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Abstract

Layered architectures are prevalent in tough biological composites, such as nacre and
bone. Another example of a biological composite with layered architecture is the skele-
tal elements—called spicules—from the sponge Euplectella aspergillum. Based on the
similarities between the architectures, it has been speculated that the spicules are also
tough. Such speculation is in part supported by a sequence of sudden force drops
(sawtooth patterns) that are observed in the spicules’ force-displacement curves from
flexural tests, which are thought to reflect the operation of fracture toughness enhanc-
ing mechanisms. In this study, we performed three-point bending tests on the spicules,
which also yielded the aforementioned sawtooth patterns. However, based on the anal-
ysis of the micrographs obtained during the tests, we found that the sawtooth patterns
were in fact a consequence of slip events in the flexural tests. This is put into perspec-
tive by our recent study, in which we showed that the spicules’ layered architecture
contributes minimally to their toughness, and that the toughness enhancement in them
is meager in comparison to what is observed in bone and nacre [Monn MA, Vijayku-
mar K, Kochiyama S, Kesari H (2020): Nat Commun 11:373]. Our past and current
results underline the importance of inferring a material’s fracture toughness through di-
rect measurements, rather than relying on visual similarities in architectures or force-
displacement curve patterns. Our results also suggest that since the spicules do not
possess remarkable toughness, re-examining the mechanical function of the spicule’s
intricate architecture could lead to the discovery of new engineering design principles.
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Figure 1: Examples of layered architectures in biological materials. (A) The shell of Haliotis rufescens—
the red abalone (image courtesy of John Varner). (B) A scanning electron microscope (SEM) image of
nacre from H. rufescens showing its brick-and-mortar layered architecture, where aragonite tablets are the
bricks and protein layers function as the mortar (modified with permission from [4] copyright 2012, the
Royal Society of Chemistry). (C) The shell of Strombus gigas—the queen conch (image courtesy of John
Varner). (D) The layered architecture of the S. gigas shell (modified with permission from [5] copyright
2014, Elsevier).

1. Introduction

Fracture toughness, in general, describes the material’s ability to resist propaga-
tion of a pre-existing crack. Preventing catastrophic failure that occurs through the
propagation of brittle cracks is critical for ensuring integrity and safety in engineer-
ing applications. As such, fracture toughness is regarded as one of the key criteria in5

the selection of structural materials. Consequently, the materials development commu-
nity is always interested in new methodologies for increasing the fracture toughness of
engineering materials.

Some stiff biological materials (SBMs) are well known for being natural ceramic
composites whose fracture toughness far exceeds what is expected by the simple rule of10

mixtures [1]. For this reason, SBMs serve as an attractive model material class in stud-
ies aimed at improving the fracture toughness of synthetic composites. Shells and bone
are prototypical examples of SBMs that demonstrate and are studied for their enhanced
fracture toughness (see Figure 1). For instance, nacre—the iridescent part of some mol-
lusk shells—demonstrates a 1000-fold increase in fracture toughness1 compared to that15

of the mineral aragonite, which constitutes over 95% of the shell by volume [2, 3].
The enhanced fracture toughness in prototypically tough SBMs is known to be a

direct consequence of their intricate internal architectures [6, 4, 3, 7, 8, 9, 10, 11].
These internal architectures are also referred to as layered architectures since they often
consist of alternating stiff ceramic layers and compliant organic layers that are laid20

out in intricate three-dimensional (3D) patterns. The precise mechanisms of how the
internal architectures contribute to enhanced fracture toughness is of particular interest
to the materials engineering community, since such an understanding would be more

1This enhancement is in terms of work of fracture
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flexible and effective for designing bioinspired composites than directly copying all
aspects of the architecture.25

Cook-Gordon mechanism
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In the Cook-Gordon mechanism, a growing crack is repeatedly arrested. This
arrest takes place via the crack getting deflected towards or trapped in direc-
tions that quickly reduce the crack driving force. The deflection or trapping is
caused by the crack encountering weak interfaces whose strengths and orienta-
tions lie within certain ranges [12] (see (A)(ii)). As the loading is continued,
the crack re-initiates, sometimes by sprouting a new growing tip from its frac-
ture surfaces (see (A)(iii)). The above process repeats itself each time the crack
encounters the right type of weak interface. The repeated arrest and re-initiation
causes the crack to consume more energy than what it would have consumed if
it were to traverse the same nominal path without any interruptions. Taking in-
spiration from the prototypically tough SBM, nacre, Clegg et al. synthesized a
specimen with layered architecture that consisted of a stack of silicon carbide
layers coated with graphite [11]. This nacre-mimic specimen displayed fracture
toughness enhancement, —i.e., in three-point bending tests, the fracture tough-
ness of the nacre-mimic specimen was higher than that of a homogenous silicon
carbide specimen. It was observed that the graphite-coated silicon carbide inter-
faces acted as the weak interfaces of the Cook-Gordon mechanism, in that they
repeatedly deflected/trapped the growing crack. This can be gleaned from the
image of the fractured nacre-mimic specimen shown in (B). A representative
force-displacement curve from the work by Clegg et al. is shown in (C). (B)
and (C) adapted from [11].
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Several mechanisms have been put forward for explaining how the SBMs’ layered
architectures enhance their fracture toughness [13, 14, 3, 15, 16, 17]. One of the most
popular is the Cook-Gordon mechanism [18], whose details are provided in Box Cook-
Gordon mechanism. A consequence of the operation of the Cook-Gordon mechanism
is the occurrence of a sequence of sudden force drops in the force-displacement (or30

equivalently stress-strain) curves obtained from flexural tests that terminates when the
specimen fails completely. Following Sarikaya et al. [19] we refer to such sequences
as “sawtooth patterns”. As shown in Box Cook-Gordon mechanism, the beginning of
a force drop corresponds to the re-initiation of an arrested crack through the sprouting
of a new branch, and the end of that force drop corresponds to the re-arrest of the crack35

via deflection/trapping of the new branch at the next weak interface. Thus, a sawtooth
pattern is a reflection of several layer-fracture events that occur one after another on the
force-displacement curve.

In recent decades, some skeletal structures from marine sponges are attracting in-
creased attention as potential new additions to the list of prototypically tough SBMs.40

These skeletal structures, which are known as spicules2, are fiber or rod-like composite
structures that are predominantly composed of biogenic silica and have a layered archi-
tecture. As a representative example, in Figure 2 we show the spicules from the marine
sponge Euplectella aspergillum (Ea.) and their layered architecture. These spicules
function as anchors to keep the Ea. sponge fixed onto the sea floor [22], and are also45

called basalia spicules or anchor spicules for their function. For the sake of simplicity,
we will refer to them as Ea. spicules or just as spicules when it is clear from context.
Spicules are being considered as one of the latest additions to the list of prototypically
tough SBMs primarily because the spicules’ layered architecture has a striking resem-
blance to the ones seen in prototypically tough SBMs (compare, e.g., Figure 1(B), (D)50

with Figures 2(C) and 3(B), (D)).
It is prudent, however, to first thoroughly establish that the fracture toughness is in-

deed enhanced in the spicules instead of relying solely on the visual similarities of their
internal architectures with those of prototypically tough SBMs. This is because once
it becomes accepted that the fracture toughness of a biological material benefits from55

its internal architecture, significant resources get expended in unraveling the details of
the underlying fracture toughness enhancing mechanisms as well as in mimicking the
internal architecture in synthetic composites. In this paper we focus on the question of
fracture toughness enhancement in spicules and, following Monn et al. [24], argue that
at least in the case of Ea. spicules, there is no substantial fracture toughness enhance-60

ment. The implication of our arguments for bioinspired engineering is that the spicules
are a poor model material system for the purposes of enhancing fracture toughness in
synthetic composites, and investigating or formulating mechanisms that connect the
spicules’ architecture to fracture toughness enhancement mechanisms should be un-
dertaken with caution. We present our argument in the remainder of this section.65

