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bstract

In the design of structural materials, there is traditionally a tradeoff between achieving high
trength and achieving high toughness. Nature offers creative solutions to this problem in the
orm of structural biomaterials (SBs), intelligent arrangements of mineral and organic phases which
ossess greater strength and toughness than the constituents. The micro-architecture of SBs like
acre and sea sponge spicules are characterized by weak organic interfaces between brittle mineral
hases. To better understand the toughening mechanisms in SBs requires simulation techniques
hich can resolve arbitrary interface and bulk fracture patterns.

In this work, we present a modified regularization of Variational Fracture Theory (VFT) that
llows for simulation of fracture in materials and structures with weak interfaces. The core of our
pproach is widen the weak interfaces on a length scale proportional to that of the diffuse damage
eld, and assign a reduced fracture toughness therein. We show that in 2D the modified regularized
unctionals Γ-converge to that for sharp cracks. The resulting thin weak interfaces have fracture
oughness which depends on the bulk material fracture toughness, the widened interface fracture
oughness, and the widened interface length scale. We next apply our modified regularization
ithin a computer implementation of regularized VFT, which we term RVFTI. We assess the
erformance of RVFTI in 2D by reproducing the effective interface fracture toughness predicted
y the Γ-convergence theory and simulating crack trapping at a bi-material interface. We then
se RVFTI to study toughening in SB-inspired microarchitectures, namely layered materials and
aterials with wavy interfaces.
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. Introduction

In structural engineering, it is important for materials to possess both high strength and high
oughness. However, in conventional structural materials such as steels and aluminum alloys,
trength and toughness are in competition, as the mechanisms that enhance one can inhibit the
ther [1]. Recent studies indicate that structural biomaterials (SBs) show both high strength and
oughness [1, 2, 3, 4, 5, 6]. Most such SBs are heterogeneous in nature and consist of a mineral
stiff) phase and an organic (compliant) phase. Nacre is one such SB where the mineral phase
ccupies > 95% of the volume fraction of the material [3]. Due to the presence of high volume
raction of the mineral phase, Aragonite (CaCO3), the bulk properties of nacre such as Young’s
odulus and Poisson’s ratio are almost identical to Aragonite. Hence, it is meaningful to compare

he mechanical behavior of nacre to Aragonite. Nacre obtains its high strength properties from
ragonite, and has a tensile strength of ≈ 170 MPa which is almost identical to that of Arago-
ite [7]. However, the work of fracture in nacre can be as large as 1500 J/m2, while that in Aragonite

s about 10 J/m2 [2]. Hence, SBs are ideal prototypical materials for understanding mechanisms
hich enable high strength and toughness.

The micro-architectural arrangement of phases varies in different SBs, although the organic
hase is often located at interfaces in the mineral phase. Such an example is nacre, whose micro-
rchitecture resembles a brick-and-mortar structure as seen in Fig. 1(a). Here, the bricks consist of
he mineral phase while the mortar is organic. However, in other SBs such as spicules in sea sponges,
ome of the organic phase is also mixed with the mineral phase [8, 9, 10]. The micro-architecture
f spicules resembles that of a lamellar structure, as seen in Fig. 1(b), where the mineral phase is
rranged concentrically and is separated by a nanometer-thin layer (approximately 35 nm [11]) of
he organic phase.

Attempts to replicate these micro-architectural designs have been quite promising. As shown in
ig. 1(c), an alumina-based composite mimicking the micro-architecture of nacre achieved higher
eak stress and exhibited greater area under the stress-strain curve, called the work of fracture [12],
hen subjected to notched three-point bending experiments [1]. The work of fracture is a useful
easure of toughness in materials, as it quantifies the energy needed to be applied in order to
reak the structure. It can be clearly seen that the alumina-based composite has higher strength
nd toughness than nacre.

The superior toughness properties of SBs, such as bone and nacre, are plotted in Fig. 1(d).
rom the figure, we see that bone and nacre display higher toughness than either of their respective
ineral and organic phases. Furthermore, the alumina-based composite has even higher toughness

han the SBs. This suggests that a comprehensive understanding of the failure mechanisms in SBs
an aid in designing materials with superior properties to those found in nature.

It has been postulated that higher toughness in SBs can be attributed to fracture mechanisms
uch as crack deflection and crack arrest, which are shown in Fig. 1(b) [6, 3]. However, insights into
he underlying toughening mechanisms such as the interplay of fracture mechanisms at different
ength scales and the operating extrinsic toughening mechanisms (e.g., crack deflection and crack
rrest) have not been studied adequately. Further, the effect of model parameters such as the
hickness of the interface, the ratio of fracture toughness of the phases, and the arrangement of
he phases on the toughness of the SBs is still unexplored. To address these gaps, we believe
hat computational models capable of modeling such complex architectural designs can be used
o conduct virtual experiments which can aid in engineering synthetic materials with both high
trength and toughness.
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igure 1: (a) SEM micrograph of nacre showing the brick-and-mortar micro-architecture. Figure reproduced from [1].
b) SEM micrograph of Monorhaphis chuni (M.chuni) specimen subjected to a three point bend test. It is observed
hat the specimen before failure develops convoluted crack patterns due to crack deflection and arrest at the interfaces.
igure reproduced from [6]. (c) A comparison of the stress-strain response obtained by edge notched three point bend
esting of nacre and a synthetic composite made of 75% alumina indicates that the composite has both higher strength
nd toughness as compared to nacre. Figure reproduced from [1]. (d) A summary of fracture toughness properties
f structural biomaterials, hybrid composites in comparison to their respective constituents. Figure reproduced
rom [13].

