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Abstract 
In order to adapt to a wide range of physically demanding environmental conditions, biological 
systems have evolved a diverse variety of robust skeletal architectures. One such example, 
Euplectella aspergillum, is a sediment-dwelling marine sponge that is anchored into the sea floor 
by a flexible holdfast apparatus consisting of thousands of anchor spicules (long, hair-like glassy 
fibers). Each spicule is covered with recurved barbs and has an internal architecture consisting of 
a solid core of silica surrounded by an assembly of co-axial silica cylinders, each of which is 
separated by a thin organic layer. The thickness of each silica cylinder progressively decreases 
from the spicule’s core to its periphery, which we hypothesize is an adaptation for redistributing 
internal stresses, thus increasing the overall strength of each spicule. To evaluate this hypothesis, 
we created a spicule structural mechanics model, in which we fixed the radii of the silica 
cylinders such that the force transmitted from the surface barbs to the remainder of the skeletal 
system was maximized. When compared to measurements of these parameters in the native 
sponge spicules, our modeling results compared remarkably well, highlighting the beneficial 
nature of this elastically heterogeneous lamellar design strategy. The results obtained from this 
study thus provide potential design insights for the fabrication of high-strength beams for 
load-bearing applications through the modification of their internal architecture, rather than their 
external geometry. 
 
Statement of Significance 
The remarkable properties of biological structural materials can often be attributed to the 
composite arrangement of their constituents. This paper focuses on the high aspect ratio, 
load-bearing, glassy, skeletal fibers (spicules) of the marine sponge Euplectella aspergillum.  
Considering that the spicules’ internal architecture cannot be repaired or remodeled, we 
hypothesize that there is a connection between their internal structure and their strength. Using a 
newly developed structural mechanics model for composite beams, we demonstrate that the 
unique internal geometry that maximizes a beam’s strength correlates well with the geometry 
observed in the native spicules. This bio-inspired design strategy for increasing a beam's strength 
has implications for a new generation of man-made structural materials. 
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Introduction 
Biological structural materials such as nacre, tooth, bone, and fish scales [1-9] often exhibit 
remarkable mechanical properties, which can be directly attributed to their unique structure and 
composition [10-15]. Through the detailed analysis of these complex skeletal materials, useful 
design lessons can be extracted that can be used to guide the synthesis of synthetic constructs 
with novel performance metrics [16-20].  The complex and mechanically robust cage-like 
skeletal system of the hexactinellid sponge Euplectella aspergillum has proven to be a 
particularly useful model system for investigating structure-function relationships in 
hierarchically-ordered biological composites [21-25].  The sponge is anchored to the sea floor 
by thousands of anchor spicules (long, hair-like skeletal elements), each of which measures ca. 
50 𝜇m in diameter and up to 10 cm in length (Fig. 1 A, B). The distal end of each anchor spicule 
is capped with a terminal crown-like structure and is covered with a series of recurved barbs that 
secure the sponge into the soft sediments of the sea floor (Fig. 1 C).  The proximal regions of 
these spicules are in turn bundled together and cemented to the main vertical struts of the skeletal 
lattice.   
 
These spicules contain an elastically heterogeneous, lamellar internal structure and are composed 
of amorphous hydrated silica. Surrounding a thin organic axial filament, which is responsible for 
determining the spicule’s core geometry, is a solid silica core. This core is further surrounded by 
an assembly of ca. 10-50 concentric cylinders (Fig. 1 D), each of which is separated by a very 
thin organic interlayer [22] and previous studies have demonstrated that this design strategy 
contributes to a significant increase in work of fracture [22]. These silica cylinders decrease in 
thickness from the spicule’s core to the periphery [22, 23, 24] and inspired by their internal 
geometric regularity, the goal of this present study was to explore additional mechanical benefits 
of the spicule’s laminated architecture. Specifically, we explored the possibility that the 
structural feature of decreasing silica cylinder thickness is an adaptation for increasing the 
strength of spicules under a wide range of external loading regimes. 

