always led to a decrease in the bending stiffness. This observation is consistent with the theory presented in Section 4.2. For an
elaboration on some of the different ways of interpreting the result presented in Section 4.2 see the preamble of Section 5.

From the relative position of the red points in each subplot it can be noted that when (4.8) was satisfied the creation of a cut
never led to a decrease in the bending stiffness. This observation is in perfect accordance with the result we presented in Section 4.3,
where we stated that when (4.8) is satisfied then the introduction of a cut should not lead to a reduction in bending stiffness.

6. Concluding remarks

In this section we collect and list the most pertinent assumptions in our work, so that it is easier to ascertain the validity of our
arguments and results in the future.

(A) By focusing on the LCC in the looped configuration we are assuming that most spicules function in the looped configuration
within the ocean sediment, rather than in a straight configuration. Future experimental studies, such as that using X-ray computed
tomography, would be useful for establishing the validity of this assumption.

(B) We stated that the spicule’s LCC in a looped configuration inversely depends on its effective bending stiffness. This statement
is not strictly an assumption, since it is based on our study of a nonlinear, small strains and large rotations, beam model for the
spicule. We list it here since it is a critical part of our arguments in support of the LCC hypothesis.

(C) In formulating our structural mechanics model for the spicule we assumed that the spicule’s silica layers freely slip with
respect to each other. We based this assumption on AFM experiments (Weaver et al., 2007) that reveal that the protein interlayers
are highly compliant compared to the silica layers. However, a more direct measurement of the shear stresses being transmitted
between the silica layers would help ascertain the validity of this assumption.

(D) Our deductions in Sections 4.2 and 4.3 are based on the key assumption that the assembly’s bending stiffness can be reduced
14

by creating a cut at a cylindrical surface iff there exist shear stresses on that surface prior to the creation of the cut. In small strain
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Fig. 7. Normalized bending stiffness, K𝑁 [𝑥] ∕K1 [𝑥], as a function of number of layers, 𝑁 . Subfigures (𝖡)–(𝖥) correspond to the material models mm.i–mm.v
in this order. We computed the quantity K𝑁 [𝑥] using (4.4). For constructing the argument 𝑥 we need the information about the assembly’s layers’ radii, and
each layer’s cylindrical inverse stiffness matrix, 𝐶ℯℯℯ

𝑛 . Each 𝑁-layer-assembly has inner and outer radii of 1 𝑈 [E] and 2 𝑈 [E], respectively, and can be thought of
as having been obtained by taking an assembly containing 𝑁 −1 layers and creating a new cylindrical cut in the manner described in Section 5.1 (see subfigure
(𝖠) for illustration). For layers consisting of mm.i or mm.iv we prescribe their elasticity by prescribing numerical values for the elastic constants 𝑀́ ; for layers
consisting of mm.ii by prescribing numerical values for the elastic constants 𝑀̃ ; and for layers consisting of mm.iii or mm.v by prescribing numerical values for
𝑀̀ (cf. Section 3.2). We consider two sets of elastic constants for each material model, and their corresponding results are shown using circular and triangular
markers, respectively; the red color corresponds to the case where the elastic constants satisfy (4.8), while the blue color corresponds to the case where the elastic
constants satisfy (4.7). We generated the numerical values for the elastic constants randomly under the constraint that all the corresponding stiffness matrices
be positive definite. We list the selected numerical values for the elastic constants for the material models mm.i–v in their corresponding subfigures, i.e., in
subfigures (𝖡)–(𝖥), respectively. We selected the value of 𝜋∕3 for the helical angle in the material models mm.i–mm.iii. Since we create an 𝑁 +1-layer-assembly by
creating a cut in an 𝑁-layer-assembly, all layers in an assembly (in fact all layers from all the assemblies that correspond to the same set of elastic constants
in a subfigure) have the same cylindrical inverse stiffness matrix. For the material model mm.iv (resp. mm.v) we computed the cylindrical inverse stiffness matrix
using the prescribed numerical 𝑀́ (resp. 𝑀̀) values and (3.5) (resp. (3.7)). For the material model mm.i (resp. mm.ii, mm.iii) we first computed the helical inverse
stiffness matrix 𝐶𝑀́(𝒻𝒻𝒻𝜑 ) ˃𝒻𝒻𝒻𝜑

(

resp. 𝐶𝑀̃(𝒻𝒻𝒻𝜑 ) ˃𝒻𝒻𝒻𝜑 , 𝐶𝑀̀(𝒻𝒻𝒻𝜑 ) ˃𝒻𝒻𝒻𝜑

)

using the prescribed numerical 𝑀́ (resp. 𝑀̃ , 𝑀̀) values and (3.5) (resp. (3.6), (3.7)), and from that

obtained the cylindrical inverse stiffness matrix 𝐶𝑀́(𝒻𝒻𝒻𝜑 ) ˃ℯℯℯ
(

resp. 𝐶𝑀̃(𝒻𝒻𝒻𝜑 ) ˃ℯℯℯ , 𝐶𝑀̀(𝒻𝒻𝒻𝜑 ) ˃ℯℯℯ
)

using the procedure described in Appendix C.2.
15
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and small rotation beam theories this assumption can be checked to be true. However, it needs to be checked for the case of large
rotations which the spicules, quite clearly, undergo during their operation.