In recent years, researchers have performed experimental and analytical studies to explore mech-
nisms to increase toughness in ceramic composites [14, 15, 16]. Phenomena such as crack trapping
nd crack bridging due elastic heterogeneities and their ability to enhance the toughness of materials
ave also been studied [17, 18, 19, 20]. A perturbation-based analysis was employed to shed light on
he role of elastic moduli on fracture toughness [21]. Studies predominantly using semi-analytical
ethods have investigated the toughness of interfaces in the presence of elastic heterogeneities in

emi-infinite geometries [22, 23, 24, 25, 26]. However, these studies fall short in providing a complete
escription of how toughness is enhanced in SBs for various reasons:

1) The aforementioned numerical studies are limited to small extensions to the pre-defined crack
in ceramic composites or SBs, and therefore the influence of crack tortuosity on toughness is
unclear.

2) Fracture mechanisms such as crack bridging, crack deflection, and crack arrest are not well
understood.
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3) SBs such as bone have a hierarchical architecture, and there are different fracture mechanisms
operating at different length scales. The aforementioned works do not study the contributions
of different mechanisms to the bulk toughening.

4) The influence of geometric features and micro-architecture on toughness is inadequately studied.
Therefore, greater research is needed to understand these micro-architectures and how they
might enhance both strength and toughness.

Numerical methods featuring cohesive zone models have been used to study how toughness
an be enhanced in the presence of interfaces [27, 28]. These studies are limited by the fact that
racks could only grow along a set of pre-defined paths, and therefore instabilities such as crack
umps from the interface to the bulk could not be simulated. Meanwhile, Begley and co-workers
29, 30] simulated brick-and-mortar micro-architectures using rigid bricks and cohesive interfaces.
he problem was solved using Monte Carlo methods by prescribing displacements to the bricks and

terating until a configuration with minimum energy is achieved.
Working in the broader realm of heterogenous materials, Bourdin and Battacharya and col-

aborators [31, 32, 33, 34, 35] have investigated through computations using regularized variational
racture theory (RVFT) (and in some cases with experiments) how the effective toughness of a spec-
men is affected by the presence of elastic heterogeneities and fracture toughness heterogeneities. In
articular, the simulations were able to capture crack tortuosity which resulted from the geometry of
he heterogeneities. These studies have generally focused on evaluating the effective fracture tough-
ess in domains with periodic arrangements of stiff and compliant materials subjected to Mode-I

oading. Further, the effective fracture toughness is defined using the J-integral, which is computed
sing the the outermost boundary of the domain as the contour of integration. Importantly, the

ength scales within the considered heterogeneous media were all comparable. In contrast, in SBs
uch as nacre, the compliant interfaces are orders of magnitude thinner than the stiff bricks.

The core challenge for any potential numerical method to simulate crack evolution in SBs is
apturing the complex crack morphologies that have been demonstrated in experiments. Methods
hich represent the crack via sharp surfaces (or curves in 2D) face some difficulties with this

ask. Methods like the eXtended Finite Element Method (XFEM) [36, 37, 38] require an explicit
epresentation of the crack geometry (such as a surface parameterization or a level set) to define
nrichment functions. Crack growth is typically modeled via crack front (or crack tip in 2D)
ynamics, for example with Griffith’s criterion [39]; additional criteria or models are needed to

ncorporate crack branching and crack nucleation. Another class of sharp crack methods are based
n cohesive zone models, such as [40, 41]. In these methods, cohesive zone separation laws are
mposed on the faces (or edges in 2D) between neighboring finite elements. This provides a unified
ramework for crack growth, crack nucleation, and crack branching, because cracks may nucleate
nd grow between any elements. However, this method is limited as the crack patterns are heavily
esh-dependent.

A family of models which can simulate complex crack morphologies uses phase fields to model
racture. With origins in continuum damage theory [42], phase transformation theory [43], and
ariational fracture theory (VFT) [44, 45, 46], these models replace sharp cracks with a diffuse
amage field, the evolution of which models crack growth. In the case of RVFT, the damage field
i.e. the cracks) evolves such that the total energy (elastic plus fracture) of the system is minimized.
urthermore, the notion of Γ-convergence [47] provides a rigorous mathematical connection between
he phase-field approximations of RVFT [45] and the original sharp-crack theory [48]. Unlike sharp
rack approaches, there are minimal prior restrictions on the distribution of damage in the problem
omain, which means that a wide variety of crack morphologies may be simulated without mesh

4



Journal Pre-proof

d
R
o
c

I
b
t
i
f
i
t
w
t

a
I
a
M

a
t
b
r
i
w
p
s
i
g
i
r
w
w
t
c

t
d
i
a
p

t
d
 Jo

ur
na

l P
re

-p
ro

of

ependence, including crack branching and crack jumps across heterogeneities [49, 50, 31]. While
VFT and phase field models present their own difficulties, for example requiring large amounts
f mesh refinement to adequately resolve the damage field, their ability to produce realistic and
omplex crack morphologies is why we have chosen them as the basis of our approach for SBs.