In order to evaluate our hypothesis, we built a structural model for these spicules and compared 
the idealized sequence of silica cylinder radii from our model to the measured radii sequences 
from the native spicules. In our model, we quantify the spicule’s ability to function as an 
effective structural element by its load capacity, which we define as the largest tensile force that 
the spicule can transmit from its surface barbs to the skeleton without failing. Since E. 
aspergillum is anchored into the sea floor, any loads on the sponge’s body must be balanced by 
reaction forces supplied by the sediments. It is clear from the macro-scale construction of the 
skeleton [22] that these reaction forces are transmitted directly to the skeleton via the anchor 
spicules. While the distal region of each spicule that is located beneath the sediment surface is 
subjected to a diverse set of mechanical loads, from the shape and position of the surface barbs, 
we infer that the spicules are primarily loaded at the barbs by a system of forces that act in the 
proximo-distal direction (Fig. 1 C).  

In our model, the spicule's failure criterion is defined by the following three assumptions. (i) The 
onset of spicule failure begins when any of the individual silica cylinders fail or the spicule’s 
core fails. (ii) An individual cylinder fails when the normal component of the traction 𝜎##	on its 
cross-section exceeds its bulk tensile strength. The failure of the spicule’s core is similarly 
defined. (iii) The cylinders and the core have the same bulk tensile strength 𝜎%&.  
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Fig. 1: (A) photograph of a skeleton of E. aspergillum showing the tuft of root-like anchor spicules at the 
base. (B) shows a close-up of a group of anchor spicules. (C) a scanning electron microscope (SEM) 
image of the distal end an anchor spicule, showing the spicule's terminal crown-like structure and its 
recurved barbs. The dashed arrows schematically denote the forces that we assume act on the spicule as it 
anchors the skeleton to the sea floor. (D) shows a SEM image of an anchor spicule's cross-section, taken 
at a smooth proximal region along the spicule's length. (C) is reprinted with permission from [22]. 
 

Assumption (iii) contrasts with classical theories of strength in brittle structures, in which 
strength depends on size. For example, theories based on linear elastic fracture mechanics 
(LEFM) predict that strength scales as 𝑠𝑖𝑧𝑒+,/. [26, 27, 28]. However, modern developments 
have brought attention to the fact that if a structure’s characteristic dimension is smaller than a 
critical length scale, which is a characteristic of the structure’s material and geometry, then 
strength no longer depends on size [14, 29]. In Supplementary Information (SI) §Silica 
cylinders' critical length scale we show that the silica cylinder thicknesses are smaller than an 
estimate of the cylinders’ critical length scale. 

In traditional theories of homogenous beams (e.g., Euler-Bernoulli [30]), 𝜎##	is assumed to be 
an affine function over the beam's cross-section. As an extension, in our model, we allow 𝜎##	to 
be a different affine function over the cross-section of each of the individual silica cylinders. 
While the precise mechanical properties of the compliant organic interlayers have yet to be fully 
characterized, we incorporate their potential contributing effect into our model by assuming that 
𝜎##	can be discontinuous across adjacent silica cylinders. The assumption that the interlayers are 
compliant compared to the silica cylinders is supported through recent mechanical 
characterization of spicules from Monorhaphis chuni [31, 32], which is closely related to E. 
aspergillum, contains a similar bulk chemical composition [25] and is similarly laminated. 
 
In line with our hypothesis that the spicule’s internal structure enhances its strength in tensile and 
bending loading regimes, we set the free parameters in the affine functions characterizing 𝜎##	on 
the spicule's cross-section Ω to be equal to the values at which the spicule’s load capacity is 
maximized. Similarly, we set the radii of the silica cylinders to be equal to values that maximize 
the load capacity. The optimal-strength radii sequence thus designates this sequence of optimal 
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values of the silica cylinder radii. In the present study, we provide a rigorous proof that in our 
model, the load capacity for the optimal-strength radii sequence is greater than the load capacity 
for any other possible sequence of radii. 
 