(E) When we state that our work shows that it is possible for the layers in the spicule to reduce its bending stiffness, we are
mplicitly assuming that it is possible for the spicules to possess the anisotropic elasticity characteristics that make such a reduction
ossible. It certainly is not unreasonable to make such an assumption, since the anisotropic elasticity of the spicules has not been
ully characterized and nothing from the growth and formation processes of the spicules precludes the possibility that the spicules
ossess the necessary anisotropic elasticity characteristics. Nevertheless, our results also do not preclude the possibility that the
ayers do not contribute to the spicule’s LCC in the manner we discussed in this paper. It is possible that their anisotropic elasticity
haracteristics do not allow our theory to be applicable (e.g., their elasticity may not be that of a helically orthotropic material).
f the spicule’s anisotropic elasticity characteristics allow our theory to be applied, then it is possible that their elastic constants
atisfy (4.8) (rather than (4.7)), thus essentially guaranteeing that the spicule’s layers do not contribute to its bending stiffness and
herefore do not contribute to the spicule’s LCC in the manner we suggest in this paper, if at all. Therefore, the primary value of
ur results is in that they make a precise and direct check of the LCC hypothesis possible once the spicule’s anisotropic elasticity
ecomes better characterized.

RediT authorship contribution statement

Sayaka Kochiyama: Carried out the research, Wrote the paper, Discussed the results. Benjamin E. Grossman-Ponemon:
Helped with the some of the mathematical proofs, Discussed the results. Haneesh Kesari: Supported the research, Wrote the paper,
Discussed the results, Designed the research.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

H.K. thanks the American Society of Mechanical Engineers and Brown University for the support provided to him through the
Haythornthwaite Research Initiation Grant and the Richard B. Salomon Faculty Research Award, respectively. S.K. and B.E.G.P.
were partially supported by the Panther II program, and Panther III and TIGER program, respectively. S.K. is also grateful for the
support she received through the Hibbitt Fellowship at Brown University.

Appendix A. Notation

We denote the set of real numbers as R, the set of non-negative real numbers as R≥0, the set of positive real numbers as R>0,
the set of integers as Z, and the set of natural numbers as Z≥1.

The notation discussed in the previous paragraph is quite standard. We have attempted to restrict ourselves to only using standard
notation. However, in order to simplify some of the most cumbersome looking expressions, we decided to introduce and use some
new notation. We introduce this new notation in Appendices A.1, A.2, and A.3.

A.1. Non-dimensional and dimensional quantities

All symbols in which the base symbol is a regular typeface Latin character represent non-dimensional variables or numbers.
For example, we may denote a real number as 𝑥, and a collection of 𝑛 ∈ Z≥1 real numbers as 𝑥1, 𝑥2,… , 𝑥𝑛. The typefaces of

superscripts and subscripts do not in generally carry any special meaning. For example, 𝑥𝑎, 𝑥𝒂, and 𝑥𝒶 all denote non-dimensional
quantities.

Symbols in which the base symbol is a script typeface Latin character denote dimensional scalar quantities. For example, the
isotropic Young’s modulus is denoted as E. Say E = 𝐸 N∕m2, where 𝐸 ∈ R>0, then, when there is no confusion, we also refer to 𝐸
as the isotropic Young’s modulus.
16
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A.2. Increment, decrement, and exponentiation operations

Let 𝑥 ∈ R. We denote the expressions 𝑥 + 1 and 𝑥 + 2 sometimes as 𝑥̂ and ̂̂𝑥, respectively. Similarly, we denote the expressions
𝑥− 1 and 𝑥− 2 sometimes as 𝑥̌ and ̌̌𝑥, respectively. Each circumflex (⋅̂) over a (base) symbol denotes an increment operation on the
quantity denoted by that symbol along with any of its superscripts and superscripts, and similarly each overhead caron (⋅̌) denotes
an decrement operation. That is, 𝑚̂1 denotes the expression 𝑚1 + 1 and not (𝑚 + 1)1. We stress that this notation only applies when
the quantity denoted by the base symbol along with any of its superscripts and subscripts is a real valued variable or a real valued
constant.

We mostly reserve superscripts for new symbols, rather than exponentiation. Instead, we write 𝗉𝗈𝗐 (𝑥, 𝑎) to refer to the 𝑎th power
of 𝑥, where 𝑥, 𝑎 ∈ R. For example, 𝗉𝗈𝗐 (𝑥, 2) is the square of 𝑥.

We denote 𝑥2, the square of 𝑥, as 𝗉𝗈𝗐 (𝑥, 2), and in general 𝑥𝑎, where 𝑎 ∈ R, as 𝗉𝗈𝗐 (𝑥, 𝑎).

.3. Denoting ordered sets

We denote un-ordered sets using braces {⋅,… , ⋅}, and ordered sets using parentheses (⋅,… , ⋅). We use square brackets to identify
a function’s arguments, like in 𝑓 [⋅], where 𝑓 is some generic function. When the argument to a function is a single ordered set, say
(⋅,… , ⋅), then instead of writing 𝑓 [(⋅,… , ⋅)] we simply write 𝑓 [⋅,… , ⋅].

Say 𝖷 = (𝗑1,… , 𝗑𝑛), where 𝑛 ∈ Z≥1. The 𝑖th element (component) of the ordered set 𝖷 is referred to as (𝖷)𝑖 or 𝖷⋅𝑖. The 𝑗th
component of 𝖷⋅𝑖 is written as either 𝖷⋅𝑖⋅𝑗 or, when we want to be more explicit, as

(

𝖷⋅𝑖
)

𝑗 or
(

(𝖷)𝑖
)

𝑗 . We will abbreviate ordered sets
such as (𝑥1, 𝑥2,… , 𝑥𝑛) and (𝗑1, 𝗑2,… , 𝗑𝑛) as (𝑥𝑖)𝑖∈(1,…,𝑛) and (𝗑𝑖)𝑖∈(1,…,𝑛), respectively. We will abbreviate nested ordered sets such as

(

(

𝑥𝑖𝑗
)

𝑗∈(1,…,𝑚)

)

𝑖∈(1,…,𝑛)
, (A.1)

where 𝑚 ∈ Z≥1, as
(

𝑥𝑖𝑗
)

𝑖∈(1,…,𝑛),𝑗∈(1,…,𝑚) , (A.2)

and when 𝑚 = 𝑛 as
(

𝑥𝑖𝑗
)

𝑖,𝑗∈(1,…,𝑛) .

