
Enhanced bending failure strain in biological glass fibers due to internal lamellar
architecture

Michael A. Monna, Haneesh Kesaria,∗

aBrown University, School of Engineering, Providence, RI, USA

Abstract

The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their
architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum
are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements,
known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic
layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the
subject of several structure-property investigations, those studies have mostly focused on the relationship between
the spicule’s layered architecture and toughness properties. In contrast, we hypothesize that the spicule’s layered
architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We
test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure
strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have
a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the
bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules’ layered architecture.
We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of
the T. aurantia spicules.
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Structural biological materials (SBMs), such as bone and shell, perform a variety of mechanical functions that
include facilitating locomotion, and offering protection from predators and severe environmental conditions [1]. An
organisms’s survival depends on the mechanical performance of SBMs. Despite being composed of weak, brittle
constituents (e.g., calcium carbonate and silica) SBMs possess remarkable mechanical properties, such as strength and
toughness [2, 3, 4]. These properties are believed to be consequences of the stunning mechanical designs prevalent5

in SBMs [1, 2]. Specifically, SBMs are often heterogeneous and are composed of a ceramic and an organic phase
that are mixed together in intricate, 3D patterns. We refer to the way that these two phases are interlaced as a
SBM’s architecture. Some examples of architectures in SBMs are the brick-and-mortar arrangement of ceramic
tablets in nacre [5], and the interlocking helices of chitin in the club-like appendages of stomatopods [6] and in beetle
exocuticle [7].10

While SBMs do not outperform engineering materials, like advanced ceramics, combining SBM architectures
with modern chemistry could lead to a new generation of structural materials whose mechanical properties far exceed
those of today’s state-of-the-art [8, 9]. Furthermore, by tuning the architectural parameters of a bio-inspired material
(e.g., tablet aspect ratio and overlap in brick-and-mortar composites [10]), the resulting enhancement of mechanical
properties can exceed that which is achieved by simply copying the SBM’s architecture [11]. The first step toward15

understanding how an architecture affects mechanical properties is quantifying the effect that the architecture has on
the mechanical properties that are relevant to the SBM’s primary mechanical function(s).

The skeleton of the marine sponge Euplectella aspergillum (E.a.) has served as a valuable system for studying
structure-property relationships [12, 13, 14]. Euplectella aspergillum’s skeleton consists of a cylindrical, cage-like
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assembly of filaments called spicules (see Figure 1 (A)) [12, 13]. The spicules are approximately 50 µm in diameter,20

up to 10 cm in length, and are composed primarily of silica. While the spicules in the skeletal cage are “glued”
together to form a stiff lattice, there is a tuft of free-standing spicules at the base of the skeleton that are used like
roots to anchor the sponge to the sea floor (see Figure 1 (A), (B)) [13]. The anchor spicules possess a concentrically
layered architecture. In cross-section, an anchor spicule consists of a ≈10 µm silica core that is surrounded by a
coaxial assembly of ≈25 hollow, silica cylinders (see Figure 1 (C), (E)). Adjacent silica cylinders are separated by a25

thin (≈10 nm), protein interlayer [13].
We investigate the hypothesis that the E.a. spicule’s architecture enhances its bending failure strain, which allows it

to provide a stronger attachment to the sea floor. Our hypothesis is motivated by several observations and deductions:
(i) The sponge obtains nutrients by filtering microorganisms from sea water. While the sponge pumps water through
its body, the flow of water is facilitated by ocean currents. We reason that in order to pump and filter water, the30

sponge must be robustly attached to the sea floor. (ii) The distal ends of the E.a. anchor spicules are covered in
barbs (see Figure 1 (D)). We believe that the orientation of these barbs implies that the spicule’s primary mechanical
function is to anchor the sponge to the sea floor. (iii) Sponges have the ability to make spicules in a large variety of
shapes [15, 16]. The presence of the barbs, therefore, suggests that there is evolutionary pressure on the spicules to
enhance their anchoring ability. (iv) It has been shown that the force required to pull a fiber out of an elastic matrix35

increases with the curvature of the fiber inside the matrix [17, 18]. Therefore, we deduce that spicules will be better
anchors if they are able to withstand larger bending strains.