The spicule’s load capacity in our model is always greater than that of a homogeneous beam, and 
increases with the number of silica cylinders up to a maximum gain of 25%. In a homogeneous 
Euler-Bernoulli beam, the outer region of Ω carries the greatest load, while the inner region 
carries the least. This is due to the affine variation of 𝜎##	over Ω, for which 𝜎##	attains a 
maximum at the periphery of Ω. Thus, as per the failure criterion in our model, the homogeneous 
beam would fail when 𝜎## exceeds 𝜎%&	at the periphery. If 𝜎##	varied more uniformly over Ω 
while still being greatest at the periphery, the structure would again fail when 𝜎## exceeds 𝜎%&	at 
the periphery. However, in this case, the net load transmitted across Ω (the load capacity) would 
be greater since the interior region of Ω would be transmitting a larger load. This is precisely the 
mechanism through which the load capacity in our spicule model is increased. By simultaneously 
allowing 𝜎##	 to be discontinuous and by increasing the number of silica cylinders, we 
effectively increase the uniformity of 𝜎##	over Ω.   
 
Remarkably, we find that the thicknesses in the optimal-strength radii sequence decrease from 
the spicule's core to the periphery, an observation consistent with measurements made on the 
actual spicules. We quantitatively compare the measured radii sequences with the 
optimal-strength radii sequence and also with several alternate radii sequences (§Comparison of 
measured and optimal radii sequences). One of these alternate sequences is from a different 
structural mechanics model in which the strength of the cylinders varies as 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠+,/.. We 
find that the optimal-strength radii sequence describes the measured radii sequences the best. 
 
The similarity of the optimal-strength radii sequence with the measured radii sequences supports 
our hypothesis that the spicule’s internal structure is an adaptation to increase the spicule’s load 
capacity. However, considering that knowledge regarding the formation of spicules in 
hexactinellid sponges is as yet incomplete, it cannot be ruled out whether other factors, such as 
growth processes, are also responsible for the spicule’s decreasing thickness lamellar structure.  
 
 
Results  
The sectioned anchor spicules from E. aspergillum contained between 14 and 40 silica cylinders 
each. In most images, the complete boundaries of all the cylinders were not easily identifiable 
due to the complex fracture patterns inducing by sample sawing. While this may have been the 
case, we were able to measure the radii of more than 80% of the total number of cylinders in 
more than 90% of the spicules. In the remaining 10% of the spicules, we succeeded in measuring 
at least 65% of the total number of cylinders. See SI §Measurement of silica cylinder radii for 
details. We also ensured that in every image, the measured radii were from a consecutive set of 
silica cylinders starting from the innermost one, thus permitting the comparison of the measured 
radii sequences with the optimal-strength radii sequence from our model.  
  
Consistent with previous observations [22, 23, 24], there was a distinct reduction in silica 
cylinder thickness from the spicule’s core to its periphery, see Fig. 2 and S2. See SI 
§Measurement of silica cylinder radii for a statistical analysis of the cylinder thickness versus 
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cylinder number data.  
 

 
 
Fig. 2: Thicknesses vs. cylinder no. data for five skeleton 1 spicules. The solid lines shown are linear fits 
to the data. 
 
Spicule’s load capacity 
We model the spicule as a tight, co-axial assembly of annular, cylindrical beams [30] with a 
single solid beam at its center. If the spicule fails at the transverse cross-section Ω, then the load 
capacity is equal to the tension 𝑇 transmitted across Ω just prior to failure. Here we assume 
that the spicule transmits the greatest tension just prior to failure. The tension across Ω is  
 

 𝑇 = ∫9 𝜎##	𝑑𝑥,𝑑𝑥., (1) 
 

where 𝜎## is a component of the Cauchy stress tensor in the orthonormal basis {𝐞?@}@B,,.,#. Note 
that Ω is the spicule's cross-section referred to in the deformed configuration. The vector 𝐞?# is 
normal to Ω, and the vector 𝐞?, points in the direction of the net bending moment on Ω. The 
origin is chosen to be the centroid of Ω and 𝑥,, 𝑥. are the cartesian coordinates in the 𝐞?,, 𝐞?., 
directions, respectively (Fig. 3 A). 
 