2Not all spicules have layered architectures, nor do they have a fiber or rod-like appearance. In this
paper we only focus on the particular variety of spicules that are both layered and have a fiber or rod-like
appearance. For this reason and for the sake of simplicity of exposition we refer to this special category of
spicules as just spicules.
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Figure 2: Structure of Euplectella aspergillum (Ea.) sponge and its basalia spicules. (A) The entire skeletal
structure of a Ea. sponge is shown (reprinted from [20]). The basalia spicules, which are identified with a
white arrow, are around 50 µm in diameter and can be several centimeters long. (B) A magnified view of
the basalia spicules. (C) An SEM image showing the cross section of a Ea. basalia spicule reveals its cylin-
drically layered internal architecture (modified from [20]). The internal architecture is relatively consistent
between different spicules, as have been found through investigation of a large number of Ea. spicules in a
previous study [20]. In general, a Ea. spicule’s internal architecture consists of a cylindrical silica core of
about 10 µm radius surrounded by approximately 25 concentric, cylindrical silica layers. The thicknesses
of the cylindrical silica layers decrease from ≈ 1.2 µm to ≈ 0.3 µm as one moves away from the core. This
decrement pattern has previously been measured and investigated for its functional significance in [20]. Be-
tween the silica core and the innermost cylindrical silica layer, as well as between adjacent cylindrical silica
layers, there are compliant organic layers whose thickness are, roughly, in the 5–10nm range [21].
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Figure 3: (A) A force-displacement curve from a three-point bending test performed on a Monorhaphis
chuni anchor spicule (adapted from [23]). (B) An image of a fractured M. chuni anchor spicule (adapted
from [23]). (C) A stress-strain curve from a three-point bending test performed on a Rosella racovitzae
spicule (adapted from [19]). (D) An image of a fractured R. racovitzae spicule tested in three-point bending
(modified from [19]).
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There have been studies that took a closer look at whether the spicules’ fracture
toughness indeed benefits from their architectures. In addition to the similarity between
the architectures of prototypically tough SBMs and spicules, studies such as those by
Levi et al. [23] and Sarikaya et al. [19] are most prominently cited to intimate that the
spicules’ fracture toughness is enhanced by their internal architectures [25, 26, 27, 21,70

28, 29]. Both studies involve three-point bending tests on spicules—of Monorhaphis
chuni sponge in the study by Levi et al. and of Rosella racovitzae sponge in the
study by Sarikaya et al. They observe that in their tests (o.1) the "fracture energy,"
as estimated by the area under the force-displacement/stress-strain curve, is higher in
the spicules than in monolithic silica rods of similar diameters, and (o.2) the force-75

displacement/stress-strain curves display "sawtooth patterns." The force-displacement
curve from the work by Levi et al. and the stress-strain curve from the work by Sarikaya
et al. are shown in Figure 3(A) and (C), respectively.

The area under the force-displacement/stress-strain curve, or to be more precise,
the area enclosed by force-displacement/stress-strain curve in a load-unload cycle, in80

tests such as those conducted by Levi et al. and Sarikaya et al., can only provide
upper bounds on fracture toughness. In order to be able to use the area enclosed by
the force-displacement/stress-strain curve to construct meaningful measures of fracture
toughness, such as the work of fracture (WOF), it is critical that, at the very least, the
following two criteria be satisfied in the tests: (c.1) the specimen’s failure takes place85

through the growth of a clearly identifiable dominant crack whose geometry, at least
after complete failure, can be clearly ascertained, and (c.2) the dominant crack grows in
a stable3 manner. Otherwise, the work done by the loading mechanism, which is what
the area enclosed by the force-displacement/stress-strain curve represents, goes into
not only growing the dominant crack but also feeding the specimen’s kinetic as well90

as other forms of energies. These eventually get dissipated by inelastic mechanisms
different from those that operate in the dominant crack’s fracture process zone. The
criteria (c.1)–(c.2) have not been met in the tests by Levi et al. and Sarikaya et al.,
and the upper bounds of fracture toughness being higher in the spicules compared
to homogenous reference structures does not necessarily mean that the true fracture95

toughness is also higher in the spicules.
Monn et al. adhered to the criteria (c.1)–(c.2) in their three-point bending tests on

Ea. spicules. They showed that the spicules’ fracture toughness, at least in the case
of Ea. spicules, is not substantially greater than that of reference homogenous struc-
tures. They argue that the reason why the Ea. spicules do not display the remarkable100

toughness enhancement seen in prototypically tough SBMs, despite possessing an ar-
chitecture that is quite similar to theirs, is because the spicules’ architecture differs from
those of prototypically tough SBMs in an important aspect: the layers in spicules are
curved while those in prototypically tough SBMs are flat. They demonstrated through

3By which we mean that the crack’s geometry changes slowly, such that the specimen’s velocity field is
of negligible magnitude, and continuously, such that there are no abrupt or sudden changes in the crack’s
geometry, with the loading. Sarikaya et al. state that the crack propagation was stable in their study as
well. They make this comment in reference to the punctuated manner in which their specimen fails, i.e., to
the presence of sawtooth patterns in their force-displacement curves. Thus, their definition of "stable crack
growth" is quite different from that of ours.
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computational fracture mechanics simulations that the curvature in the spicules’ layers105

essentially shuts down the Cook-Gordon mechanism.
As pointed out above, the increase in areas enclosed by the load-displacement

curves does not necessarily mean increased fracture toughness, and the work by Monn
et al. shows that the internal architectures of spicules should not be treated as equivalent
in function to those of the prototypically tough SBMs. Nevertheless, the observation of110

the sawtooth pattern in tests such as those conducted by Levi et al. and Sarikaya et al.
can still incline one to expect toughness enhancement in the spicules; since, if there is
no substantial toughness enhancement in the spicules 4, then how does one explain the
sawtooth patterns in tests such as those conducted by Levi et al. and Sarikaya et al.? In
order to further support the claim by Monn et al. that there is insignificant toughness115

enhancement in spicules, we present here experiments that show that there can be other
explanations for the spicules’ sawtooth pattern, instead of them necessarily having to
be the result of the Cook-Gordon mechanism. Specifically, we show that the sawtooth
patterns can be due to a sequence of slip events that take place at the supports in the
bending tests.120

In a standard three-point bending test, a specimen is placed on a mechanical testing
stage whose supports consist of either two rollers or "knife edges" that are set a fixed
distance apart (see Figure 4). The standard set-up for the three-point bending test is
called the simply-supported (SS) set-up, in which the specimen is not affixed to the
mechanical testing stage and is therefore free to slip at the supports (cf. Figure 5). Typ-125

ically, the deflection of engineering materials that get tested this way is small enough
such that the slip at the supports is minimal. However, for slender samples with large
spans—often the case with tests on very small specimens like the spicules—the deflec-
tions and consequently the slip can be much larger.