Phase field models have been introduced to simulate fracture in the presence of weak interfaces.
n [51, 52], the interface, which is nominally a surface of co-dimension 1 embedded within the
ulk material, is replaced by a region with finite thickness. Within this region of finite thickness,
he fracture toughness and/or elastic moduli are allowed to vary. In [51], the fracture toughness
s assigned a constant value within the wide interface; in [52], the authors also explore smoother
racture toughness distributions and elastic moduli distributions. For the case of constant wide-
nterface fracture toughness, the authors derive relationships for the effective interface fracture
oughness as a function of the bulk toughness, the assigned wide-interface fracture toughness, the
ide-interface thickness, and the damage field length scale. These formulas are assessed numerically

hrough examples.
Approaches taken after [51, 52] generally follow a similar approach. For example, in [53], the

uthors adopt the approach of a constant fracture toughness within the wide interface as in [51].
n [54], the authors also assign constant fracture toughness within the wide interface; however, they
lso explore the case where the bulk fracture toughness is different on either side of the interface.
eanwhile, in [55], a Gaussian kernel is used to create a smooth variation in the fracture toughness.

In this work, we modify the traditional regularization process for VFT (recapitulated in §3.1
nd §3.2) to incorporate materials whose fracture toughness may differ along interfaces with zero
hickness. Such cases are representative of atomically-thin bonding in adhesive contact, grain
oundaries in polycrystalline materials, or interfaces whose thickness is much smaller than other
elevant problem dimensions (e.g., the organic phase in SBs). In our regularization approach, the
nterfaces are assigned finite (small) width, inside which the material has fracture toughness gi,
hile the surrounding material has fracture toughness gb. The interface width is chosen to scale
roportionally with the fracture regularization length ε, and is discussed further in §3.3. Under
uitable assumptions, we prove the Γ-convergence result for arbitrary two-dimensional specimens
n §4. A consequence of this result is that we quantify the effective interface fracture toughness

int of the zero-thickness interface, which depends gb, gi, and the proportionality constant of the
nterface width to ε. Returning to the problem of crack evolution in SBs, we implement our modified
egularization procedure within a phase-field model for irreversible, brittle fracture, see §5. In §6,
e verify that the modified RVFT for interfaces (RVFTI) reproduces fracture toughness consistent
ith gint, and we explore crack kinking at a bi-material interface. We then use RVFTI to study

oughening mechanisms in SB-inspired configurations in §7. Lastly, we discuss the main results and
onclude this work in §8.

We remark that our approach resembles the work of [51, 52] in that we replace an infinitesimally-
hin interface by one with finite thickness and assign a constant fracture toughness gi (that is
ifferent from gint) within. However, our approach is motivated by Γ-convergence; that is, we
ntroduce a regularization to the variational fracture problem in a material with weak interfaces
nd we prove under some mild assumptions that the regularization Γ-converges to the original
roblem.

While the results in this work are particularized to two dimensional problems, we believe that
he theory also applies in 3D. Three dimensional RVFTI simulations have been performed, but we
o not present these here.
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. Mathematical Preliminaries

.1. Notation

We let unbolded symbols such as x and u denote scalars or scalar-valued fields, while we let
old symbols such as x and u denote vectors or vector-valued fields in Rn. We denote sequences
ith parentheses: (an)n := (a1, a2, a3, . . .). Depending on context, | · | may indicate the absolute
alue of a scalar, the Euclidean norm of a vector, or the Frobenius norm of a tensor.

There are two important measures used in this manuscript. Further details on measure theory
ay be found in textbooks such as [56]. For any subset A ⊆ Rn, we let Ln(A) denote the n-
imensional Lebesgue measure of A (which may be infinite). Integration with respect to this
easure is written with the standard notation

∫
dx. Next, for A ⊆ Rn, we let Hm(A) denote the

-dimensional Hausdorff measure of A (where m may differ from n), which is defined in two steps.
irst, for any δ > 0,

Hmδ (A) = inf

{
αm

∞∑

i=1

diam(Ui)
m : A ⊆

∞⋃

i=1

Ui, diam(Ui) < δ

}
, (1a)

here diam(U) = supx,y∈U |x− y| for any U ⊂ Rn. Second, we take

Hm(A) = lim
δ→0
Hmδ (A) = sup

δ>0
Hmδ (A). (1b)

s in [56, Definition 2.1], we define Hm with a scaling constant αm so that H1 coincides with the
sual definition of arc length (α1 = 1), H2 coincides with the usual definition of surface area, etc.
ntegration with respect to the Hausdorff measure is written with the notation

∫
dHm(x).

For any A ⊂ Rn, we define dist(·, A) : Rn → R as the distance function to A. That is, for any
∈ Rn,

dist(x, A) = inf
z∈A
|x− z|.

e let Nρ(A) ⊂ Rn denote the ρ-neighborhood of A, or

Nρ(A) = {x ∈ Rn : dist(x, A) < ρ} .