 
 
Fig. 3: Spicule model and results. (A) shows the spicule model coordinate system and loading 
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configuration. (B) shows 𝜎## on Ω when the model transmits a tension equal to its peak load capacity 
ℒDE, for different n. The stress component 𝜎## is computed using (4) for the optimal values of 𝜚G and 𝜀I 
given by (S17) and (S18), for 𝐺 = 1. (C) shows the optimal-strength radii sequence given by (11) – (13) 
for 𝑛 = 3. For comparison, two other radii sequences in which the cylinders’ areas and thickness are, 
respectively, constant are also shown. The core radius 𝜌I is 0.4 in (B) and 0.2 in (C).  
 
 
As mentioned in §Introduction, we assume that the onset of spicule failure occurs when any of 
its cylinders fail or its core fails. A cylinder or the core fails when the maximum principal stress 
at any point within it exceeds the structure’s bulk tensile strength. Since we treat each of the 
cylinders and the core as structural beams, the maximum principal stress at every point within 
the spicule is 𝜎##. Furthermore, we assume that the bulk tensile strength of each of the cylinders 
is the same. Since the cylinders’ thicknesses vary from the core to the periphery, this last 
assumption of our failure criterion contrasts with the observation that the strength of ceramic 
structures typically depends on their size [26, 28]. 
 
However, we believe that this last assumption is justified for the following reason. As per 
Bažant's theory of stress redistribution and fracture energy release for scaling of structural 
strength [29], the strength 𝜎%& of a quasi-brittle structure scales with its characteristic size 𝐷 as  

 𝜎OP ∝ 	 R1 +
T
TU
V
+,/.

, (2) 
 
where 𝐷I is a critical length scale, characteristic to the structure’s geometry and material. When 
𝐷 ≫ 𝐷I (2) asymptotes to the scaling law 𝜎OP ∝ 𝐷+,/. predicted by LEFM [26, 27, 28]. And 
when 𝐷 ≪ 𝐷I the strength effectively becomes independent of 𝐷, and can be taken to be a 
constant. We show in SI §Silica cylinders' critical length scale that the silica cylinders lie in the 
regime where 𝐷 < 𝐷I, therefore it is reasonable to assume that their strengths are the same.    
 
While the core’s strength is expected to be smaller than that of the cylinders, our results change 
minimally regardless of whether the core’s strength is different from or the same as that of the 
cylinders*. For the sake of simplicity, in the following analysis we only consider the case in 
which the core’s strength is the same as that of the cylinders. In summary, the failure criterion of 
our model stipulates that just prior to failure  
 

 𝜎## ≤ 𝜎%& (3) 
 

at all points on Ω, with the equality holding for at least one point.  
 
The precise variation of 𝜎## over the spicule’s cross-section just prior to failure will depend on 
the constitutive behavior of the organic and silica phases, the mechanical behavior of the 
interfaces, and the forces acting on the spicule. Since we have limited information on these 

 
* We take the spicule's core radius 𝑎𝜌I to be a constant in our analysis. Therefore, on taking the strength of the 
core to be different from that of the cylinders only the expression for the load capacity given in (8) changes. The 
important results, namely the optimal-strength radii sequence given in (11) – (13) and the remarks in §Remarks on 
the optimal-strength radii sequence do not change. Consequently, none of the conclusions drawn from the structural 
mechanics model are affected as a result of this assumption. 
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specific quantities, as a first-order approximation, we assume that 𝜎## on Ω just prior to failure 
can be described by an affine function in each of the silica cylinders. Specifically, numbering the 
silica cylinders starting with the spicule’s core as 𝑗 = 0,… , 𝑛, we assume that just prior to 
failure 𝜎## on Ω in the 𝑗%_ silica cylinder has the form  
 

 𝜎## = ` ab
cde

+ 𝜀If (4) 

 
where 𝑎 denotes the spicule’s outer radius. We use (4) for modeling 𝜎## since it is the simplest 
form that allows a tension and a bending moment to be transmitted across Ω.  
 
The symbols 𝜚G, 𝑗 = 0,… , 𝑛, and 𝜀I denote positive, but otherwise arbitrary parameters. Note 
that while determining 𝜚G	and 𝜀I  we allow 𝜎##	to be discontinuous across adjacent silica 
cylinders.  This type of stress discontinuity generally implies a slip or a tear in the material. 
However, in the spicules we believe that the apparent stress discontinuity across silica cylinders 
is accommodated by the large deformation of the relatively compliant organic interlayers. 
Allowing 𝜎## to be discontinuous across adjacent silica cylinders causes the load capacity to 
depend on the radii of the silica cylinders and to be larger than that of a homogeneous beam. 
 