We performed three-point bending tests on Ea. spicules, which closely resemble130

the spicules from M. chuni and R. racovitzae studied in the works by Levi et al. and
Sarikaya et al., respectively. The details of how we prepared the Ea. spicules for testing
are given in § 2.2 and the methodology of our experiments is discussed further in § 2.3.
As Levi et al. and Sarikaya et al. did in their respective experiments, we also observed
sawtooth patterns in the force-displacement (F-w0) curves of our experiments. These135

results are presented in § 3.1.1, and, e.g., in Figure 6(A). However, in addition to
what is usually done in three-point bending tests on spicules, we also measured the arc
length, which is the length of the section of the spicule specimen lying between the
supports during the test (see Figure 7(A)). We found that at the very instance when
there is a sudden drop in force, there is also a sudden increase in the arc length. This140

observation implies that during each force-drop event, there also occurs a slip event at
the supports in the experiment.

We try to interpret our observation of a slip event co-occuring with each force-drop
event by considering the following hypotheses: (h.1) each force drop is entirely due to
a layer-fracture event, i.e., while slip events correlate with the force-drop events they145

do not cause them, (h.2) the force drops are due to a combination of layer-fracture and

4Some spicules which differ from the rest substantially in terms of size, function, and architectures, such
as M. chuni, may be an outlier to this claim. We will discuss this point further in the conclusion.
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slip events, or (h.3) a force drop is entirely due to its co-slip event.
In order to investigate the above hypotheses, we repeated the Ea. bending tests

but this time keeping the spicule ends fixed by gluing them to the mechanical testing
stage (see Figure 5). This new set-up, which we refer to as the fixed-fixed (FF) set-up,150

prevents any potential slip events during the bending test but is not expected to affect
the Cook-Gordon mechanism. Thus, if (h.1) is true then the sawtooth patterns should
appear in these FF experiments as well. Alternatively, if (h.2) is true then the force
drops in the sawtooth patterns should decrease in magnitude, and finally, if (h.3) is
true then the sawtooth patterns should completely vanish. The F-w0 curves from the155

FF set-up tests are shown in Figures 6(B) and 8 and discussed in § 3.1.2. As can be
seen from the figure, the sawtooth patterns completely vanish, implying that (h.3) is
true, i.e., that the sawtooth patterns in our SS set-up experiments are not due to the
Cook-Gordon mechanism but due to slip events.

One way in which our above reasoning could be flawed is if our assumption that160

the FF set-up does not affect the operation of the Cook-Gordon mechanism is false.
In such case, our FF set-up experiments do not irrefutably support the interpretation
that the sawtooth patterns in our SS set-up experiments are solely due to slip events.
Therefore, we investigated the hypotheses (h.1)–(h.3) through a different means as
well.165

We repeated the bending tests for a second time. We carried out these tests in the SS
set-up as we did with the first bending tests, but this time we loaded, unloaded, and then
re-loaded the same specimen. Specifically, we loaded the specimen and stopped the
loading before the specimen failed. We then completely unloaded the specimen until
the force became close to zero and the specimen almost regained its straight shape.170

The F-w0 curves from these tests consisting of such load-unload cycles, which we
refer to as the load-unload tests, are presented in § 3.2 and shown in Figure 9. If
layer-fracture events had any role in the sawtooth pattern observed during the loading
phase of the first cycle, then the slope of the linear portion of the F-w0 curve in the
first cycle’s unloading phase, as well as in the loading or unloading phases of any of175

the subsequent cycles, would be smaller than the slope in the loading phase of the first
cycle. This is because crack growth invariably decreases a structure’s elastic stiffness.
In Figure 9(B) we see that the slopes in the first unloading phase and the second loading
phase are quite similar to the slope in the first loading phase. Thus, the load-unload
tests also imply that the sawtooth patterns in our SS set-up experiments are due to slip180

events, i.e., that (h.3) is true.
As we did in the case of our argument based on the FF set-up experiments, we can

think of ways in which our argument based on the load-unload tests is also flawed.
However, our arguments based on the FF set-up experiments and the load-unload tests
when taken in conjunction make it quite unlikely that (h.3) is untrue.185

The hypothesis (h.3) likely being true means that sawtooth patterns from flexu-
ral tests should not implicitly be taken to be evidence for the operation of the Cook-
Gordon or other material toughening mechanisms. Our work underscores the point
that it is better to ascertain the fracture toughness enhancement by measuring the ma-
terial’s fracture toughness directly by carrying out tests that adhere to criteria such190

as (c.1)–(c.2), rather than relying on visual similarities between the material’s and the
prototypically tough SBMs’ architectures, or on sawtooth type features in the force-
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displacement curves. We make further remarks on the implications of our work in § 4.

2. Materials and Methods

2.1. Mathematical and theoretical mechanics preliminaries195

In this subsection we briefly recap a few important mathematical and theoretical-
mechanics-related notions that are necessary for a clear description of our experiments,
and their interpretation and discussion.

We assume that our experiment takes place in E , a three dimensional physical point
space. Let E be a three dimensional, oriented, Hilbert space such that E is E’s principle200

homogenous space. We take the vectors ê1, ê2, and ê3, which are shown marked
in Figure 4(A), to form a basis for E. We denote the dot product between any two
vectors uuu and vvv as uuu ·vvv. It follows from the definition of the inner-product that uuu ·vvv∈R,
where R is the set of all real numbers. The vectors ê1, ê2, and ê3 are orthonormal,
which is to say that êi · êj = δi j, where i, j ∈ (1,2,3) and δi j is the Kronecker delta205

symbol. The Kronecker delta symbol, δi j, is defined such that δi j equals unity if i = j
and naught otherwise.

Following [30], we take that vectors that belong to a physical vector space carry
units with them. For instance, we take that êi, i ∈ (1,2,3), carry the units of µm
(micrometers) with them. We denote the magnitude of the vector uuu as ‖uuu‖. We only210

deal with Hilbert spaces in this paper and take ‖uuu‖ to be equal to (uuu ·uuu)1/2. Conse-
quently ‖uuu‖ is non-dimensional, or to be more precise ‖uuu‖ ∈R≥0, where R≥0 is the set
of non-negative real numbers.

Following [30] and [31], we model force as a linear map from E into a one di-
mensional vector space whose elements have units of energy. The set of all forces215

that act on the matter contained in E can be made into a Hilbert space. We denote
that vector space as F. We use the orthonormal set

Ä
f̂i
ä

i∈(1,2,3)
as a basis for F. The

vectors f̂i, i ∈ (1,2,3), are defined such that they carry the units of mN (millinewtons)
and f̂i (êj) = δi j nJ

(
10−9 Joules

)
.

From here on we will be denoting lists such as ê1, ê2, and ê3 and f̂ j, j ∈ (1,2,3),220

simply as êi and f̂ j, respectively, and ordered sets such as (êi)i∈(1,2,3) simply as (êi).