Let B be an open subset of Rn. For non-negative integer k, we let Ck(B;Rm) denote the
pace of functions f : B → Rm whose derivatives up to order k are continuous. The space
∞(B;Rm) contains the functions with all derivatives continuous, while C∞c (B;Rm) ⊂ C∞(B;Rm)

re those functions which are compactly supported in B. We let L2(B;Rm) denote the space of
unctions for which

∫
B |f |2 dx < ∞ and H1(B;Rm) ⊂ L2(B;Rm) be the space of functions for

hich
∫
B |∇f |2 dx < ∞, where the derivative is defined in the distributional sense. Finally, let

∞(B;Rm) be the space of functions which have finite essential supremum (roughly, which are
ounded), ess supx∈B |f(x)| < ∞. The usual norms on these spaces are denoted by ‖ · ‖L2(B;Rm),
· ‖H1(B;Rm), and ‖ · ‖L∞(B;Rm), respectively.

When referring to functions of time and space, e.g. f(t,x), we will use the notation f(t) in
lace of f(t, ·) to refer to the function evaluated at time t.

6
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. Theory

.1. Variational principle of fracture

The concept of fracture toughness in elastic, brittle materials stems from the seminal work of
riffith [39]. Griffith postulated that there was an energy cost to the creation of new crack surfaces,
roportional to the new surface area, and that this cost must be paid by releasing stored elastic
nergy in the body. With respect to an infinitesimal extension of a crack, Griffith’s criterion states
hat the stored energy release rate must be equal to a material constant. This notion implies a
alance of energy during crack growth.

In Griffith’s original work, the material constant is twice the surface free energy of the bulk
aterial, as the insertion of a crack creates two free surfaces which are assumed to perfectly coincide

n the undeformed configuration.1 In this work, we will refer to Griffith’s material constant as the
fracture toughness,” accounting for the crack surface as a single surface instead of two identical
rack faces.2

Francfort and Marigo [44] introduced variational fracture theory (VFT) as an extension of
riffith’s theory. Rather than considering the energetics of a single crack tip, a key postulate

f VFT is that the solid deforms and cracks to (globally) minimize the total free energy, which
s comprised of two parts: (i) the energy corresponding to elastic deformation and the work of
pplied external forces; and (ii) the energy needed to produce the crack surfaces. Respectively,
e call these the “elastic energy” and “surface energy.” The relaxed conditions on the admissible
racks naturally allow for crack nucleation and the formation of other complex morphologies (such
s crack branching, merging, etc.) to be captured.

Mathematically, the variational principle is stated as follows, see Fig. 2(a.i). We consider an
lastic domain B ⊂ Rn3 which is subjected to applied displacements û on a portion of the boundary
Bu ⊆ ∂B. Then, the crack set Γ and displacement field u minimize the energy

Π(u,Γ) =

∫

B\Γ
W (x, ε(u)) dx+ gHn−1(Γ), (2)

here W (x, ε) ≥ 0 is the strain energy density, ε(u) := (∇u + ∇uT )/2 is the symmetrized dis-
lacement gradient (i.e., small-strain tensor), and g > 0 is the fracture toughness.

For simplicity, we assume an isotropic, linear elastic constitutive response

W (x, ε) =
1

2
λ(x) tr[ε]2 + µ(x)|ε|2, (3)

here tr[·] is the trace of a tensor and | · | is the Frobenius norm of a tensor. The coefficients λ
nd µ are the Lamé parameters, but we may also discuss the elastic behavior in terms of Young’s
odulus E and Poisson’s ratio ν. We allow these (strictly positive) coefficients to vary spatially to

nclude situations like a crack along a bi-material interface, see §6.2.

1At smaller scales, this assumption may not be valid, as the surface roughness and fragmentation of material in
etween the crack faces can mean that the surface areas do not exactly coincide.

2Another common name for Griffith’s material constant is the “critical energy release rate,” while “fracture
oughness” is also used for a critical value of the stress intensity factor around a crack tip. Since we do not refer to
he critical stress intensity value in this work, we do not anticipate confusion in our terminology.

3We predominantly consider the n = 2 case but will also briefly explore the n = 1 case.

7
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igure 2: Schematic representation of the interface fracture problem and its regularization. (a.i) Original variational
racture problem with no weak interfaces, crack set Γ, and applied Dirichlet boundary conditions. (a.ii) Standard
egularization approach for the problem in (a.i), which replaces the crack set by a continuous damage field d taking
alue between 0 and 1. The damage field has characteristic length scale ε. The standard regularization Γ-converges
o the original problem as ε → 0. (b.i) Variational fracture problem with a weak interface I. (b.ii) Naive approach
o regularize the problem in (b.i) using standard regularization practices. The regularized problem has the same
racture toughness distribution g(x) as that of the original problem. Because the weak interface has zero measure, it
s invisible to the damage field, and hence we do not recover the original problem as ε→ 0. (c.i) Variational fracture
roblem with weak interface I. (c.ii) The modified regularization approach proposed in this work. We modify the
racture toughness distribution by widening the weak interface by a factor of 2mε, and we assign a fracture toughness

i therein.