We test our hypothesis by performing three-point bending tests on E.a. spicules and measuring the bending strains
at which they fail. In order to quantify the effect of the architecture on the strain at which E.a. spicules fail, we must
compare them to a material that has the same intrinsic mechanical properties but which lacks architecture. We use40

spicules from a related sponge, Tethya aurantia (T.a.), as this control material [19]. Tethya aurantia is a spherical
sponge that lives on rocky substrates in shallow, coastal water (see Figure 1 (F)). Its skeleton consists of 2 mm long,
40 µm diameter rod-like spicules that are tapered along their length (see Figure 1 (G), (I)) [20]. The T.a. spicules
have the same bulk chemical composition and volume-averaged bonding structure as the E.a. spicules [15], and are
produced using a similar growth process [21, 22]. We, therefore, assume that the intrinsic mechanical properties of45

the T.a. spicules are the same as those of the E.a. spicules. The T.a. spicules, however, do not have any architecture
(see Figure 1 (H)).

We performed three-point bending tests on 33 E.a. and 24 T.a. spicules using a custom-built mechanical testing
device (see Figure 2 (A), (B)). The detailed descriptions of our mechanical testing device and test procedure are given
in Section 1.2. Briefly, sections of E.a. spicules and T.a. spicules were suspended across a trench. A motorized50

translation stage was used to push each spicule against a aluminum wedge that was positioned midway across the
trench—at mid span (see Figure 2 (B), (D)). The force applied to the spicule by the wedge and the lateral deflection
of the spicule’s cross-section that is in contact with the wedge were measured (see Section 1.2 and Figure 3 (E)). We
also imaged the spicules during the test using a reflected light microscope and used these images to compute the strain
at which each spicule failed (see Figure 3 (B), (D)).55

We define a spicule’s effective bending strain to be the strain in the outermost material fiber of a homogeneous
beam with the same curvature and cross-sectional shape as the spicule (see Section 2). The spicule’s “bending failure
strain” is the maximum effective bending strain along the spicule’s length before it fails. We use the following
procedure to compute each spicule’s bending failure strain. We select points along each spicule’s longitudinal mid-
plane in the micrograph taken just before it failed (see Figure 4 (C), (D)). We fit a polynomial function to these points60

and computed the curvature of the longitudinal mid-plane using this function (see Section 2 and Figure 4 (D), (E)).
After each test, we measured the radius of the cross-section at which the spicule failed from a scanning electron
micrograph (see Section 1.4 and Figure 5 (A)). Finally, we computed each spicule’s bending failure strain from the
the maximum curvature of the polynomial function and the spicule’s cross-sectional radius at the location of failure
using elastica theory (see Section 2 and Figure 5 (C)) [23].65

By comparing the E.a. spicules to the T.a. spicules, we find that the E.a. spicule’s concentrically layered archi-
tecture increases its bending failure strain by roughly 140%. This supports our hypothesis that the E.a. spicules’
architecture allows them to bend more before failing, thereby allowing them to provide a better anchorage to the sea
floor.
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1. Materials and methods70

1.1. Preparation of spicules for mechanical testing
Euplectella aspergillum spicules were removed from dried skeletons and stored at room temperature. Since the

E.a. spicules are ≈10 cm long, we performed the bending tests on small (≈5 mm) sections of them that we cut
from roughly the mid point along each spicule’s length. We cut the sections using a razor blade immediately before
performing the bending tests. T. aurantia spicules were received dried and separated from the sponge tissue, and were75

stored at room temperature.
Each E.a. spicule section and T.a. spicule was inspected using a polarized light microscope. Sections of E.a.

spicules containing barbs (e.g. see Figure 1 (D)) were discarded. Due to the fragility of the outer silica cylinders of
the E.a. spicules, surface cracks were commonly observed. Since pristine spicules were virtually nonexistent, only
sections with missing pieces of layers were discarded. Tethya aurantia spicules that were not completely intact were80

also discarded.
A spicule that passed this inspection procedure was placed across a trench cut in a stainless steel plate (see Figure 2

(B)). The trench has parallel, vertical walls and the trench edges support the spicules during the three-point bending
tests. The trench’s span, L, was measured from optical micrographs to be 1278±3 µm (mean ± standard deviation;
N = 10). We ensured that each spicule’s longitudinal mid-plane was perpendicular to the trench edges. Since the T.a.85

spicules are tapered, we took efforts to also ensure that the midpoint along each T.a. spicule’s length was coincident
with the trench’s mid span.