2.2. Materials

Euplectella aspergillum skeletons were purchased from a commercial supplier in a
dried state with the organic tissue already removed (see Figure 2(A)) and were stored in
dry conditions at room temperature. We carefully removed Ea. spicules from the skele-225

tons using a pair of tweezers and inspected them under a polarized light microscope.
Sections of the spicules containing barbs and any other sections that were visibly dam-
aged or had rough, cracked surfaces were discarded. Immediately before performing
experiments, we cut the spicules into ≈ 5 mm long sections using a razor blade in or-
der to mount them onto a mechanical testing stage. The mounted ≈5 mm long spicule230

sections can be seen in Figures 4(C) and 5(C). In some experiments the spicules were
fixed to the testing device using a solvent-based, drying adhesive (TED PELLA. INC.,
California, U.S.A., PELCO® Conductive Carbon Glue). In Figure 5(A) and (B), we

10
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Figure 4: Description of three-point bending test set-ups and data obtained from the tests. (A) and (B) are
schematics of the simply-supported (SS) set-up of the experiments. The spicule is suspended over a trench,
loaded at its mid-span by a wedge attached to a cantilever. Schematic (A) shows the reference configuration,
while schematic (B) shows the deformed configuration. The mid-span specimen deflection, w0, cantilever
displacement, wc, and stage displacement, ws, are marked in (A) and (B). Basis vectors ê1 and ê2 are shown
in (A). Basis vector ê3 points into the plane of the schematic. (C) A micrograph of the spicule’s deformed
configuration in the SS set-up. (D) The force-displacement (F-w0) curve for a representative spicule tested
in the SS set-up. The inset shows a zoomed-in view of the boxed region. The star marks the point after which
the force between the spicule and the cantilever vanishes.

mark the regions where the adhesive was applied using transparent green rectangles.
The schematic shown in Figure 5(B) corresponds to the optical micrograph shown in235

Figure 5(C). Unfortunately, the adhesive is not clearly visible in Figure 5(C).

2.3. Experimental procedure and measurements
2.3.1. Measurement of force-displacement, F-w0, curves

We performed force-displacement measurement experiments on a number of spicule
specimens using a custom-built mechanical testing system. The construction and op-240

eration of the mechanical testing system is described in detail in [32] and [33]. A
force-displacement experiment consisted of loading phases and unloading phases. We
will explain the physical quantities force and displacement that we used while referring
to our experiments shortly in the following paragraphs.We will also explain what we
mean by loading and unloading phases later in this sub-section.245

In a force-displacement experiment a spicule specimen was initially placed across a
trench that was cut into a steel plate. The trench’s geometry and the spicule specimen’s
initial orientation and position with respect to the trench are sketched in Figure 4(A).
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Figure 5: Description of three-point bending test set-ups and data obtained from the tests. (A) and (B)
are schematics of the fixed-fixed (FF) set-up of the experiments. In contrast with the simply-supported test
set-up, an adhesive is applied over the spicule’s ends to prevent it from sliding or rotating during the test.
Schematic (A) shows the reference configuration, while schematic (B) shows a deformed configuration.
The mid-span specimen deflection, w0, cantilever displacement, wc, and stage displacement, ws, are marked
in (A) and (B). Basis vectors ê1 and ê2 are shown in (A). Basis vector ê3 points into the schematic. (C) A
micrograph of a spicule’s deformed configuration in the FF set-up. (D) The force-displacement (F-w0) curve
for a representative spicule tested in the FF set-up. The inset shows a zoomed-in view of the boxed region.
The star on the F-w0 curve marks the point after which the force between the spicule and the cantilever
vanishes.

The trench was straight and ran along the ê3 direction. It had a rectangular profile (see
Figure 4(A)). The spicule specimen was placed across the trench such that initially250

it lay along the ê1 direction. We performed the experiments in one of the following
two set-ups: (i) Simply-supported (SS, see Figure 4(A), (B)), and (ii) Fixed-Fixed
(FF, see Figure 5(A), (B)). In the simply-supported set-up the spicule specimen was
placed across the trench without any efforts on our part to affix it to the steel plate.
Therefore, in this set-up, the specimen was able to slide-across as well as rotate-about255

the trench edges (see Figure 4(A), (B)). The SS (simply-supported) set-up has been
used in previous experiments performed on the Ea. spicules by the current authors [32]
as well as by other researchers [28]. In the FF (fixed-fixed) set-up, after the spicule
specimen was placed across the trench, its ends were fixed to the steel plate using an
adhesive (see § 2.2 for details) so that they could not slip-across or rotate-about the260

trench edges (see Figure 5(A), (B)). Specimens loaded onto the steel plate in the FF
set-up were inspected again after the application of the glue to ensure that the glue
covered the ends of the spicule only up to the trench edges, and did not cover any
portions of the specimen that remained suspended over the trench.
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The steel plate with trenches cut on it, which we will henceforth refer to as the265

mechanical testing stage (MTS), was controlled using a three-axis actuator. Before
beginning each experiment, the MTS was positioned so that the spicule was beneath an
aluminum wedge and the wedge’s apex was located mid-way across the trench (e.g.,
see Figure 4(A)). The wedge was part of a larger, passive, mechanical structure that
we call the cantilever (Figure 4(A)). The wedge composed the cantilever’s left free270

end. That is, in the parlance of Atomic Force Microscopy (AFM) experiments [34], the
wedge was the cantilever’s tip. The cantilever’s right end was encastered into a rigid
aluminum frame, which was bolted on to an optical table. The cantilever’s material
and dimensions varied between the experiments. In some experiments, we used an
aluminum cantilever, while in others, we used a stainless steel cantilever. However, in275

the context of our experiments, only the cantilever’s stiffness kc—which we will define
shortly, later in this subsection—is relevant. We report the stiffness of the cantilever
in each of our experiments in Tables S1–S4 in the Supplementary Information. As
can be noted from these tables, the cantilever stiffnesses in our experiments varied
between 86.4 N/m and 1800.2 N/m. The methodology of how we measured those280

stiffnesses is described in [33].
As we mentioned previously, each of our force-displacement measurement exper-

iments consisted of loading and unloading phases. The experiments were carried out
by moving the MTS, which carried the spicule specimens, in increments of 1 µm at
a rate of 1 µm/sec. In a loading phase, the MTS was moved towards the cantilever,285

i.e., in the −ê2 direction. In an unloading phase, the MTS was moved away from the
cantilever, i.e., in the ê2 direction. During the loading phase, assuming the spicule re-
mains unbroken, the spicule comes into contact with the cantilever’s tip and then gets
deformed as the tip presses into it; the cantilever gets deformed during this process as
well (cf. subfigures (A) and (B) in either Figure 4 or 5). The reference configurations290

we choose for the spicule specimen and the cantilever, in which they are undeformed,
are shown in Figures 4(A) and 5(A) for the SS and FF set-ups, respectively. Represen-
tative deformed configurations of the spicule specimen and the cantilever in the SS and
FF set-ups are shown in Figures 4(B) and 5(B), respectively.