We consider a matrix to be an ordered set of elements where all the elements are ordered sets of the same cardinality. Specially,
we denote the ordered set containing 𝑚 ∈ Z≥1 elements where each element is an ordered set containing 𝑛 ∈ Z≥1 real numbers as
M𝑚×𝑛 (R).

A.4. Voigt notation

The function 𝗏𝗈𝗂 ∶ (1, 2, 3) × (1, 2, 3) → (1,… , 6) is defined as

𝗏𝗈𝗂 [𝑖, 𝑗] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖, 𝑖 = 𝑗,
4, (𝑖, 𝑗) = (2, 3) or (3, 2),
5, (𝑖, 𝑗) = (1, 3) or (3, 1),
6, (𝑖, 𝑗) = (1, 2) or (2, 1).

(A.3)

The function 𝗏𝗈𝗂−1 ∶ (1,… , 6) → (1, 2, 3) × (1, 2, 3) is defined as

𝗏𝗈𝗂−1 [𝐼] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝐼, 𝐼), 𝐼 ≤ 3,
(2, 3), 𝐼 = 4,
(1, 3), 𝐼 = 5,
(1, 2), 𝐼 = 6.

(A.4)

A.5. Logical operators

We follow the standard notations and use the symbol ∧ to indicate logical ‘‘and’’, i.e., if we say that 𝐴∧𝐵 is true then we mean
that both 𝐴 and 𝐵 are true. Similarly, we use the symbol ∨ to denote logical inclusive ‘‘or’’, i.e., if we say that 𝐴 ∨ 𝐵 is true then
we mean that one of the following three cases is true: (i) 𝐴 is true and 𝐵 is not true, (ii) 𝐴 is not true and 𝐵 is true, and (iii) both
17

𝐴 and 𝐵 are true.
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Appendix B. Definitions of various material and micro-architecture dependent constants

B.1. Definition of 𝛽 [⋅]

The function 𝛽 ∶M6×6 (R) →M6×6 (R) is defined as

𝛽 [𝑠] =
(

𝑠⋅𝑖⋅𝑗 −
𝑠⋅𝑖⋅3𝑠⋅3⋅𝑗
𝑠⋅3⋅3

)

𝑖,𝑗∈(1,…,6)
. (B.1)

B.2. Definitions of 𝛼 [⋅], 𝑚 [⋅], and 𝛾 [⋅]

B.2.1. Definition of 𝛼 [⋅]
The function 𝛼 [⋅] is defined as 𝛼 ∶M6×6 (R) → R4,

𝛼 [𝑠]⋅𝑖 =
𝜋

(

𝑚 [𝑠]⋅𝑖 + 2
)

𝑠⋅3⋅3

(

𝑠⋅1⋅3 +
(

𝑚 [𝑠]⋅𝑖 + 1
)

𝑠⋅2⋅3 − 𝑠⋅3⋅4 𝑔 [𝑠]⋅𝑖 𝑚 [𝑠]⋅𝑖
)

, (B.2)

here 𝑖 ∈ (1,… , 4). The functions 𝑚 [⋅], and 𝑔 [⋅], which appear in (B.2), are, respectively, defined in Appendices B.2.2, and B.3.1.

.2.2. Definition of 𝑚 [⋅]
The function 𝑚 ∶M6×6 (R) → R4 is defined as7

𝑚 [𝑠]⋅1 =

√

−ℎ [𝑠] +
√

𝗉𝗈𝗐 (ℎ [𝑠] , 2) − 4𝑑 [𝑠] 𝑙 [𝑠]
2𝑑 [𝑠]

, (B.3a)

where note that, as per the notation we introduced in Section 4.1, 𝗉𝗈𝗐 (ℎ[𝑠], 2) denotes the square of ℎ[𝑠],

𝑚 [𝑠]⋅2 =

√

−ℎ [𝑠] −
√

𝗉𝗈𝗐 (ℎ [𝑠] , 2) − 4𝑑 [𝑠] 𝑙 [𝑠]
2𝑑 [𝑠]

, (B.3b)

𝑚 [𝑠]⋅3 = −𝑚 [𝑠]⋅1 , (B.3c)

and

𝑚 [𝑠]⋅4 = −𝑚 [𝑠]⋅2 , (B.3d)

where

𝑑 [𝑠] ∶= 𝛽 [𝑠]⋅2⋅2 𝛽 [𝑠]⋅4⋅4 − 𝗉𝗈𝗐
(

𝛽 [𝑠]⋅2⋅4 , 2
)

, (B.4a)

ℎ [𝑠] ∶= 𝛽 [𝑠]⋅2⋅4 (2𝛽 [𝑠]⋅1⋅4 + 𝛽 [𝑠]⋅2⋅4 + 2𝛽 [𝑠]⋅5⋅6) + 𝗉𝗈𝗐
(

𝛽 [𝑠]⋅1⋅4 , 2
)

− 𝛽 [𝑠]⋅4⋅4 (𝛽 [𝑠]⋅1⋅1 + 2𝛽 [𝑠]⋅1⋅2 + 𝛽 [𝑠]⋅2⋅2 + 𝛽 [𝑠]⋅6⋅6) − 𝛽 [𝑠]⋅2⋅2 𝛽 [𝑠]⋅5⋅5 ,
(B.4b)

and

𝑙[𝑠] ∶= 𝛽 [𝑠]⋅5⋅5 (𝛽 [𝑠]⋅1⋅1 + 2𝛽 [𝑠]⋅1⋅2 + 𝛽 [𝑠]⋅2⋅2 + 𝛽 [𝑠]⋅6⋅6) − 𝗉𝗈𝗐
(

𝛽 [𝑠]⋅5⋅6 , 2
)

. (B.4c)

The function 𝛽, which appear in (B.4), is defined in Appendix B.1.