Using (4), the tension 𝑇 and bending moment 𝑀 = ∫9 𝜎##𝑥.	𝑑Ω on Ω are  
 

 𝑇 = 𝜋𝑎.𝜀I, (5) 

 𝑀 = icj

k
lmU

n

dU
+ (mpq)n+(mU)n

dp
+ ∑EGB.

Rme
qV

n
+Rmetp

q V
n

de
u, (6) 

 
where 𝜌GE, 𝑗 = 1,… , 𝑛	, is defined such that 𝑎𝜌GE is the outer radius of the 𝑗%_ silica cylinder 
and 𝑎𝜌I is the radius of the spicule’s core. We take 𝜌I to be non-negative and less than unity. 
For 𝑗 = 𝑛, a𝜌EE is the spicule’s outer radius 𝑎, therefore, 𝜌EE is always equal to unity. We take 
the spicule’s core and outer radius to be fixed in our analysis, and refer to the outer radii of the 
internal silica cylinders through the vector 𝑎𝝆E = 𝑎(𝜌,E, … , 𝜌E+,E ). For 𝝆E to be well defined it 
is necessary that 𝑛 > 1. 
 
It might appear from (5) that 𝑇 only depends on our choice of 𝜀I. In fact, 𝑇 depends on all the 
constants 𝐱 = (𝜚I, … , 𝜚E, 𝜀I) and the radii sequence 𝝆E, since 𝑀 depends on 𝜚G and 𝝆E, and  
 

 𝑇 = y
zc
, (7) 

 
where 𝐺 is a positive constant. Constraint (7) follows from the fact that both 𝑇 and 𝑀 on Ω 
arise from the same set of forces at the surface barbs. Further details on (7) are given in SI § 
Motivation Behind Constraint (7). In line with our hypothesis that the spicule’s internal structure 
is an adaptation that enhances its anchoring ability, we fix 𝐱 and 𝝆E to be equal to values at 
which the load capacity is maximized. Since 𝐱 and 𝝆E are unrelated, we can derive their 
optimal values independently. We determine the optimal values of 𝐱 by maximizing 𝑇 subject 
to the constraints (3) and (7) (see SI §Optimal Values of 𝐱). We denote the load capacity 
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corresponding to the optimal values of 𝐱 as ℒE, found by substituting the optimal values of 𝐱 
in (5) and (6).  
 

         ℒE[𝝆E] = icb}~
�

k
kℳq[𝝆q]

kz�ℳq[𝝆q]
, (8) 

 
 where,  
 

 ℳE[𝝆E] = 𝜌I# +
(mpq)n+(mU)n

mpq
+ ∑EGB.

Rme
qV

n
+Rmetp

q V
n

me
q . (9) 

 
We then determine the optimal value of 𝝆E by maximizing ℒE subject to the constraints that 
the core radius 𝑎𝜌I, outer radius 𝑎, and the number of silica cylinders 𝑛 are fixed and that 𝝆E 
belongs to the set  
 

 ℬE = {𝝆E ∈ ℝE+,: 𝜌I ≤ 𝜌,E, 𝜌G+,E ≤ 𝜌GE, 𝑗 = 2,… , 𝑛}, (10) 
 

where ℝE+, is the 𝑛 − 1 dimensional Euclidean space. In order for the cylinder thicknesses to 
be positive, it is necessary that 𝝆E belong to ℬE. In SI §ℒE	attains a global maximum at 𝝆�E 
we show that ℒE  achieves the global maximum over the set ℬE  uniquely at 𝝆E =
(𝜌?,E, … , 𝜌?E+,E ), where 
  

 𝜌?GE = ∏E+,
�BG 𝛼�,				𝑗 = 1,… , 𝑛 − 1, (11) 

 
 and 𝛼� are terms of the sequence (𝛼�)�BI� , where  
 

                  𝛼I = 𝜌I/𝛼,𝛼. ⋯𝛼E+,, (12) 
                   𝛼� =

#
k
+ ��tp

n

k
, (13) 

 
for 𝑘 > 0. We refer to (𝜌?,E, … , 𝜌?E+,E ) = 𝝆�E as the optimal-strength radii sequence, and the load 
capacity ℒ[𝝆�E] corresponding to this sequence as the peak load capacity ℒDE. 
 