1.2. Construction and operation of the mechanical testing device
Our mechanical testing device consists of two major components: a sample stage that holds the spicules (see

Figure 2 (A)), and a wedge-shaped load point (LP) that applies force to the spicules (see Figure 2 (A)–(C)).90

The sample stage consists of the steel plate containing the trench, which is attached to a three-axis translation
stage that is controlled by DC servo motors. The motors have a minimum repeatable step size of 200 nm. The ends
of the spicules are not affixed to the trench edges and are therefore free to rotate or slide on the trench edges. The
LP’s tip is an aluminum wedge that has an included angle of approximately 35 degrees. The radius of curvature of
the apex of this wedge is approximately 20 µm (see Figure 2 (C)). To perform a bending test, the LP is first centered95

at the trench’s mid span by finding and averaging the positions of the two trench edges. After centering, the spicule is
pushed into the LP in 2 µm stage displacement increments at an average rate of 1 µm/s until the spicule fails.

The LP is attached to the end of an aluminum cantilever, which is used as a force sensor. The operating principle
of the LP-cantilever assembly is similar to that of an atomic force microscope [24]. As a spicule is pushed into
the LP we measure the displacement of the LP, −wLPê2, using a fiber optic displacement sensor (FODS), where
ê2 is the Cartesian basis vector shown in Figure 3 (B), (D). After each stage displacement increment, we take 100
wLP measurements and average them to reduce noise caused by mechanical vibrations. Let −wsê2 and w0ê2 be the
displacements of the stage and the spicule’s cross-section under the LP, respectively. Since the LP and the spicule
remain in contact until failure, w0 is given by the difference between the stage and LP displacements, or

w0 = ws−wLP. (1)

We then use the cantilever’s stiffness, kc, to compute the force applied by the LP, F ê2. The cantilever deflections
observed during the bending tests are small enough (roughly 1% of the cantilever’s length) that the relationship
between F and wLP is linear. Therefore, the force is given by

F = kcwLP. (2)

We hung calibration weights, whose masses we measured with ± 0.1 mg accuracy, from the end of the cantilever
and measured wLP. We fitted equation (2) to this load–displacement data to estimate kc to be 90.6 ± 0.3 N/m. The
FODS has a measurement uncertainty of roughly 220 nm and, consequently, our mechanical testing device has a force100

resolution of roughly 20 µN.
The load-displacement data for the E.a. and T.a. spicules are shown in Figure 3 (E). Finally, after each displace-

ment increment we acquire an image of the spicule’s bent shape (see Figure 3 (B), (D)) using a 5× magnification
reflected light microscope (Infinitube, AVT Manta). The image acquisition, FODS data acquisition and stage motion
are all controlled using National Instruments LabView.105
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1.3. Calibration of the mechanical testing device

We calibrated the mechanical testing device by measuring the Young’s modulus, E, of a tungsten wire. For the
configuration shown in Figure 4 (B), the Young’s modulus is given by

E = ksL3/48I, (3)

where ks is the slope of the linear portion of the F–w0 data, I = πr4
0/4 is the second moment of area of the cross-

section, L is the trench span, and r0 is the cross-sectional radius of the wire. Equation (3) comes from the Euler-
Bernoulli theory for a simply-supported beam with a concentrated lateral load acting at mid span [25].

We measured the wire’s diameter to be 15.15 ± 0.03 µm (mean ± standard deviation; N = 10) using a scanning110

electron microscope (SEM). We performed 12 tests on different pieces of the tungsten wire and found the Young’s
modulus to be 395.2± 13.4 GPa (mean± standard deviation). This value agrees closely with values cited in literature
(see Table 1).