The MTS’s displacement at the (non-dimensional) time instance τ ∈ R≥0 corre-295

sponding to the just described motion and the reference and deformed configuration can
be denoted as−ws(τ)ê2, where ws(τ)∈R. We take that τ = 0 at the instance when the
tip first makes contact with the spicule. When there is no risk of confusion we refer to
the non-dimensional quantity ws(τ) itself as the MTS’s displacement. Since the MTS’s
motion is our input to the experiment we know the function R≥0 3 τ 7→ ws(τ) ∈ R in300

each experiment.
We call the dot product between the displacement vector of the apex of the can-

tilever’s tip at the time instance τ and −ê2 the (non-dimensional) cantilever displace-
ment at time τ and denote it as wc(τ) ∈ R. We assume that the force applied on the
spicule specimen by the cantilever’s tip acts in the ±ê2 directions. That is, to be math-305

ematically precise, we assume that the force at the time instance τ has the form F(τ)f̂2,
where F(τ) ∈ R. We call the quantity F(τ)/wc(τ) in the limit of τ → 0 the non-
dimensional cantilever stiffness or, when there is no risk of confusion, simply the can-
tilever stiffness and denote it as kc ∈ R. The (dimensional, or physical) cantilever
stiffness kc is defined in terms of the non-dimensional cantilever stiffness kc by the310
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equation kc = kc mN/µm.
In each experiment we measured the function R≥0 3 τ 7→ kcwc(τ) ∈ R. We call

the dot product between the displacement vector of the centroid of the spicule’s cross-
section that is directly underneath the apex of the cantilever’s tip and ê2 the mid-span
spicule deflection, or simply displacement, and denote it as w0(τ)∈R. It can be shown
that the quantities ws(τ), wc(τ), and w0(τ) are related as

ws(τ) = wc(τ)+w0(τ). (1)

We call the map

R≥0 3 τ 7→ (F(τ),w0(τ)) ∈ R2 (2)

the F-w0 curve. Initial portions of the F-w0 curves from representative SS and FF
experiments are shown in Figures 4(D) and 5(D), respectively. These initial portions
were taken from the loading phase of the experiments. We will present and discuss315

other portions of the F-w0 curves in later sections.

2.3.2. Scaled force-displacement curves
The question of how well the measured F-w0 curves conform with the predictions

of the Euler-Bernoulli beam theory can be answered by preparing scaled versions of
the F-w0 curves. By the scaled version of an F-w0 curve, we mean the curve

R≥0 3 τ 7→
Ç

F(τ)L2

EI
,

w0(τ)

L

å
∈ R2, (3)

where I µm 4 is the spicule specimen’s bending moment of inertia, L µm is the trench
width, and E mN/ µm 2 is the spicule specimen’s effective Young’s modulus. Thus,
creating a scaled F-w0 curve for an experiment from the experiment’s raw F-w0 curve320

requires knowledge of E, I, and L in that experiment. We describe how we measured
each of these quantities in the next paragraph.

Let the spicule specimen’s diameter be D µm, where D ∈ R≥0. We measured D
in each of our experiments using the scanning electron microscope (SEM) images that
were taken following the experiments. Using those measurements we calculated the325

(non-dimensional) bending moment of inertia I in each of our experiments as I =
πD4/64. The trench width (L µm) is the distance between the trench’s vertical walls.
The (non-dimensional) trench width L is shown marked in Figure 4(A). In our MTS’s
design L was set to be 1250. However, due to manufacturing variability, L in the actual
experiments deviated from this designed value. Therefore, we also measured L in each330

of our experiments using SEM. The measured D and L values in our experiments are
given in Tables S1–S4 in the Supplementary Information. Also given in those tables are
the values of the spicule specimen’s stiffness in our experiments. A spicule specimen’s
stiffness ks is defined as

ks = lim
τ→0

F(τ)

w0(τ)
. (4)
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We measured an experiment’s ks by using that experiment’s F-w0 curve and applying335

the definition (4). Using the measured I, L, and ks values we estimated the spicule
specimen’s (non-dimensional) Young’s modulus E in our experiments that were carried
out in the SS set-up as

E =
ks L3

48I
, (5)

and in those that were carried out in the FF set-up as

E =
ks L3

192 I
. (6)

Equations (5) and (6) follow from application of the Euler-Bernoulli beam theory to340

the SS and FF set-ups of our experiments, respectively [see, e.g., 35, pp. 610 and 717].

2.3.3. Measurement of the length of the spicule section lying between the trench edges:
spicule arc length

After each stage displacement increment we imaged the spicule using a reflected
light microscope (see e.g. Figure 4(C) or 5(C)). Using those images, for each spicule345

specimen we computed the spicule’s arc length, which is the length of its segment lying
between the trench edges (see Figure 7(A)) as a function of time.

Specifically, we computed the arc length S(τ) as

S(τ) =
∫ L

0

»
1+ f ′τ(x1)2 dx1, (7)

where f ′τ(x1)=
d

dx1
fτ(x1) and the function fτ : [0,L]→R is defined such that fτ

(ix1(τ)
)
=i

x2(τ), where ix1(τ)ê1+
ix2(τ)ê2 is the position vector at the time instance τ of a spicule350

material particle iX that belongs to the spicule’s neutral plane5. In a deformed config-
uration the material particle iX occupies a spatial point in the Euclidean point space E ,
which we have defined in § 2.1. The origin of E is shown marked as O in 7(B). We
approximated fτ by fitting a fourth order polynomial to a set of points that lay on the
spicule’s neutral plane in the spicule’s deformed configuration at the time instance τ355

(see Figure 7(B)). The graph of fτ from a representative test is shown after every fifth
stage displacement increment in Figure 7(C).

3. Results

3.1. Failure tests

The failure tests involved a single pair of loading and unloading phases, in which360

the loading phase was carried out until specimen failure.
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Figure 6: (A) Force-displacement curves for 38 Ea. spicules tested in the simply-supported set-up. This
data includes the 33 Ea. spicules previously tested in [32]. (B) Force-displacement curves for 12 Ea. spicules
tested in the fixed-fixed set-up. (C) and (D) show scaled versions of the force-displacement curves shown
in (A) and (B), respectively. The scaled force-displacement curves are defined in § 2.3.2. The force-
displacement curves shown in Figure 4(D) and 5(D) are shown in orange in (A) and (B), respectively, and
their scaled versions are shown in orange in (C) and (D), respectively. In (C) and (D) the initial portions
of the scaled curves match well with the predictions of the Euler-Bernoulli beam theory, which are shown in
dark-red (see the paragraphs around (8) and (10) for details). The black stars in (A)–(D) indicate the force
and displacement just before the specimen fails, i.e., just before the force vanishes.
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Figure 7: Correlation between the sawtooth pattern in the force-displacement response and discontinuous
jumps in arc length. (A) A schematic of a spicule’s deformed configuration in the simply-supported set-up
showing the arc length S. (B) Magnified view of the boxed region in (A) showing the points (ix1,

i x2)i=1...n
identified along the spicule’s longitudinal axis and the graph of fτ : [0,L]→R, which is our analytical repre-
sentation of the longitudinal axis. (C) The graph of the function fτ for a representative spicule computed after
every fifth stage displacement increment. (D) The force, F , (left axis) as a function of stage displacement, ws,
for a representative spicule compared to the total change in arc length ∆S (right axis). The vertical, dashed
lines indicate the ws values at which we identified discontinuities (numbered 1–6) in the F-ws curve. (E) A
zoomed-in view of the plot region within the red rectangle in (D). (F) A zoomed-in view of the plot region
within the red rectangle in (E) highlighting the discontinuous changes in ∆S at locations 1–3.
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3.1.1. Simply supported set-up
We carried out failure tests in the SS set-up on 5 Ea. spicule specimens. Raw F-

w0 curves and scaled F-w0 curves from these experiments are shown in Figure 6(A)
and (C), respectively. We show the curves only up to the point of failure, since we365

deemed the remainder of the curves, i.e. the curves measured post-failure, to be in-
sufficiently interesting and their inclusion to be a distraction from the more important
pre-failure portion of the curves. We had previously carried out failure tests in the
SS set-up on 33 Ea. spicules using the same methodology that we described in § 2.2
and § 2.3 [32]. We also show the curves from those experiments in Figure 6(A), (C).370