 
Discussion 
 
Remarks on the optimal-strength radii sequence 
1. By comparing the peak load capacity ℒDE with load capacities corresponding to three other 
radii sequences (Fig. 4), it can be seen that ℒDE is always the largest. In addition, it should be 
noted that the load capacities corresponding to the optimal-strength radii sequence and the radii 
sequence in which the cylinder cross-sectional areas are constant are almost indistinguishable. 
This is because the optimal-strength and the constant-area radii sequences are very similar to 
each other. For 𝜌I and 𝑛 close to the values measured in the four skeletons (Table S1), the 
Euclidean distance [33] between the optimal-strength and constant-area radii sequences is less 
than 4% of the diameter of ℬE. The closeness of the optimal-strength and constant-area radii 
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sequences can also be seen in Fig. 3 C.  
 

2. The load capacity ℒDE�, > ℒDE for all 𝑛, that is, the peak load capacity always increases with 
the number of silica cylinders (Fig. 4). We derive this result in SI §Increase of ℒDE with n. 
However, it is generally not true that ℒE�,[𝝆E�,] > ℒE[𝝆E]  for arbitrary types of radii 
sequences.  

 
3. We studied the aggregate load capacity for a set of spicules having randomly chosen radii 
sequences, and found that it also increases with 𝑛. We also found that, at any given 𝑛, the 
aggregate load capacity is smaller than the peak load capacity. However, the difference becomes 
vanishingly small as 𝑛 becomes large. For example, setting 𝜌I = 0 we found that when 𝑛 <
20 the aggregate load capacity is smaller than ℒDE by about 20%. However, when 𝑛 > 100, 
the difference between the aggregate load capacity and ℒDE becomes less than 1% (Fig. 4). 
These results show that the strategy of increasing the load capacity by partitioning the load 
bearing material into several co-axial cylinders is quite robust.  
 
4. Numerically, for a wide range of n we found that ℒDE is always greatest when 𝜌I = 0. 
Similarly, for 𝜌I = 0 we found that ℒDE asymptotes to 𝜋𝑎.𝜎%&/(3𝐺 + 1) as 𝑛 becomes large 
(Fig. 4). Setting 𝑛 = 1 and 𝜌I = 0 in (8) and (9) we found that the load capacity of a 
homogeneous silica beam is 𝜋𝑎.𝜎%&/(4𝐺 + 1). Based on these calculations, it can be shown that 
the spicule’s internal structure can increase its load capacity by a maximum of 25% over that of 
a homogeneous beam.  
 
5. We found that the thicknesses corresponding to 𝝆�E decrease from the spicule’s core to its 
periphery. The proof of this result is given in SI §Silica cylinder thicknesses corresponding to 
𝜌?GE decrease with j.  
 

 
 
Fig. 4: Percentage increase in the load capacity ℒE[𝝆E] (defined in (8)) as a function of the total number 
of silica cylinders 𝑛 plotted on a semi-log scale. All calculations are for 𝐺 = 1. The black crosses 
correspond to 𝝆E = 𝝆�E, the optimal-strength radii sequence, for 𝜌I = 0.0, 0.4, and 0.5. The red circles 
correspond to radii sequences in which the silica cylinders’ cross-sectional areas are constant and the blue 
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squares to radii sequences in which the silica cylinders’ thicknesses are constant. For each n, the pink 
triangle denotes the aggregate load capacity of a set of 10k randomly generated radii sequences; the 
standard errors are very small (< 3.2151 × 10+k), therefore, we do not show them as error bars. In the 
constant-area, constant-thickness, and aggregate load capacity plots 𝜌I = 0.0. The inset shows a close up 
of the plots around the region 𝑛 = 20.  
  