1.4. Measurement of spicule diameters

After each bending test, we collected the fragments of the broken spicule. The spicule fragments were handled115

exclusively using fine point brushes to avoid introducing damage to their fracture surfaces. The fragments were
mounted to an aluminum stub using conductive carbon tape, sputter coated with 10 nm of carbon and imaged in a
SEM. We measured the diameter of each spicule’s cross-section at the location of failure from the SEM images.

2. Results

Figure 4 (A) and (B) are schematics of the undeformed and deformed configurations of a spicule, respectively,120

in the context of our bending experiment. The edges of the trench are shown as simple supports. In the deformed
configuration, the set {ê1, ê2} is an orthonormal set of Cartesian basis vectors with {z,w} being its corresponding
set of Cartesian coordinates. The origin of the coordinate system is located at the point on the spicule’s longitudinal
mid-plane directly above the left trench edge. We assume that the spicule deforms in the plane whose normal vector
is ê1× ê2.125

We adopted the principal strain failure hypothesis originally proposed by Saint-Venant [26]. That is, we assume
that each spicule fails when the maximum principal strain within it reaches a critical value, ε f , which we call its
bending failure strain. The infinitesimal strain tensor is ε = εi jêi⊗ ê j, where “⊗” denotes the dyadic product and
repeated indices imply summation over the integers 1, 2, 3 (Einstein summation convention). We assume that the
spicules’ deformations satisfy the kinematic hypothesis of elastica theory [23, 27]. That is, we assume that cross-
sections in the undeformed configuration (see Figure 4 (A)) remain planar in the deformed configuration (see Figure 4
(B)), and that there exists a neutral plane in the structure 1. Based on micrographs of the spicules’ undeformed
configurations (see Figure 3 (A), (C)), we assume that in the undeformed configuration, the spicule’s neutral plane
has zero curvature. As a result of this kinematic hypothesis, the only nonzero strain component is ε11 = rκ(z), where
r ∈ [0,r0(z)] is a material point’s distance from the neutral plane in the undeformed configuration, r0(z) is the spicule’s
cross-sectional radius, and κ(z) is the curvature of the spicule’s neutral plane [23, 27]. Since ε11 is the only nonzero
strain component, it is also the maximum principal strain. This means that

ε f = r0(z∗)κ(z∗), (4)

where z∗ = argmax{r0(z)κ(z) : z ∈ [0,L]}, and κ(z) belongs to the spicule’s deformed configuration just before it
fails.

We assign r0(z∗) to be the radius of the cross-section at which the spicule fails. We measured r0(z∗) by collecting
and imaging the broken spicule fragments after each bending test (see Section 1.4). A histogram of r0(z∗) for the E.a.

1The neutral plane is a surface composed of material points whose shape changes as the structure deforms. In the undeformed configuration the
neutral plane is normal to the ê2 direction. Material fibers of infinitesimal length belonging to the neutral plane and oriented in the ê1 direction in
the undeformed configuration do not change length as the structure deforms.
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and T.a. spicules is shown in Figure 5 (A). The mean ± standard deviation of r0(z∗) are 19.7±2.8 µm and 17.2±2.0130

µm for the E.a. and T.a. spicules, respectively.
We computed κ(z∗) using the following procedure. It has been shown that both E.a. and T.a. spicules are axisym-

metric [14, 20]. As a consequence of this symmetry, a spicule’s neutral plane is the same as its longitudinal mid-plane
in its undeformed configuration (see Figure 4 (A)). We built a discrete representation of the neutral plane using a set
of points (zi,wi)i=1...n, which we manually selected from the micrograph of the spicule’s deformed configuration just135

before failure (see Figure 4 (C), (D)). The abscissae, zi, were spaced in the ê1 direction in increments of roughly 15-20
µm. As a result, the total number of points in the discrete representation, n, varied from 57 to 137. For each zi, we
manually chose wi so that the point (zi,wi) coincided with the spicule’s neutral plane. We built a continuous repre-
sentation of the neutral plane by fitting a fourth order polynomial, f (z) = ∑

4
j=0 a jz j, to the (zi,wi) data, and computed

the curvature of the spicule’s neutral plane as κ(z) = f ′′(z)/(1+ f ′(z)2)3/2 (see Figure 4 (D), (E) and Figure 5 (B)).140

To obtain κ(z∗) we assumed that both the strain, r0(z)κ(z), and the curvature, κ(z), attain their maximum values at
the same z position. Hence, we approximate κ(z∗) = max{κ(z) : z ∈ [0,L]}.