Force-displacement curves and observation of sawtooth patterns. As can seen from
the figures, initially, the force F increases linearly with the displacement w0. For the
SS set-up the Euler-Bernoulli theory predicts that the force increases linearly with the
displacement as

F(τ)L2

EI
= 48

w0(τ)

L
. (8)

As can be seen from Figure 6(C) and (8), when w0/L is smaller than ≈ 0.1, the mea-375

sured F-w0 curves match the one predicted by the Euler-Bernoulli beam theory quite
well. When w0/L continues to increase beyond ≈ 0.1, some of the force-displacement
responses start exhibiting nonlinear behavior, and at around w0/L≈ 0.18 (w0 ≈ 230 µm)
we start to observe sawtooth patterns in several of the F-w0 curves. Specifically, we
observed the sawtooth pattern in 22 of the 38 F-w0 curves. For each test that dis-380

played a sawtooth pattern we identified the time instance τ (slip) at which the saw-
tooth pattern first started appearing and noted the values of F , ws, and w0 at that
time instance. We denote those values as F (slip) := F

(
τ (slip)), w(slip)

s := ws
(
τ (slip)),

and w(slip)
0 := w0

(
τ (slip)), and report them in Tables S1 and S2.

Arc length-displacement curves and observation of slip events. In order to investigate
the origin of the sawtooth patterns we also constructed ∆S-ws curves, which we define
as

R≥0 3 τ
∆S-ws7→ (∆S(τ),ws(τ)) ∈ R2, (9)

where ∆S(τ) := S(τ)−L is the change in the spicule’s arc length from the beginning385

of the experiment, since at the experiment’s beginning the spicule’s arc length equals
the trench width. The ∆S-ws curve from a representative SS failure test that displayed
a sawtooth pattern is shown in Figure 7(D). The F-ws curve from that test is also
shown in Figure 7(D). We mark the point (w(slip)

s ,F (slip)) on that curve using a red
square, and mark some of the ws values at which we observe sudden force drops using390

vertical dashed lines. By comparing the F-ws and ∆S-ws curves in Figure 7(D), it can
be observed that whenever there is a sudden drop in F there is also an abrupt increase

5The concept of a neutral plane comes from the engineering theory of beams. In the context of our
experiments, roughly speaking, the neutral plane is the set of all spicule material particles that in the spicule’s
reference configuration belong to the spicule’s longitudinal cross-section that contains the spicule’s central
axis and is normal to the ê2 direction.
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Figure 8: Specimen failure in a representative fixed-fixed set-up failure test. (A) The force F as a function
of mid-span specimen displacement w0 for a representative spicule tested in the fixed-fixed set-up. The inset
shows a zoomed view of the plot region within the red square. (B) A micrograph of the broken end of the
spicule whose F-w0 curve is shown in (A). (C) Optical micrographs taken during different stages of the
failure test. The micrograph numbers (1)–(5) correspond to the similarly numbered (w0, F) points shown
in (A). The scale bar in (1) measures 250 µm and micrographs (2)–(5) have the same scale as (1). In (1), the
spicule is in the reference configuration. Images (2)–(4) show the spicule while it is in the process of failing;
image (5) shows the spicule after it has failed completely. The failure process ((2)–(4)) occurs over only two
stage displacement increments and does not display the sawtooth pattern observed in the tests performed in
the simply-supported set-up (see Figures 4(D), 6(A),(C) and 7(D)).

in ∆S. That is, for every drop in F there is a corresponding jump in ∆S, and vice versa.
We observed this one-to-one correspondence between drops in F and jumps in ∆S in
18 of the 22 SS failure tests whose F-w0 responses displayed the sawtooth pattern.395

From tensile tests6 on Ea. spicules we know that for the range of stresses that the
spicules are exposed to in our bending tests, the spicules are essentially inextensible
along their length. Therefore, a jump in ∆S is simply the spicule slipping at the trench
edges. In many of the cases we ascertained the slip event(s) directly by comparing the
optical microscopy images of the spicule just before and after a jump in ∆S.400

We interpret the observation of the one-to-one correspondence between spicule slip
events and force-drop events, as we mentioned previously, by considering the hypothe-
ses (h.1)–(h.3), which, to reiterate, are that (h.1) each force drop is entirely due to a
layer-fracture event, of the type that takes place, e.g., during the operation of the Cook-
Gordon mechanism, (h.2) the force drops are due to a combination of layer-fracture405

and spicule slip event, and (h.3) a force drop is entirely due to its co-slip event(s).
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3.1.2. Fixed-fixed set-up
We carried out failure tests in the FF set-up on 12 Ea. spicule specimens to in-

vestigate the origin of the sawtooth patterns in our SS set-up failure tests. Raw F-w0
curves and scaled F-w0 curves from the FF set-up failure tests are shown in Figure 6(B)410

and (D), respectively. For the FF set-up the Euler-Bernoulli theory predicts that the
force increases linearly with the displacement as

F(τ)L2

EI
= 192

w0(τ)

L
. (10)

It can be seen from Figure 6(D) and (10) that when w0/L is smaller than ≈ 0.005 the
measured F-w0 curves match the one predicted by the Euler-Bernoulli beam theory
quite well. As w0/L continues to increase beyond ≈ 0.005, some of the the F-w0415

curves start to become nonlinear, and by the time when w0/L≈ 0.02, most of them
have noticeably diverged from the Euler-Bernoulli beam theory’s linear prediction.

As can be noted from Figures 5(D) and 6(B), (D), there are no discernible sawtooth
patterns in the F-w0 responses of any of the 12 spicule specimens tested in the FF set-
up. From those same figures it can also be seen that for every spicule tested in the420

FF set-up the force F only increases with w0—i.e., there are no force drops—until
the spicule fails abruptly in a brittle manner. For example, consider the results from a
representative FF test shown in Figure 8. It can be seen from the F-w0 curve shown
in Figure 8(A) that F only increases with w0 prior to the spicule’s complete failure,
i.e., there are no force drops in the F-w0 curves that can be considered to be a part425

of any sawtooth pattern. Some important states during the test, especially around the
time when the spicule fails, are shown marked as (1), (2). . . (5) on the F-w0 curve.
Optical micrographs that show the spicule’s deformed configuration in those states
are displayed in Figure 8(C). It can be noted from the zoomed-in view of the F-
w0 curve that is shown as an inset Figure 8(A) that the spicule’s failure begins and430

ends within two stage displacements, and that w0 changes by less than 4 µm during
that time. That is, the spicule’s failure is quite abrupt, and is quite distinct from the
prolonged failure that accompanies the sawtooth patterns observed in the mechanical
tests of prototypically tough SBMs.