B.2.3. Definition of 𝛾 [⋅]
The function 𝛾 [⋅] ∶M6×6 (R) → R is defined as

𝛾 [𝑠] = 𝜋
4𝑠⋅3⋅3

(

𝜇 [𝑠]⋅1
(

𝑠⋅1⋅3 + 3𝑠⋅2⋅3
)

− 2𝜇 [𝑠]⋅2 𝑠⋅3⋅4 − 1
)

, (B.5)

where 𝜇 [⋅] is defined in Appendix B.3.2.

B.3. Definitions of 𝑔 [⋅] and 𝜇 [⋅]

B.3.1. Definition of 𝑔 [⋅]
The function 𝑔 [⋅] is defined as 𝑔 ∶M6×6 (R) → R4,

𝑔 [𝑠]⋅𝑖 =
𝛽 [𝑠]⋅2⋅4 𝗉𝗈𝗐

(

𝑚 [𝑠]⋅𝑖 , 2
)

+ (𝛽 [𝑠]⋅1⋅4 + 𝛽 [𝑠]⋅2⋅4)𝑚 [𝑠]⋅𝑖 − 𝛽 [𝑠]⋅5⋅6
𝛽 [𝑠]⋅4⋅4 𝗉𝗈𝗐

(

𝑚 [𝑠]⋅𝑖 , 2
)

− 𝛽 [𝑠]⋅5⋅5
, (B.6)

where 𝑖 ∈ (1,… , 4). The functions 𝛽 [⋅] and 𝑚 [⋅], which appear in (B.6), are defined in Appendix B.1 and Appendix B.2.2, respectively.

7 That 𝑚 [⋅] is a real-valued function is an assumption. We take this to be a reasonable assumption based on the observation that in all the cases that we
18

ave tested numerically, 𝑚 [⋅] has yielded real numbers.
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B.3.2. Definition of 𝜇 [⋅]
The function 𝜇 [⋅] is defined as 𝜇 ∶M6×6 (R) → R2,

𝜇 [𝑠] = 1
𝑠⋅3⋅3

𝖨𝗇𝗏
[

𝐵⋅⋅ [𝑠]
]

[

2𝑠⋅3⋅4
𝑠⋅1⋅3 − 𝑠⋅2⋅3

]

. (B.7)

The function 𝛽 [⋅], which appears in (B.7), is defined in Appendix B.1. The function 𝐵⋅⋅ [𝑠] is defined as 𝐵⋅⋅ ∶M6×6 (R) →M4×4 (R),

𝐵⋅⋅ [𝑠] =
[

𝐵⋅1⋅1 [𝑠] 𝐵⋅1⋅2 [𝑠]
𝐵⋅2⋅1 [𝑠] 𝐵⋅2⋅2 [𝑠]

]

, (B.8a)

where its components are

𝐵⋅1⋅1 [𝑠] = −2𝛽 [𝑠]⋅1⋅4 − 6𝛽 [𝑠]⋅2⋅4 + 𝛽 [𝑠]⋅5⋅6 , (B.8b)

𝐵⋅1⋅2 [𝑠] = 4𝛽 [𝑠]⋅4⋅4 − 𝛽 [𝑠]⋅5⋅5 , (B.8c)

𝐵⋅2⋅1 [𝑠] = −𝛽 [𝑠]⋅1⋅1 − 2𝛽 [𝑠]⋅1⋅2 + 3𝛽 [𝑠]⋅2⋅2 − 𝛽 [𝑠]⋅6⋅6 , (B.8d)

𝐵⋅2⋅2 [𝑠] = 2𝛽 [𝑠]⋅1⋅4 − 2𝛽 [𝑠]⋅2⋅4 + 𝛽 [𝑠]⋅5⋅6 . (B.8e)

Appendix C. Relationship between elastic tensors

C.1. Link between tensor/matrix components and those in different basis

A fourth order stiffness tensor component in one basis (ℊℊℊ [x]) is related to that in another basis (𝒽𝒽𝒽 [x]) as

𝑐ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x] =
∑

𝑝,𝑞,𝑟,𝑠∈(1,2,3)
𝑄ℊℊℊ ˃𝒽𝒽𝒽

⋅𝑝⋅𝑖 𝑄ℊℊℊ ˃𝒽𝒽𝒽
⋅𝑞⋅𝑗 𝑄ℊℊℊ ˃𝒽𝒽𝒽

⋅𝑟⋅𝑘 𝑄ℊℊℊ ˃𝒽𝒽𝒽
⋅𝑠⋅𝑙 𝑐𝒽𝒽𝒽((𝑝,𝑞),(𝑟,𝑠)) [x] , (C.1a)