8
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An important question in the minimization of (2) is what are the admissible spaces for u and
. The rigorous answer to this question is that u should belong to the space of generalized special

unctions of bounded deformation, GSBD(B;Rn) [57, 58]. Imprecisely, this space contains all
unctions whose symmetrized distributional derivative is a measure composed of two parts: the
rst is an integrable function (i.e. ε(u)) over B, while the second corresponds to the jump in u
cross its so-called jump set Ju. We immediately identify the crack set Γ with Ju. We refer the
nterested reader to [57, 58] for further details.

Lastly, the global minimizers of (2) may not be physically or experimentally relevant. However,
he computation of the global minimizers of (2) is a valuable exercise for the following two reasons.

1. As mentioned in [44], local minimizers of the energy may be more experimentally relevant.
However, there are cases where the local and global minimizers coincide. For example, in
a double cantilever beam (DCB) specimen subjected to displacement-controlled loading, the
elastic energy scales inversely with the cube of the crack length while the fracture energy
grows linearly with crack length. The result is that the total energy is convex with respect to
crack length, possessing a unique minimizer.

2. Numerical procedures aimed at solving the global minimization problem often follow a se-
quence of configurations that locally minimize, which can also provide some insights into the
fracture process.

.2. Regularization of the total energy

It is difficult to compute the minimizers of (2) because of the presence of both volumetric and
urface energies. Borrowing from the ideas of image segmentation, Bourdin et al. [45] introduced
he following regularization, see Fig. 2(a.ii). We define a scalar-valued function d and a length scale
. We then seek minimizers (u, d) of the regularized energy

Πε(u, d) =

∫

B

(
(1− d)2 + kε

)
W (x, ε(u)) dx+

∫

B

g

2

(
d2

ε
+ ε|∇d|2

)
dx (4)

ver the admissible spaces Uu =
{
v ∈ H1(B;Rn) : v ≡ û on ∂Bu

}
and Ud = H1(B;R). In the

revious equation, kε > 0 is a parameter which is small compared with ε.
We first note that the optimal d must take value between 0 and 1. These limits may be

nterpreted as pristine and fully-damaged material, respectively. Second, it has been shown (see [59,
0, 46]) that Π is the Γ-limit of Πε as ε → 0. Consequently, the global minimizers of Πε converge
o those of Π, which provides a rational approach to approximate the minimizers of Π.

.3. Regularization with interfaces

In (2) and (4), we assumed a constant fracture toughness g throughout the domain. However,
t is possible to have spatial variation in fracture toughness throughout B. In particular, suppose
here exists a weak interface I ⊂ B, which we assume to be a simple, rectifiable curve (or finite
ollection of curves) with fracture toughness gint. Meanwhile, we suppose the remainder of the
omain B \ I has uniform fracture toughness gb > gint. Under the original variational principle,
racks may form along this interface, and the surface energy will be less than if the same crack
ormed elsewhere in the domain. For this fracture toughness distribution, the total energy is

Π(u,Γ) =

∫

B\Γ
W (x, ε(u)) dx+ gbHn−1(Γ \ I) + gintHn−1(Γ ∩ I). (5)

9
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n the previous equation, another way to write the surface energy terms is
∫

Γ

g(x) dHn−1(x), (6a)

here

g(x) =

{
gint x ∈ I,
gb otherwise.

(6b)

Following the relationship between (4) and (2), and considering the expression for the surface
nergy in (6), we propose the following regularization of (5):

Πε(u, d) =

∫

B

(
(1− d)2 + kε

)
W (x, ε(u)) dx+

∫

B

gε(x)

2

(
d2

ε
+ ε|∇d|2

)
dx. (7a)

e are now faced with the question of what fracture toughness distribution gε(x) we should use in
rder to recover (5) in the Γ-limit. Some options are as follows:

1. We can use the fracture toughness distribution (6b) for the sharp-crack problem (see Fig. 2(b)),
i.e.

gε(x) = g(x).

However, this approach faces a critical issue. Because g(x)− gb is nonzero only when x ∈ I,
and Ln(I) = 0, then the second integral in (7a) is equal to that in (4). In other words, the
damage field does not see the weak interface. Consequently, if we take the Γ-limit of Πε, the
limiting Π will not have reduced fracture toughness at the interface.

2. In order for the damage field to be influenced by the weak interface, we must make the weak
interface occupy a set with finite measure. For example, we can widen the weak interfaces by
some thickness 2t > 0:

gε(x) =

{
gint dist(x, I) ≤ t,
gb otherwise,

where dist(x, I) is the distance between x and the interfaces I. This approach yields fracture
toughness heterogeneities akin to those explored in [31]. However, this approach no longer
models a weak interface with negligible thickness. Hence, when we take the Γ-limit of Πε, we
no longer recover (5).

3. In order to recover thin weak interfaces, we must have t shrink to zero along with ε. Our
approach is to set t = mε, where m > 0, see Fig. 2(c). We define

gε(x) =

{
gi dist(x, I) ≤ mε,
gb otherwise,

(7b)

where gi is determined from gb, gint, and m using:

gi =

√
(gb − gint)2 + 4gbgint tanh2(m)− (gb − gint)

2 tanh(m)
. (7c)

This equation for gi may seem arbitrary; however, as we will prove in §4, setting gi in this
way allows us to precisely recover the desired interface fracture toughness gint.