If the sawtooth patterns in the F-w0 curves from the failure tests conducted in the SS435

set-up are due to the spicule’s fracture behavior, then we would expect to see sawtooth
patterns in the F-w0 curves from the failure tests conducted in the FF setup as well. The
lack of any sawtooth patterns in the FF tests suggests that the sawtooth patterns in the
SS tests are not a characteristic of the spicule’s fracture behavior. That is, it supports
hypothesis (h.3).440

3.2. Load-unload tests

We carried out load-unload tests, which we will describe shortly, for investigating
the origin of the sawtooth patterns in the SS failure tests in an alternate manner.

6We plan on describing our tensile tests and presenting the measurements from them, shortly, in a future
publication.
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Figure 9: Force-displacement curves from simply-supported load-unload tests. (A) The force-displacement
curve from the first two cycles of a representative load-unload test carried on a Ea. spicule in the simply-
supported set-up (see § 3.2 for details). The blue and green parts of the curve correspond to the first and
second load-unload cycles, respectively. The loading and unloading portions of the curves are shown using
solid and dashed lines, respectively. (B) shows a zoomed-in view of the region in (A) that is marked using
a dark-red rectangle. (C) Force-displacement curves from the first three load-unload cycles and the loading
portion of the fourth cycle of a three-point bending load-unload test, of the type that we discuss in § 3.2,
carried out on a nacre specimen from Pinctada margaritifera (reprinted with permission from [2]). (D) A
schematic representation of the F-w0 curve of a material that experiences a sequence of crack arrest and re-
initiation. The inset schematically depicts the crack path that results from repeated crack arrest and growth in
a material (lavender) that contains thin interlayers (purple). The vertical segments in the loading branch are
force drops that begin and end with the sudden growth and arrest of the crack, respectively. The schematic
also illustrates that upon unloading, the stiffness k2 of the damaged specimen is smaller than the stiffness k1
of the undamaged specimen [36, 37].

The load-unload tests were similar to the original SS failure tests. However, in
contrast to what we did in the original SS failure tests, in these tests we stopped the445

loading phase before the spicule specimens could fail. Following the loading phase
we unloaded the spicules until the spicules almost regained their straight shape and
the force between them and the cantilever’s tip was close to zero. As we mentioned
in § 2.3, we refer to a pair of consecutive load and unload phases as a load-unload
cycle. Each of our load-unload tests involved at least two back to back load-unload450

cycles.
We carried out six load-unload tests, each of which involved a different spicule

specimen. As with the F-w0 curves from the original SS failure tests, some of the F-
w0 curves from these tests also displayed sawtooth patterns. The F-w0 curve from a
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representative load-unload test is shown in Figure 9(A). The loading and unloading455

branches are shown using solid and dashed lines, respectively. The curves for different
cycles are shown in different colors. In the F-w0 curve shown in Figure 9(A), if the
two force drops visible in the loading phase of the first cycle are due to layer fracture
events then we would expect the slope of the F-w0 curve in the limit w0 → 0 in the
unloading phase of the first cycle, as well as in the loading and unloading phases of460

all subsequent cycles, to be smaller than that in the loading phase of the first cycle.
This is because the mechanical stiffness of a specimen is necessarily lower when it is
damaged than when it is pristine [36, 37], e.g., see the force-displacement response of
nacre from Pinctada margaritifera that is shown in Figure 9(C). However, as can be
seen in Figure 9(A), the slopes in the unloading phase of the first cycle as well as in465

the loading and unloading phases of the second cycle are only negligibly different from
that in the loading phase of the first cycle. This observation leads us to conclude that
the force-drops in the loading phase of the first cycle are not due to any layer-fracture
events.

Thus, in summary, the load-unload tests also support hypothesis (h.3).470

4. Concluding remarks

1. Based on the observations that we reported in § 3.1.1, and the investigations of
the hypotheses that were motivated by those observations discussed in § 3.1.2
and § 3.2, we have shown that there can be more than one explanation for the
sawtooth patterns observed during the flexural testing of SBMs. Therefore, the475

implication of our study is that sawtooth patterns cannot immediately be taken as
a conclusive evidence for the operation of fracture toughness enhancing mecha-
nisms, such as the Cook-Gordon mechanism, especially when the specimen has
a slender geometry and is being tested in three-point bending type experiments.

2. Our work, of course, does not mean that sawtooth patterns cannot be genuine480

manifestations of fracture toughness enhancing mechanisms. Neither does it
mean that the spicules other than those from the Ea. sponge do not possess any
architecture-based fracture toughness enhancing mechanisms.

• Based on this work and the work of Monn et al., we claim that there is no
substantial fracture toughness enhancement in Ea. spicules. We also expect485

there to be no substantial fracture toughness enhancement in spicules that
are similar to Ea. spicules in their dimensions, function, and numbers per
sponge individual.

• We would not be surprised if the M. chuni spicule does indeed display
fracture toughness enhancement, as suggested in the work by Levi et al. We490

say this for two reasons. (i) Based on the results of Monn et al., we expect
the Cook-Gordon mechanism to be negated if the layers’ curvature is large.
In Ea. spicules the (non-dimensional) layer curvature, which we define as
the ratio of the layer’s thickness to its radius, is ≈ 0.026. However, in M.
chuni the (non-dimensional) curvature is roughly in the range 0.0024–0.01495

[38, 23, 39, 40, 41]. (ii) From an evolutionary perspective, it makes more
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sense to expect fracture toughness enhancement in M. chuni spicules rather
than in Ea. spicules. This is because the M. chuni sponge is anchored to the
sea floor by a single spicule, whereas a Ea. sponge is anchored to the sea
floor by a collection of ≈ 2000 spicules [21]. Therefore, a brittle failure500

event in a M. chuni spicule would be catastrophic to the sponge, whereas a
similar event in a Ea. spicule would be nowhere near as consequential.
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Table S1: Simply supported test data. L is the length; D is the diameter; ks is the slope of the initial linear part of the F-w0 response; kc is the cantilever stiffness; w(slip)
s ,

w(slip)
0 and F(slip) are the ws, w0 and F at which the first slip event is observed, respectively; and ∆S∗ is the change in arc length from the undeformed state to the point at

which the sample fails.

Test No. L (µm) D (µm) ks (N/m) kc (N/m) Sawtooth w(slip)
s (µm) w(slip)

0 (µm) F(slip) (mN) ∆S∗ (µm)

SS1 1278.0 46.50 141 90.6 No —(1) —(1) —(1) —(1)

SS2 1278.0 50.00 187 90.6 No —(1) —(1) —(1) —(1)

SS3 1278.0 46.70 133 90.6 No —(1) —(1) —(1) —(1)

SS4 1278.0 38.40 54 90.6 Yes 337.2 215.7 11.02 223.6
SS5 1278.0 39.00 55 90.6 Yes 263.0 163.8 9.00 241.8
SS6 1278.0 43.80 120 90.6 No —(1) —(1) —(1) —(1)

SS7 1278.0 43.40 82 90.6 Yes 70.2 39.9 2.75 334.1
SS8 1278.0 33.30 44 90.6 Yes 387.7 258.1 11.75 179.9
SS9 1278.0 39.00 85 90.6 No —(1) —(1) —(1) —(1)

SS10 1278.0 41.59 94 90.6 No —(1) —(1) —(1) —(1)