𝑐𝒽𝒽𝒽((𝑖,𝑗),(𝑘,𝑙)) [x] =
∑

𝑝,𝑞,𝑟,𝑠∈(1,2,3)
𝑄𝒽𝒽𝒽 ˃ℊℊℊ

⋅𝑝⋅𝑖 𝑄𝒽𝒽𝒽 ˃ℊℊℊ
⋅𝑞⋅𝑗 𝑄𝒽𝒽𝒽 ˃ℊℊℊ

⋅𝑟⋅𝑘 𝑄𝒽𝒽𝒽 ˃ℊℊℊ
⋅𝑠⋅𝑙 𝑐ℊℊℊ((𝑝,𝑞),(𝑟,𝑠)) [x] , (C.1b)

where 𝑄ℊℊℊ ˃𝒽𝒽𝒽
⋅⋅ maps ℊℊℊ [x] to 𝒽𝒽𝒽 [x] as

𝒽𝒽𝒽⋅𝑖 [x] =
∑

𝑗∈(1,2,3)
𝑄ℊℊℊ ˃𝒽𝒽𝒽

⋅𝑖⋅𝑗 ℊℊℊ⋅𝑗 [x] , (C.2)

and 𝑄𝒽𝒽𝒽 ˃ℊℊℊ
⋅⋅ , which maps 𝒽𝒽𝒽 [x] to ℊℊℊ [x], is given by

𝑄𝒽𝒽𝒽 ˃ℊℊℊ = 𝖨𝗇𝗏
[

𝑄ℊℊℊ ˃𝒽𝒽𝒽
]

. (C.3)

Similarly, a fourth order compliance tensor component in one basis (ℊℊℊ) is related to that in another basis (𝒽𝒽𝒽) as

𝑠ℊℊℊ((𝑖,𝑗),(𝑘,𝑙)) [x] =
∑

𝑝,𝑞,𝑟,𝑠∈(1,2,3)
𝑄ℊℊℊ ˃𝒽𝒽𝒽

⋅𝑝⋅𝑖 𝑄ℊℊℊ ˃𝒽𝒽𝒽
⋅𝑞⋅𝑗 𝑄ℊℊℊ ˃𝒽𝒽𝒽

⋅𝑟⋅𝑘 𝑄ℊℊℊ ˃𝒽𝒽𝒽
⋅𝑠⋅𝑙 𝑠𝒽𝒽𝒽((𝑝,𝑞),(𝑟,𝑠)) [x] , (C.4a)

𝑠𝒽𝒽𝒽((𝑖,𝑗),(𝑘,𝑙)) [x] =
∑

𝑝,𝑞,𝑟,𝑠∈(1,2,3)
𝑄𝒽𝒽𝒽 ˃ℊℊℊ

⋅𝑝⋅𝑖 𝑄𝒽𝒽𝒽 ˃ℊℊℊ
⋅𝑞⋅𝑗 𝑄𝒽𝒽𝒽 ˃ℊℊℊ

⋅𝑟⋅𝑘 𝑄𝒽𝒽𝒽 ˃ℊℊℊ
⋅𝑠⋅𝑙 𝑠ℊℊℊ((𝑝,𝑞),(𝑟,𝑠)) [x] . (C.4b)

C.2. Obtaining 𝐶𝑀(ℊℊℊ) ˃ℯℯℯ from 𝐶𝑀(ℊℊℊ) ˃ℊℊℊ

In this section we employ the following notation. We use the symbols 𝑀́ , 𝑀̃ , 𝑀̀ , 𝑀̄ in the superscript to refer to the properties
f a orthotropic, transversely isotropic, cubic, and isotropic material respectively. We use the symbol 𝑀́ (𝒈) in the superscript of a

quantity to denote that quantity corresponds to a general 𝒈-orthotropic material. That is, the ℊℊℊ in 𝑀́ (𝒈) can be ℯℯℯ, 𝒻𝒻𝒻𝜑, or 𝓍𝓍𝓍. Similarly,
the symbols 𝑀̃ (𝒈), 𝑀̀ (𝒈), and 𝑀̄ (𝒈) in a quantity’s superscript denote that quantity respectively correspond to a 𝒈-transversely-
isotropic, 𝒈-cubic, and 𝒈-isotropic material. For example, c𝑀́(𝓍𝓍𝓍) [x] is the elastic stiffness tensor of a Cartesian orthotropic material
at the material particle x. A superscript of 𝑀 (ℊℊℊ) denotes an arbitrary material of the type we considered in Section 3.2. That is
the 𝑀 in 𝑀 (ℊℊℊ) can stand for 𝑀́ , 𝑀̃ , 𝑀̀ , or 𝑀̄ . The components of the stiffness and compliance tensors can be expressed w.r.t
different bases. Say that the components are expressed w.r.t the ℯℯℯ [x] basis then we encapsulate that information by appending
the superscript of the components, and the superscripts of collections of those components, with the symbol ˃ ℯℯℯ. For example,
𝑐𝑀́(𝓍𝓍𝓍) ˃ℯℯℯ
((𝑖,𝑗),(𝑘,𝑙)) denote the components of c𝑀́(𝓍𝓍𝓍) [x] w.r.t the ℯℯℯ [x] basis, and 𝐶𝑀̃

(

𝒻𝒻𝒻𝜑
)

˃ℯℯℯ denotes the inverse stiffness matrix of a helically
ransversely isotropic material w.r.t the ℯℯℯ [x] basis.

Consider an inverse stiffness matrix 𝐶𝑀(ℊℊℊ) ˃ℊℊℊ. The matrix 𝐶𝑀(ℊℊℊ) ˃ℯℯℯ can be obtained from 𝐶𝑀(ℊℊℊ) ˃ℊℊℊ by carrying out the following
five steps. (This procedure is also illustrated in Fig. 8.)
19
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Fig. 8. Procedure for obtaining stiffness, inverse stiffness, and compliance tensors from one another, and also from those in different basis.