10
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For our proposed formulation, we remark that if we start with a regularized problem with
idened interface gi the limiting interface fracture toughness is given by

gint = gi

(
gb + gi tanh(m)

gi + gb tanh(m)

)
, (8)

hich is the inverse of (7c). We observe from this formula that gint varies monotonically from

b when m = 0 (zero-width interface) to gi when m = ∞ (the interface encapsulates the entire
omain). Similarly, for a fixed m, (8) is a one-to-one function from gi to gint < gb, meaning if we
ish to model an interface with fracture toughness gint, we can always find a suitable gi.

11
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. Γ-convergence proof for the interface toughness

In this section, we prove that the functional Πε defined in (7) Γ-converges to the functional Π
n (5). Before formally stating and proving this result, we present some technical details. Readers
ho are more interested in numerics and simulation examples may skip this section and continue

n §5.

.1. Technical details

We take the problem domain B ⊂ R2 to be bounded and to have Lipschitz boundary. Meanwhile,
he interface set I ⊂ B is assumed to be a finite union of rectifiable curves, (Ii)i. Specifically, for
ach Ii, we assume that the arc-length parameterization γi : [0,H1(Ii)]→ R2 is C2-continuous and
njective. Furthermore, for j 6= i, we request that Ii ∩ Ij ⊂ {γi(0),γi(H1(Ii))}, with an identical
ondition holding for Ii∩∂B. In other words, the individual curves comprising I may only intersect
ach other at their endpoints and only the endpoints of Ii are allowed to touch the domain boundary
B. For each s ∈ [0,H1(Ii)], we set t̂i(s) = γ′i(s) to be the unit tangent vector at γi(s), and we
efine the unit normal at the same point, n̂i(s), through 90◦ rotation of t̂i(s).

4 We sometimes abuse
otation by writing t̂i(x) and n̂i(x) for x ∈ Ii instead of t̂i(γ

−1
i (x)) and n̂i(γ

−1
i (x)), respectively.

or each curve, we may define the signed radius of curvature Ri as

1

Ri(s)
= −γ′′i (s) · n̂i(s). (9)

ecause of the regularity of the interface curves, there must exist a minimum radius of curvature
ver all s and over all curves,

Rmin = min
i

min
s∈[0,H1(Ii)]

|Ri(s)|. (10)

dditionally, for each Ii, there exists ρi > 0 such that the coordinate map

(s, z) 7→ γi(s) + zn̂i(s) (11)

n the domain [0,H1(Ii)] × (−ρi, ρi) is a diffeomorphism (see [61, Theorem 2.2.5]). The image of
0,H1(Ii)]× (−ρi, ρi) under the map is called the tubular neighborhood of Ii. Moreover, it may be
hown that ρi ≤ mins∈[0,H1(Ii)] |Ri(s)|.

We next discuss the admissible function spaces for Πε and Π. For Πε, arguments (u, d) belong
o H1(B;R2)×H1(B;R). The functional Π is defined over the set

A =
{
u ∈ L∞(B;R2) : u|B\Γ ∈ H1(B \ Γ;R2), Γ ∈ C

}
, (12)

here C is the set of all closed, H1-rectifiable subsets of B. Note that each u ∈ A has a corresponding
(the Γ is not defined separately). For u ∈ A, we also request that u|B\Γ be discontinuous across

ts corresponding Γ, except possibly at a countable number of points in Γ. In the parlance of
BD(B;R2), we say that Γ is the jump set of the function u. We note that A is slightly more

estrictive than SBD(B;R2); however, this space is suitable for the sorts of crack topologies that
re expected in practical situations. We also remark that this set can be extended to functions
hose crack set is not closed via the approximation results of Chambolle [62, Theorem 3].

4More precisely, we may find an orthogonal transformation Q : R2 → R2 such that v · (Qv) = 0 for any v ∈ R2.
hen, we set n̂i(s) = Qt̂i(s) for each s ∈ [0,H1(Ii)] and for each i.

12
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.2. Statement of the Theorem

heorem 1. Let (εn)n be a sequence of positive real numbers which converges to zero. Then the
equence of functionals (Πεn)n Γ-converges to Π. That is, for any u ∈ A (with corresponding set
), the following hold.

i. (Γ-lim inf) For any sequences (un)n ⊂ H1(B;R2) and (dn)n ⊂ H1(B;R) such that un → u in
L2(B;R2), we have

lim inf
n→∞

Πεn [un, dn] ≥ Π[u,Γ]. (13)

ii. (Γ-lim sup) There exists sequences (un)n ⊂ H1(B;R2) and (dn)n ⊂ H1(B;R) such that un → u
in L2(B;R2) and

lim sup
n→∞

Πεn [un, dn] ≤ Π[u,Γ]. (14)

In the following sections, we separately prove each of the two items in the above theorem.

.3. Proof of Γ-lim inf

Before we prove Theorem 1(i), we require some preliminary results. For brevity, we leave the
roofs to the appendices.