SS11 1278.0 42.30 78 90.6 Yes 497.7 273.7 20.30 175.8
SS12 1278.0 32.90 43 90.6 Yes 234.8 160.4 6.75 254.9
SS13 1278.0 46.10 81 90.6 No —(1) —(1) —(1) —(1)

SS14 1278.0 34.80 49 90.6 Yes 295.1 195.9 8.99 292.5
SS15 1278.0 44.80 133 90.6 No —(1) —(1) —(1) —(1)

SS16 1278.0 30.20 34 90.6 Yes 190.8 141.7 4.45 378.4
SS17 1278.0 39.30 80 90.6 Yes 429.5 235.2 17.61 180.9
SS18 1278.0 34.20 40 90.6 Yes 305.1 219.1 7.80 436.4
SS19 1278.0 34.10 45 90.6 Yes 315.1 216.4 8.94 437.2
SS20 1278.0 25.90 17 90.6 Yes 246.7 208.8 3.44 430.0

(1) These data were not measured since no sawtooth pattern was observed in this specimen.
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Table S2: Simply supported test data (continued). L is the length; D is the diameter; ks is the slope of the initial linear part of the F-w0 response; kc is the cantilever stiffness;
w(slip)

s , w(slip)
0 and F(slip) are the ws, w0 and F at which the first slip event is observed, respectively; and ∆S∗ is the change in arc length from the undeformed state to the

point at which the sample fails.

Test No. L (µm) D (µm) ks (N/m) kc (N/m) Sawtooth w(slip)
s (µm) w(slip)

0 (µm) F(slip) (mN) ∆S∗ (µm)

SS21 1278.0 39.60 95 90.6 No —(1) —(1) —(1) —(1)

SS22 1278.0 34.80 70 90.6 Yes 391.2 223.7 15.19 267.9
SS23 1278.0 44.20 137 90.6 No —(1) —(1) —(1) —(1)

SS24 1278.0 40.10 86 90.6 Yes 511.4 263.2 22.50 254.3
SS25 1278.0 28.90 26 90.6 Yes 268.8 219.1 4.51 376.1
SS26 1278.0 41.10 72 90.6 Yes 399.5 225.4 15.78 191.7
SS27 1278.0 38.10 71 90.6 No —(1) —(1) —(1) —(1)

SS28 1278.0 37.60 62 90.6 No —(1) —(1) —(1) —(1)

SS29 1278.0 38.60 64 90.6 Yes 355.3 213.2 12.89 213.7
SS30 1278.0 40.60 70 90.6 Yes 455.4 273.0 16.54 266.7
SS31 1278.0 41.70 108 88.1 No —(1) —(1) —(1) —(1)

SS32 1278.0 38.30 52 88.1 Yes 389.6 252.8 12.06 254.0
SS33 1278.0 37.00 60 88.1 Yes 419.8 254.3 14.59 268.5
SS34 1278.0 51.52 131 86.4 No —(1) —(1) —(1) —(1)

SS35 1278.0 50.46 59 86.4 Yes 378.4 234.2 12.45 135.7
SS36 1278.0 41.80 85 86.4 No —(1) —(1) —(1) —(1)

SS37 1278.0 34.62 50 86.4 No —(1) —(1) —(1) —(1)

SS38 1278.0 32.10 38 86.4 Yes 366.2 257.5 9.39 215.7

(1) These data were not measured since no sawtooth pattern was observed in this specimen.
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Table S3: Fixed test data. L is the length; D is the diameter; ks is the slope of the initial linear part of the F-w0 response; kc is the cantilever stiffness; w(slip)
s , w(slip)

0 and
F(slip) are the ws, w0 and F at which the first slip event is observed, respectively; and ∆S∗ is the change in arc length from the undeformed state to the point at which the
sample fails.

Test No. L (µm) D (µm) ks (N/m) kc (N/m) Sawtooth w(slip)
s (µm) w(slip)

0 (µm) F(slip) (mN) ∆S∗ (µm)

F1 1259.0 61.70 —(1) 791.3 No —(2) —(2) —(2) —(3)

F2 1274.0 30.08 —(1) 791.3 No —(2) —(2) —(2) —(3)

F3 1285.0 36.51 —(1) 791.3 No —(2) —(2) —(2) —(3)

F4 1269.0 36.67 —(1) 791.3 No —(2) —(2) —(2) —(3)

F5 1251.0 50.65 —(1) 791.3 No —(2) —(2) —(2) —(3)

F6 1255.0 74.60 —(1) 1800.2 No —(2) —(2) —(2) —(3)

F7 1265.0 44.62 —(1) 791.3 No —(2) —(2) —(2) —(3)

F8 1259.0 65.24 —(1) 791.3 No —(2) —(2) —(2) —(3)

F9 1274.0 29.64 —(1) 791.3 No —(2) —(2) —(2) —(3)

F10 1262.0 37.01 —(1) 791.3 No —(2) —(2) —(2) —(3)

F11 1269.0 35.37 —(1) 791.3 No —(2) —(2) —(2) —(3)

F12 1255.0 78.77 —(1) 791.3 No —(2) —(2) —(2) —(3)

(1) The spicule’s stiffness was not measured since its F-w0 response was nonlinear and no initial region of linearity could be identified;
(2) These data were not measured since no sawtooth pattern was observed in this specimen
(3) The change in arc length ∆S∗ was only measured for specimens tested in the simply-supported set-up.
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Table S4: Load-unload test data. L is the length; D is the diameter; ks is the slope of the initial linear part of the F-w0 response; kc is the cantilever stiffness; w(slip)
s , w(slip)

0
and F(slip) are the ws, w0 and F at which the first slip event is observed, respectively; and ∆S∗ is the change in arc length from the undeformed state to the point at which the
sample fails.

Test No. No. cycles L (µm) D (µm) ks (N/m) kc (N/m) Sawtooth w(slip)
s (µm) w(slip)

0 (µm) F(slip) (mN) ∆S∗ (µm)

LU1 2.0 1278.0 NaN —(1) 119.0 Yes —(2) —(2) —(2) —(3)

LU2 2.0 1278.0 NaN —(1) 119.0 Yes —(2) —(2) —(2) —(3)

LU3 2.5 1278.0 NaN —(1) 119.0 Yes —(2) —(2) —(2) —(3)

LU4 2.0 1278.0 33.36 —(1) 119.8 Yes —(2) —(2) —(2) —(3)

LU5 3.0 1278.0 31.81 —(1) 119.8 Yes —(2) —(2) —(2) —(3)

LU6 3.0 1278.0 31.81 —(1) 119.8 Yes —(2) —(2) —(2) —(3)

(1) The spicule’s stiffness was not measured in the cyclic loading tests;
(2) These data were not measured since they varied between different cycles in the load-unload tests;
(3) These data were not measured since the specimen was not loaded until failure.

5


	Introduction
	Materials and Methods
	Mathematical and theoretical mechanics preliminaries
	Materials
	Experimental procedure and measurements
	Measurement of force-displacement, F-w0, curves
	Scaled force-displacement curves
	Measurement of the length of the spicule section lying between the trench edges: spicule arc length


	Results
	Failure tests
	Simply supported set-up
	Fixed-fixed set-up

	Load-unload tests

	Concluding remarks