Comparison of measured and optimal radii sequences 
In our model, the thicknesses corresponding to 𝝆�E  decrease from the spicule's core to its 
periphery. Qualitatively, this finding is consistent with our measurements of cylinder thicknesses 
in the native spicules (Fig. 2, S2). In order to quantify the closeness of the measured radii 
sequences to the optimal-strength radii sequence we compute the metric  
 

 𝑑 =
�(�U+cmU)b�∑

�
e�p (�e+cm�e

q)b�
p/b

〈�∑�e�U (�e+�e)
b�
p b⁄

〉
 (14) 

 
for each of the spicules. In (14), the term 𝑟I is the measured radius of the spicule’s core and 
𝑟,, … , 𝑟� are the measured radii of the first 𝑝 consecutive silica cylinders. Given 𝑎𝜌I and 𝛼I, 
𝑎𝜌?GE, 𝑗 = 1…𝑝, can be computed using (11) and (13). Thus, there are two free parameters 𝑎𝜌I, 
and 𝛼I in (14), which we choose to make 𝑑 as small as possible. The denominator of (14) is 
the average of the Euclidean distance between the measured radii sequence 𝑟¡  and a 
monotonically increasing sequence χG of 𝑝 numbers lying between 𝑟I and 𝑟£, computed for 
10k randomly generated χG. Thus, if 𝑑 < 1, the test sequence ρ?GE fits the measured sequence 
better than a randomly chosen sequence of radii. For reference, we also computed 𝑑 with 𝝆�E 
replaced by radii sequences for which the cylinders’ cross-sectional areas and thicknesses are, 
respectively, constant. We chose 𝑎𝜌I and the area (respectively thickness) of the cylinders in 
the constant-area (respectively constant-thickness) sequence to make 𝑑 as small as possible. 
The means and standard errors of 𝑑  for the optimal-strength, constant-area, and 
constant-thickness sequences are shown in Table 1 for the four skeletons examined. The fitted 
radii sequences corresponding to a representative measured sequence from skeleton 1 are shown 
in Fig. 5.   
 

 
 
Fig. 5: Variation of the dimensionless thickness with the dimensionless outer radius of the silica cylinders 
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on a log-log scale. The best-fit radii sequences from models discussed in §Comparison of measured and 
optimal radii sequences are shown along with the corresponding measured radii sequence from a 
representative spicule from skeleton 1. 
 
We find that the mean values of 𝑑 for the constant-area and optimal-strength radii sequences 
are smaller than for the constant-thickness radii sequence in each of the skeletons. While the 
mean value of 𝑑 for the optimal-strength radii sequence is slightly smaller than that for the 
constant-area radii sequence in skeletons 1, 2 and 4, these differences are not statistically 
significant. Therefore, we conclude that the optimal-strength and the constant-area radii 
sequences correlate equally well with the measured radii sequences, and better than the 
constant-thickness radii sequence.  
 
An alternate mechanics model based on the idea of controlling flaws has been put forward to 
explain the trend of decreasing thicknesses in the spicule’s internal structure [32]. In this 
alternate model 𝜎## is assumed to vary affinely over 𝛺 and the load capacity is maximized by 
varying the cylinder thicknesses subject to the constraint that each cylinder's strength be greater 
than the maximum value of 𝜎## over its cross-section. This idea along with the scaling of 
strength predicted by LEFM implies that the sequence of radii should vary as, 
 
 𝜌G+,E = 𝜌GE −

(,�, kz⁄ )b¦qq

Rme
q�, kz⁄ V

b , (15) 

 
where 𝜏EE is the dimensionless thickness 1 − 𝜌E+,E  of the outermost cylinder. Equation (15) is 
derived in SI §Controlling-flaw radii sequence. We compute 𝑑 by replacing 𝜌?GE  with the 
controlling-flaw radii sequence given in (15) and choosing 𝑎𝜌�E and 𝐺 so that it is as small as 
possible. The computed values of 𝑑 for various discrete 𝜏EE are shown in Table S2. The results 
corresponding to the 𝜏EE that produced the smallest 𝑑 value are also shown in Table 1. As can 
be noted from Table 1 and Fig. 5, the measured radii sequences compare much better to our 
optimal-strength radii sequence than to the controlling-flaw radii sequence. In fact, the 
controlling-flaw radii sequence does not even fit as well as the constant-thickness sequence. 
 