The first result concerns the portions of the tubular neighborhood of each Ii which do not
verlap with the tubular neighborhood belonging to another Ij or with ∂B.

roposition 2. For any ρ > 0, let `ixρ be the segment of length 2ρ, centered at point x ∈ Ii and
rthogonal to Ii, i.e.,

`ixρ = {x+ zn̂i(x) : z ∈ (−ρ, ρ)} .

or each i, define Ji = ∂B ∪
(⋃

j 6=i Ij
)
∪ {γi(0),γi(H1(Ii))}. Then, for

0 < ρ < min
i

{
min

{
ρi, max

0≤s≤H1(Ii)

dist(γi(s), Ji)

3

}}

he sets (Aiρ)i with
Aiρ := γi

(
{s ∈ [0,H1(Ii)] : dist(γi(s), Ji) > 3ρ}

)

re nonempty and have the following properties.

1. For any x ∈ Aiρ, `ixρ ∩ `jyρ = ∅ for any y ∈ Ij (including the case where j = i and y 6= x)
and `ixρ ∩ ∂B = ∅.

2. For any x ∈ Aiρ and y ∈ `ixρ, dist(y, I) = dist(y, Ii) = |y − x|.
3. As ρ decreases to 0,

lim
ρ→0+

H1(Ii \Aiρ) = 0,

so that
lim
ρ→0+

H1(Γ ∩Aiρ) = H1(Γ ∩ Ii).

The second result is a specialized Γ-lim inf result for the one-dimensional domain B = (−ρ, ρ)
ontaining a crack at z = 0.

13
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roposition 3 (One-dimensional Γ-lim inf). Suppose u ∈ L2((−ρ, ρ);R), but u|(−δ,δ) 6∈ H1((−δ, δ);
or any 0 < δ ≤ ρ. Let (un)n, (dn)n ⊂ H1((−ρ, ρ);R) be such that un → u in L2((−ρ, ρ);R). Then,
or any constant C > 0,

lim inf
n→∞

[∫ ρ

−ρ
(1− dn)2C(u′n)2 dz +

∫ ρ

−ρ

g(z/εn)

2

(
d2
n

εn
+ εn(d′n)2

)
dz

]
≥ gint, (15a)

here

g(t) :=

{
gi if |t| ≤ m,
gb otherwise.

(15b)

We remark that in our formulation (7b), gε(x) = g(dist(x, I)/ε). With these results, we are
ow ready for the proof.

roof of Theorem 1(i).

1. Without loss of generality, assume that the sequences (un, dn)n are such that

lim inf
n→∞

Πεn [un, dn] <∞.

Otherwise, it is trivial to bound the limit inferior from below by any finite value we choose.
Also, without loss of generality, we may assume that (εn)n is a strictly decreasing sequence.

2. Fix ρ > 0 (which will be specified later) and consider the ρ-neighborhood of I. We partition
the domain into B \Nρ(I) and Nρ(I)∩B, and we apply superadditivity of the limit inferior:

lim inf
n→∞

Πεn [un, dn] ≥ lim inf
n→∞

Πεn [un, dn,B \ Nρ(I)] + lim inf
n→∞

Πεn [un, dn,Nρ(I) ∩ B], (16)

where for a subset Ω ⊆ B we define Πε[·, ·,Ω] to be the same as in (4), but integrated over Ω
instead of B. As εn → 0, we will eventually have mεn < ρ, so that Nmεn(I) ⊂ Nρ(I). Going
forward, we assume n is sufficiently large so that this is the case.

3. We consider separately each of the two terms on the right-hand-side of (16). For the first
term, since we have cut out the widened interfaces, gε(x) ≡ gb in B \ Nρ(I). In this domain,
we may apply standard Γ-convergence results such as [62, Theorem 4]:

lim inf
n→∞

Πεn [un, dn,B \ Nρ(I)] ≥
∫

B\(Γ∪Nρ(I))

W (x, ε(u)) dx+ gbH1(Γ \ Nρ(I)).

4. For the second term of (16), let us choose a subsequence (unk , dnk)k of (un, dn)n for which.

lim
k→∞

Πεnk
[unk , dnk ,Nρ(I) ∩ B] = lim inf

n→∞
Πεn [un, dn,Nρ(I) ∩ B].

Going forward, we will abuse notation by referring to the subsequence as (un, dn)n. Next,
apply Proposition 2 to construct the sets (Aiρ)i. We recall that each set Aiρ contains all
points x ∈ Ii such that the orthogonal segment `ixρ := {x + zn̂i(x) : z ∈ (−ρ, ρ)} does
not intersect ∂B or any other orthogonal segment `jyρ with y ∈ Ij (which includes y ∈ Ii).
Let Tiρ = {`ixρ : x ∈ Γ ∩Aiρ} ⊂ Nρ(I) ∩ B. We assume that ρ < Rmin is sufficiently small
enough that each Aiρ (and hence Tiρ) is not empty. By construction, Tiρ ∩ Tjρ = ∅ when
i 6= j. Then, we trivially have

Πεn [un, dn,Nρ(I) ∩ B] ≥ Πεn [un, dn, (∪iTiρ)] =
∑

i

Πεn [un, dn, Tiρ].