Finally, we used equation (4) to compute each spicule’s bending failure strain (see Figure 5 (C)). The mean ±
standard deviation of ε f for the E.a. and T.a. spicules are 0.0377±0.0043 and 0.0158±0.0042, respectively.

3. Conclusion145

We showed that the bending failure strain of the E.a. spicules is ≈140% larger than that of the T.a. spicules. We
do not believe that this result is a consequence of the E.a. spicules’ silica being intrinsically stronger than the T.a.
spicules’ silica. Rather, we believe that the E.a. spicule’s architecture allows it to deform differently than a monolithic
beam, and reduces the maximum strain that the spicule experiences for a given κ(z) compared to a monolithic beam.
In Section 2 we compute the E.a. spicules’ bending failure strains by approximating their kinematics using elastica150

theory (i.e., we assume that the strain is given by ε11 = rκ(z)). However, a more refined mechanics model that
accounts for the spicule’s architecture is needed to understand the mechanism(s) underlying the enhancement of E.a.
spicules’ bending failure strains. Specifically, while ε11 increases linearly with the distance, r, from the neutral plane
in a monolithic beam, this may not be true for the spicules.

As a preliminary hypothesis we consider a beam model in which adjacent concentric layers slide relative to one155

another. Consider, for example, the 2D layered beam shown in Figure 6 (B). Since adjacent layers are not glued
together, when the beam is bent they are able to slide relative to one another like stacked sheets of paper. This allows
the layered beam to undergo larger deformations than a monolithic beam with the same cross-section (see Figure 6
(A)) before the strain in any layer meets the failure criterion. Consequently, the layered beam would appear to have
a larger bending failure strain since it would have a larger curvature before it failed. While the mechanics of this 2D160

analog and the concentrically layered E.a. spicules are different, a similar mechanism could be operating in the E.a.
spicules. That is, like in the 2D analog, the sliding of adjacent layers may allow strain to be redistributed across the
spicule’s cross-section.

Euler-Bernoulli beam theory, which assumes that both the strain and displacements are small, does not predict
that the strain would redistribute even when adjacent layers can slide relative to one another. However, as can be
seen in our experiments (see Figure 3 (D)), the E.a. spicules undergo very large displacements before they fail. If we
compute the curvature of the E.a. spicules using Euler-Bernoulli beam theory, we find that the theory underpredicts the
spicules’ maximum curvature. Specifically, the maximum curvature of the E.a. spicules predicted by Euler-Bernoulli
beam theory is

κEB =
12Ff

ksL2 , (5)

where Ff is the applied force at failure, L is the trench’s span, and ks is the slope of the linear portion of the spicule’s
F–w0 data (see Section 1.2) [25].165

We compare κEB to the maximum curvature measured directly from the images of the spicules’ deformed configu-
rations (see Section 2) for both the E.a. and T.a. spicules in Figure 7. From this comparison we see that for small κ(z∗),
the Euler-Bernoulli theory provides a reasonable approximation for the actual curvature of the spicule. However, for
most E.a. spicules κ(z∗) is large and the difference between the Euler-Bernoulli theory prediction and the measured
curvature increases. Specifically, Euler-Bernoulli theory underpredicts the maximum curvature of the E.a. spicules.170
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Therefore, a new mechanics model of the E.a. spicule that not only accounts for the E.a. spicules’ architecture but
also considers large displacements is needed to further investigate the proposed strain redistribution hypothesis.
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[19] M. Sarà, E. Manara, Cortical structure and adaptation in the genus tethya (porifera, demospongiae), in: Fossil and recent sponges, Springer,

1991, pp. 306–312.215

[20] M. A. Monn, H. Kesari, A new structure-property connection in the skeletal elements of the marine sponge tethya aurantia that guards against
buckling instability, Scientific Reports.