1. Invert the 6 × 6 matrix 𝐶𝑀(ℊℊℊ) ˃ℊℊℊ to obtain 𝑐𝑀(ℊℊℊ) ˃ℊℊℊ.
2. Using 𝑐𝑀(ℊℊℊ) ˃ℊℊℊ and (3.4) determine 𝑐𝑀(ℊℊℊ) ˃ℊℊℊ

((𝑖,𝑗),(𝑘,𝑙)).
3. Using 𝑐𝑀(ℊℊℊ) ˃ℊℊℊ

((𝑖,𝑗),(𝑘,𝑙)) and (C.1) determine 𝑐𝑀(ℊℊℊ) ˃ℯℯℯ
((𝑖,𝑗),(𝑘,𝑙)). In particular, when ℊℊℊ [x] = 𝒻𝒻𝒻𝜑 [x] equation (C.1) reads

𝑐
𝑀

(

𝒻𝒻𝒻𝜑
)

˃ℯℯℯ
((𝑖,𝑗),(𝑘,𝑙)) =

∑

𝑝,𝑞,𝑟,𝑠∈(1,2,3)
𝑄⋅𝑝⋅𝑖 [𝜑]𝑄⋅𝑞⋅𝑗 [𝜑]𝑄⋅𝑟⋅𝑘 [𝜑]𝑄⋅𝑠⋅𝑙 [𝜑] 𝑐

𝑀
(

𝒻𝒻𝒻𝜑
)

˃𝒻𝒻𝒻𝜑
((𝑝,𝑞),(𝑟,𝑠)) , (C.5)

where, as defined in (2.3), 𝑄⋅⋅ [𝜑] maps ℯℯℯ [x] to 𝒻𝒻𝒻𝜑 [x]. Alternatively, when ℊℊℊ [x] = 𝓍𝓍𝓍 equation (C.1) takes the form8

𝑐𝑀(𝓍𝓍𝓍) ˃ℯℯℯ
((𝑖,𝑗),(𝑘,𝑙)) =

∑

𝑝,𝑞,𝑟,𝑠∈(1,2,3)
𝑃⋅𝑝⋅𝑖 [𝑋]𝑃⋅𝑞⋅𝑗 [𝑋]𝑃⋅𝑟⋅𝑘 [𝑋]𝑃⋅𝑠⋅𝑙 [𝑋] 𝑐𝑀(𝓍𝓍𝓍) ˃𝓍𝓍𝓍

((𝑝,𝑞),(𝑟,𝑠)), (C.6)

where

𝑃⋅⋅ [𝑋] =

⎛

⎜

⎜

⎜

⎝

cos
[

𝜃̆ [𝑋]
]

− sin
[

𝜃̆ [𝑋]
]

0

sin
[

𝜃̆ [𝑋]
]

cos
[

𝜃̆ [𝑋]
]

0

0 0 1

⎞

⎟

⎟

⎟

⎠

(C.7)

8 For the material models we consider in this work (Section 4.4)the sum on the right hand side of this equation comes out to be independent of 𝑋 despite
𝑀(𝓍𝓍𝓍) ˃ℯℯℯ on the left hand side instead of 𝑐𝑀(𝓍𝓍𝓍) ˃ℯℯℯ 𝑋 .
20

the presence of 𝑃⋅𝑖⋅𝑗 [𝑋] in it. For that reason we write 𝑐((𝑖,𝑗),(𝑘,𝑙)) ((𝑖,𝑗),(𝑘,𝑙)) [ ]
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i

w

w

o

maps ℯℯℯ [x] to 𝓍𝓍𝓍.
4. Using 𝑐𝑀(ℊℊℊ) ˃ℯℯℯ

((𝑖,𝑗),(𝑘,𝑙)) and (3.4) determine 𝑐𝑀(ℊℊℊ) ˃ℯℯℯ.
5. Invert the 6 × 6 matrix 𝑐𝑀(ℊℊℊ) ˃ℯℯℯ to get 𝐶𝑀(ℊℊℊ) ˃ℯℯℯ.

Appendix D. Proofs

D.1. If there exist three or more 𝑟𝑖 ∈ (𝑟𝑛−1, 𝑟𝑛) such that 𝜏𝑛⋅1⋅2
[

𝑆𝑟𝑖

]

= 0 then 𝐾𝑛⋅𝑖, 𝑖 = 1,… , 4 and 𝜇𝑛⋅𝑖, 𝑖 = 1, 2, all vanish

Recall that 𝑟𝑛−1 and 𝑟𝑛 are the inner and outer radii of the 𝑛th layer in our spicule model, respectively. From (4.6a) and (4.6c)
t follows that

𝜏𝑛⋅1⋅2
[

𝑆𝑟
]

= 0 ⇔ 𝑓𝑛[𝑟] = 0, (D.1)

here, recall that, 𝑆𝑟 is a cylindrical surface of radius 𝑟, and the function 𝑓𝑛 is defined in (4.6d).
In our particularization of the JC model Section 4.1.1 we stated that the layers are able to freely slip with respect to each other,

ith no friction between them. This implies from (D.1) that

𝑓𝑛
[

𝑟𝑛−1
]

= 0, (D.2a)

𝑓𝑛
[

𝑟𝑛
]

= 0. (D.2b)

That is, the function 𝑓𝑛 vanishes at the boundaries of [𝑟𝑛−1, 𝑟𝑛]. In this section we show that if additionally 𝜏𝑛⋅1⋅2 vanishes at three
r more inner cylindrical surfaces then the constants 𝐾𝑛⋅𝑖, 𝑖 = 1,… , 4, and 𝜇𝑛⋅𝑖, 𝑖 = 1, 2, on which 𝜏𝑛⋅1⋅2 and 𝜏𝑛⋅1⋅3 depend, all vanish.