These results demonstrate that the spicule’s internal structure is consistent with our model, 
supporting our hypothesis that the internal structure is an adaptation aimed at increasing the 
spicule's load capacity.  
 
It is important to note that, though our results are very encouraging, they are far from a 
confirmation that mechanical optimization is the only factor contributing to the spicule’s design. 
Some architectural features of biological structures are merely a consequence of the growth 
processes through which the structures are formed and have no obvious functional implications, 
e.g. growth rings in fish scales [34]. Despite previous efforts [35], knowledge regarding the 
detailed mechanisms underlying hexactinellid spicule formation is still incomplete and therefore, 
at this stage, it cannot be ruled out whether other factors, such as growth processes, are also 
responsible for the spicule’s decreasing thickness lamellar structure. Even more importantly, 
many biological skeletal elements are inherently multifunctional and have evolved the ability to 
perform a variety of tasks in addition to their mechanical ones. In particular, it has been shown that 
sponge spicules have exceptional fiberoptical properties [21, 23, 36]. Currently, we cannot be 
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certain that the spicule’s internal architecture contributes solely to its mechanical function or 
whether it has additional (e.g. light transmission) benefits. However, whether the spicule’s 
architecture is a simple outcome of its growth process or is specifically optimized for 
multifunctionality, it clearly offers the sponge skeleton an exceptional mechanical advantage. 
 
Similarly, it is also possible that the spicule's internal architecture is connected to a different 
metric of the spicule's mechanical efficiency, such as the failure curvature – the largest curvature 
the spicule can withstand without failing. 
 
Concluding remarks 
In order to thoroughly test our hypothesis, it is necessary to confirm some of our model's key 
assumptions, such as  

 
1. that the spicule fails as per the failure criterion outlined in §Spicule's load capacity, 
and that  
2. just prior to failure, 𝜎##	on Ω varies in an optimal fashion so that the spicule’s load 
capacity is as large as possible. 
 

While the information required to validate these key assumptions is currently unavailable, 
additional measurements of the elastic properties and failure behavior of the spicules at different 
length scales will aid in the further refinement of our structural model.  
 
As a consequence of assumption 2, our model predicts that the peak values of 𝜎## in each of the 
silica cylinders will all be equal to the failure stress 𝜎%& at the onset of failure (Fig. 3 B). This 
prediction can be interpreted to mean that the cylinders will all fail at once. Considering that our 
model is an idealization and that it is not constructed with the goal of capturing the failure 
process, we do not expect this interpretation to be accurate. We believe that the silica cylinders 
will fail progressively, as was observed in spicules from related species [25, 32, 37].  
  
In traditional engineering design, the specific strength of load-bearing structural elements is 
increased by varying their external geometry. For example, for small deformation of a 
homogenous beam, 𝜎##	on Ω varies as 𝜎## = M𝑥. 𝐼⁄  when Ω is symmetric about the 𝐞?, 
direction [30]. Here 𝐼 is the second moment of inertia of Ω about the 𝐞?, direction. As a result, 
a beam's specific strength can be maximized by varying the shape of Ω in order to make the 
beam's dimension in the 𝐞?. direction and the area of Ω as small as possible, while making the 
beam's inertia 𝐼 as large as possible. In contrast, the spicules discussed here can be seen as an 
inspiration for new design strategies in which a structure’s specific strength can be increased by 
varying its internal elastic composition. For example, one could envision composite beams 
whose internal elastic heterogeneity results in a stress distribution that becomes increasingly 
uniform as the beam deforms. 
  
Materials and methods 
Anchor spicules from four individual E. aspergillum skeletons were embedded in Spurr's resin, 
cross-sectioned, and imaged with a Tescan Vega (Brno, Czech Republic) scanning electron 
microscope (Fig. 1 D). From the resulting images, we measured the sequence of silica cylinder 
radii by fitting circles to the cylinder boundaries starting with the spicule's core (Fig. S1). We 
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also measured the number of silica cylinders and the outer radius for each of the 116 spicules 
examined (Table S1). For details see SI §Measurement of silica cylinder radii. 
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