[21] S. Leys, Comparative study of spiculogenesis in demosponge and hexactinellid larvae, Microscopy Research and Technique 62 (4) (2003)
300–311.

[22] W. E. Müller, X. Wang, F.-Z. Cui, K. P. Jochum, W. Tremel, J. Bill, H. C. Schröder, F. Natalio, U. Schloßmacher, M. Wiens, Sponge spicules220
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Table 1: Young’s modulus of tungsten (GPa)

Measured (N = 12) Reference

mean s.d. [28] [29] [30]

395.2 13.4 404.0 409.8 410
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Figure 1: Skeleton and spicules of E.a. and T.a. sponges. (A) An E.a. skeleton. The mud ball at the bottom of the skeleton contains the anchor
spicules (courtesy of Swee Cheng Lim). (B) The anchor spicules from an E.a. skeleton separated from the mud ball. (C) A broken E.a. anchor
spicule exposing its architecture. (D) The distal end of a E.a. anchor spicule is covered in barbs that help the spicule anchor to the sea floor.
Reproduced from [31], Copyright 2004 National Academy of Sciences. (E) A cross-sectioned anchor spicule. Modified from [14]. (F) A live T.a.
sponge (courtesy of Steve Lonhart / NOAA MBNMS). (G) Spicules from a T.a. sponge. (H) A fractured T.a. spicule. (I) The T.a. spicules are
tapered along their length. Reproduced from [20] under the Creative Commons 4.0 BY license.
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Figure 2: Mechanical testing device. (A) The major components of the mechanical testing device are the sample stage and the load point-cantilever
assembly. (B) A closer view of the wedge-like tip of the load point and the trench in the sample stage. To aid in visualization of the experimental
setup, a ≈125 µm diameter brass wire (sample) is shown in place of a spicule. (C) A micrograph of the load point tip. (D) A micrograph of a T.a.
spicule just before failure. The trench edges and wedge are marked schematically.
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Figure 3: Three-point bending test data. (A) and (B) (resp. (C) and (D)) show the undeformed configuration and deformed configuration just before
failure of a representative T.a. (resp. E.a.) spicule. The coordinate system used to describe the position of points along a spicule’s longitudinal
mid-plane is shown in (B) and (D). (E) Dimensionless load-deflection data of the 33 E.a. (blue) and 24 T.a. (orange) spicules. The force and
deflection at which each T.a. (resp. E.a.) spicule failed is indicated by an orange triangle (resp. dark blue square). (F) (resp. (G)) A representative
fractured T.a. (resp. E.a.) spicule.
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Figure 4: Measurement of spicule curvatures from three-point bending test images. (A) Schematic of the spicule’s undeformed configuration. (B)
Schematic of the spicule’s deformed configuration. (C) A magnified view of (B) showing the discrete representation of the spicule’s longitudinal
mid-plane, (zi,wi)|i=1...n, and the continuous representation of the longitudinal mid-plane, f (z). (D) The black triangles (resp. squares) correspond
to the (zi,wi)|i=1...n for the representative T.a. (resp. E.a.) spicule shown in Figure 3 (B) (resp. (D)). The orange (resp. blue) curves correspond to
f (z) for the representative T.a. (resp. E.a.) spicule. (E) the curvature, κ(z), computed from the f (z) shown in (C).
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Figure 5: Bending failure strains of E.a. and T.a. spicules. (A) A histogram of r0(z∗) for the E.a. and T.a. spicules. (B) A histogram of κ(z∗) for
the E.a. and T.a. spicules. (C) A histogram of the bending failure strains, ε f , for the E.a. and T.a. spicules.
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Figure 6: (A), (B) The deformed configurations of a monolithic and a multi-layered beam, respectively. Adjacent layers in the multi-layered beam
are able to slide past one another as the beam is bent.
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Figure 7: Comparison of the measured spicule failure curvatures with Euler-Bernoulli beam theory predictions. The failure curvature predicted
by Euler-Bernoulli beam theory, κEB, is compared to the curvatures measured from optical micrographs using the elastica theory (see Section 2 for
details). The curvatures, κ(z∗) and κEB, of the E.a. and T.a. spicules are shown as blue squares and orange triangles, respectively.
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