If 𝜏𝑛⋅1⋅2 vanishes at three or more inner cylindrical surfaces with radii 𝑟1, 𝑟2, and 𝑟3 then, as before, it follows from (D.1) that

𝑓𝑛
[

𝑟1
]

= 0, (D.3a)

𝑓𝑛
[

𝑟2
]

= 0, (D.3b)

𝑓𝑛
[

𝑟3
]

= 0. (D.3c)

It follows from (4.6d), (D.3), and (D.2) that

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝗉𝗈𝗐
(

𝑒, 𝛼1𝑥1
)

𝗉𝗈𝗐
(

𝑒, 𝛼2𝑥1
)

𝗉𝗈𝗐
(

𝑒, 𝛼3𝑥1
)

𝗉𝗈𝗐
(

𝑒, 𝛼4𝑥1
)

𝗉𝗈𝗐
(

𝑒, 𝛼5𝑥1
)

𝗉𝗈𝗐
(

𝑒, 𝛼1𝑥2
)

𝗉𝗈𝗐
(

𝑒, 𝛼2𝑥2
)

𝗉𝗈𝗐
(

𝑒, 𝛼3𝑥2
)

𝗉𝗈𝗐
(

𝑒, 𝛼4𝑥2
)

𝗉𝗈𝗐
(

𝑒, 𝛼5𝑥2
)

𝗉𝗈𝗐
(

𝑒, 𝛼1𝑥3
)

𝗉𝗈𝗐
(

𝑒, 𝛼2𝑥3
)

𝗉𝗈𝗐
(

𝑒, 𝛼3𝑥3
)

𝗉𝗈𝗐
(

𝑒, 𝛼4𝑥3
)

𝗉𝗈𝗐
(

𝑒, 𝛼5𝑥3
)

𝗉𝗈𝗐
(

𝑒, 𝛼1𝑥4
)

𝗉𝗈𝗐
(

𝑒, 𝛼2𝑥4
)

𝗉𝗈𝗐
(

𝑒, 𝛼3𝑥4
)

𝗉𝗈𝗐
(

𝑒, 𝛼4𝑥4
)

𝗉𝗈𝗐
(

𝑒, 𝛼5𝑥4
)

𝗉𝗈𝗐
(

𝑒, 𝛼1𝑥5
)

𝗉𝗈𝗐
(

𝑒, 𝛼2𝑥5
)

𝗉𝗈𝗐
(

𝑒, 𝛼3𝑥5
)

𝗉𝗈𝗐
(

𝑒, 𝛼4𝑥5
)

𝗉𝗈𝗐
(

𝑒, 𝛼5𝑥5
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐾𝑛⋅1
𝐾𝑛⋅2
𝐾𝑛⋅3
𝐾𝑛⋅4
𝜇𝑛⋅1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (D.4)

where

𝑥𝑖 = ln 𝑟𝑖, 𝑖 = 1,… , 3, (D.5a)

𝑥4 = ln 𝑟𝑛−1, (D.5b)

𝑥5 = ln 𝑟𝑛, (D.5c)

and

𝛼𝑖 = 𝑚𝑛⋅𝑖 − 1, 𝑖 = 1,… , 4, (D.6a)

𝛼5 = 1. (D.6b)

It can be shown through application of Rolle’s Theorem that when the 𝛼𝑖 and 𝑥𝑖 in the M5×5 (R) matrix in (D.4) are distinct
then that matrix is non-singular (Pólya and Szego, 2004). The 𝑥𝑖, 𝑖 = 1,… , 5 and 𝛼𝑖, 𝑖 = 1,… , 5 in (D.4) are indeed distinct. We
elaborate on these facts in the following two paragraphs.

Recall that in the JC model 𝑟𝑛 > 0 for all 𝑛, and, without loss of generality, we can take 𝑟𝑛−1 < 𝑟1 < 𝑟2 < 𝑟3 < 𝑟𝑛. Therefore, it
follows from (D.5) that the 𝑥𝑖, 𝑖 = 1,… , 5, in (D.4) are all distinct.

The equations, e.g., (4.6a) and (4.6d), which we used to arrive at (D.4), are part of the JC model. In Section 4.1.2 we stated
that for the JC model to be applicable to a layer the elastic constants of that layer’s helically orthotropic material should be such
that their corresponding 𝑚𝑛⋅𝑖, 𝑖 = 1, 2, satisfy the 𝑚-conditions listed in (4.5). It follows as a consequence of 𝑚𝑛⋅1, 𝑚𝑛⋅2 satisfying the
m-conditions and (D.6) that all the 𝛼𝑖, 𝑖 = 1,… , 5 are distinct.

Since, 𝑥𝑖, 𝑖 = 1,… , 5 and 𝛼𝑖, 𝑖 = 1,… , 5 are distinct the M5×5 (R) matrix in (D.4) is non-singular and hence,
21

𝐾𝑛⋅𝑖 = 0, 𝑖 = 1,… , 4, (D.7a)
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and

𝜇𝑛⋅1 = 0. (D.7b)

It follows from (4.6b) and (4.6c) that

𝜏𝑛⋅1⋅3
[

𝑆𝑟
]

= 0 ⇔ ℎ𝑛 [𝑟] = 0, (D.8)

where the function ℎ𝑛 is defined in (4.6e). It also follows from the condition that the layers are able to freely slip with respect to
each other, without any friction, and (D.8) that

ℎ𝑛
[

𝑟𝑛
]

= 0. (D.9)

From Eq. (D.7a), equation (D.9), and Eq. (4.6e) we get that 𝜇𝑛⋅2𝑟𝑛 = 0, from which it follows that

𝜇𝑛⋅2 = 0. (D.10)

In summary, we have shown that when there exists three or more interior cylindrical surfaces in the 𝑛th layer where 𝜏𝑛⋅1⋅2
vanishes then 𝐾𝑛⋅𝑖, 𝑖 = 1,… , 4 and 𝜇𝑛⋅𝑖, 𝑖 = 1, 2, all vanish.

D.2. The matrix 𝐵⋅⋅
[

𝐶ℯℯℯ
𝑛
]

is singular iff 𝑚𝑛⋅1 = 2 ∨ 𝑚𝑛⋅2 = 2

It follows from (B.3) that 𝑚𝑛⋅𝑖, 𝑖 = 1,… , 4, are roots of the equation

𝑑
[

𝐶ℯℯℯ
𝑛
]

𝗉𝗈𝗐 (𝑚, 4) + ℎ
[

𝐶ℯℯℯ
𝑛
]

𝗉𝗈𝗐 (𝑚, 2) + 𝑙
[

𝐶ℯℯℯ
𝑛
]

= 0, (D.11)

where 𝑑 [⋅] , ℎ [⋅], and 𝑙 [⋅] are defined in (B.4).
Solving for 𝛽 [𝑠]⋅2⋅2, 𝛽 [𝑠]⋅1⋅4, and 𝛽 [𝑠]⋅1⋅1, from (B.4a) (B.4b), and (B.4c), respectively, we get that

𝛽 [𝑠]⋅2⋅2 =
𝑑 [𝑠] + 𝗉𝗈𝗐

(

𝛽 [𝑠]⋅2⋅4 , 2
)

𝛽 [𝑠]⋅4⋅4
, (D.12a)

𝛽 [𝑠]⋅1⋅4 = −𝛽 [𝑠]⋅2⋅4 ± 𝗉𝗈𝗐(ℎ [𝑠] + 𝛽 [𝑠]⋅1⋅1 𝛽 [𝑠]⋅4⋅4 + 2𝛽 [𝑠]⋅1⋅2 𝛽 [𝑠]⋅4⋅4
+ 𝛽 [𝑠]⋅2⋅2 𝛽 [𝑠]⋅5⋅5 − 2𝛽 [𝑠]⋅2⋅4 𝛽 [𝑠]⋅5⋅6 + 𝛽 [𝑠]⋅4⋅4 𝛽 [𝑠]⋅6⋅6 , 1∕2)

(D.12b)

𝛽 [𝑠]⋅1⋅1 =
𝑙 [𝑠] + 𝗉𝗈𝗐

(

𝛽 [𝑠]⋅5⋅6 , 2
)

𝛽 [𝑠]⋅5⋅5
− (2𝛽 [𝑠]⋅1⋅2 + 𝛽 [𝑠]⋅2⋅2 + 𝛽 [𝑠]⋅6⋅6). (D.12c)

From (B.8) we have the determinant of 𝐵⋅⋅ [𝑠],

det
(

𝐵⋅⋅ [𝑠]
)

= −((2𝛽 [𝑠]⋅1⋅4 + 6𝛽 [𝑠]⋅2⋅4 − 𝛽 [𝑠]⋅5⋅6)(2𝛽 [𝑠]⋅1⋅4 − 2𝛽 [𝑠]⋅2⋅4 + 𝛽 [𝑠]⋅5⋅6))

+(4𝛽 [𝑠]⋅4⋅4 − 𝛽 [𝑠]⋅5⋅5)(𝛽 [𝑠]⋅1⋅1 + 2𝛽 [𝑠]⋅1⋅2 − 3𝛽 [𝑠]⋅2⋅2 + 𝛽 [𝑠]⋅6⋅6). (D.13)

Replacing 𝛽 [𝑠]⋅2⋅2, 𝛽 [𝑠]⋅1⋅4, and 𝛽 [𝑠]⋅1⋅1 in (D.13) with, respectively, the right hand sides of (D.12a), (D.12b), and (D.12c), and
simplifying we get that

det
(

𝐵⋅⋅ [𝑠]
)

= −(16𝑑 [𝑠] + 4ℎ [𝑠] + 𝑙 [𝑠]). (D.14)

If 𝐵⋅⋅
[

𝐶ℯℯℯ
𝑛
]

is singular, i.e., its determinant is naught, then it follows from (D.14) that

16𝑑
[

𝐶ℯℯℯ
𝑛
]

+ 4ℎ
[

𝐶ℯℯℯ
𝑛
]

+ 𝑙
[

𝐶ℯℯℯ
𝑛
]

(D.15)

is naught as well, which implies that the real number 2 is a root of (D.11). Without loss of generality, we take 𝑚𝑛⋅3, 𝑚𝑛⋅4 to be
non-positive. Thus, we have that when 𝐵⋅⋅

[

𝐶ℯℯℯ
𝑛
]

is singular then 𝑚𝑛⋅1 = 2 ∨ 𝑚𝑛⋅2 = 2.
Say 𝑚𝑛⋅1 = 2 ∨ 𝑚𝑛⋅2 = 2 then it follows from (D.11) that the expression (D.15) again vanishes, which in conjunction with (D.14)

implies that det
(

𝐵⋅⋅
[

𝐶ℯℯℯ
𝑛
])

= 0, i.e., that 𝐵⋅⋅
[

𝐶ℯℯℯ
𝑛
]

is singular.
In summary, we have that 𝑚𝑛⋅1 = 2 ∨ 𝑚𝑛⋅2 = 2 iff 𝐵⋅⋅

[

𝐶ℯℯℯ
𝑛
]

is singular.
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