14
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5. We briefly discuss integration within each Tiρ. We use the coordinate map (11) defined for
(s, z) ∈ [0,H1(Ii)]× (−ρ, ρ), which has Jacobian

1 +
z

Ri(s)
≥ 1− ρ

Rmin
> 0,

where the first inequality is a consequence of (10) and the second inequality is because ρ is
chosen to be smaller than Rmin. Then, for any integrand f(x), going to coordinates gives

∫

Tiρ
f(x) dx =

∫

γ−1
i (Γ∩Aiρ)

∫ ρ

−ρ
f(x(s, z))

(
1 +

z

Ri(s)

)
dzds.

Using the lower bound on the Jacobian, we have

∫

Tiρ
f(x) dx ≥

(
1− ρ

Rmin

)∫

γ−1
i (Γ∩Aiρ)

∫ ρ

−ρ
f(x(s, z)) dzds.

In this way, we have transformed an integral over Tiρ into an integral over the rectangles
γ−1
i (Γ ∩Aiρ)× (−ρ, ρ).

6. As shorthand, let us denote the two functionals in (4) as Πe
ε and Πf

ε , respectively, for the
elastic and surface energy terms. We may extend the normal vector n̂i away from Ii and into
Tiρ through the coordinate map; abusing notation, we have n̂i(x(s, z)) = n̂i(s). Then, for Πe

ε

we trivially have

Πe
εn [un, dn, Tiρ] ≥

∫

Tiρ
(1− dn)2Cλµ|n̂i · ∇un · n̂i|2 dx,

were Cλµ is a constant depending on the elastic moduli such that W (x, ε(u)) ≥ Cλµ|ε(u)|2.5

In the above, we also used the fact that |ε(u)| ≥ |v · ∇u · v| for any unit vector v.

7. Following Step 5, we go to coordinates. Let us define the scalar function uzn(s, z) = un(x(s, z))
n̂i(x(s, z)) and abuse notation by writing dn(s, z) = dn(x(s, z)). Then, ∂uzn/∂z = n̂i · ∇un ·
n̂i, and so

Πe
εn [un, dn, Tiρ] ≥

(
1− ρ

Rmin

)∫

γ−1
i (Γ∩Aiρ)

∫ ρ

−ρ
(1− dn)2Cλµ

∣∣∣∣
∂uzn
∂z

∣∣∣∣
2

dzds.

8. Similarly, for Πf
ε , we note that |∇dn| ≥ |∇dn · n̂i| = |∂dn/∂z|, and so

Πf
εn [un, dn, Tiρ] ≥

(
1− ρ

Rmin

)∫

γ−1
i (Γ∩Aiρ)

∫ ρ

−ρ

g(z/εn)

2

(
d2
n

εn
+ εn

∣∣∣∣
∂dn
∂z

∣∣∣∣
2
)

dzds.

In the previous inequality, we used the fact that gεn(x) = g(dist(x, I)/εn), where g is defined
in (15b), and dist(x, I) is precisely precisely z for points in Tiρ (see Proposition 2).

5The constant Cλµ is precisely the minimum eigenvalue of the fourth-order elasticity tensor C, which is defined

o that (3) is equivalent to W (x, ε(u)) = 1
2
ε(u) : (C(x) : ε(u)).

15
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9. Let Θ = γ−1
i (Γ∩Aiρ)×(−ρ, ρ) be the parametric domain for (s, r). Then, uzn, dn ∈ H1(Θ;R)

and uz := u · n̂i belongs to L2(Θ;R). We now apply two slicing results. First, by the
slicing property of H1 functions (see [56, Theorem 4.21]), for almost-every s ∈ γ−1

i (Γ ∩Aiρ),
the restrictions of uzn and dn

6 to the segment {s} × (−ρ, ρ), which we call uzn|s and dn|s,
respectively, belong to H1((−ρ, ρ);R); moreover, (uzn|s)′ and (dn|s)′ coincide for almost every
z ∈ (−ρ, ρ) with ∂uzn/∂z and ∂dn/∂z. Second, via Fubini’s Theorem and [56, Theorem
1.21], there exists a subsequence (uznk , dnk)k of (uzn, dn)n for which uznk |s converges in
L2((−ρ, ρ);R) to uz|s for almost every s ∈ γ−1

i (Γ∩Aiρ). Moreover, because of the assumptions
on u ∈ A, we know that uz|s must be discontinuous across the crack set, in particular z = 0.
Finally, as before, we abuse notation and refer to the subsequence as (uzn, dn)n.

10. For almost every s ∈ γ−1
i (Γ ∩Aiρ), if we define

fn(s) :=

∫ ρ

−ρ
(1− dn|s)2Cλµ((uzn|s)′)2 dz +

∫ ρ

−ρ

g(z/εn)

2

(
(dn|s)2

εn
+ εn((dn|s)′)2

)
dz,

then by the one-dimensional Γ-liminf result, Proposition 3, we have

lim inf
n→∞

fn(s) ≥ gint.

Applying Fatou’s lemma (and the sub-additivity of the lim inf), we have

lim inf
n→∞

∫

γ−1
i (Γ∩Aiρ)

fn(s) ds ≥
∫

γ−1
i (Γ∩Aiρ)

lim inf
n→∞

fn(s) ds

≥
∫

γ−1
i (Γ∩Aiρ)

gint ds

= gintH1(Γ ∩Aiρ).

11. By the choice of subsequences in Steps 4 and 9, we have that

lim inf
n→∞

Πεn [un, dn,Nρ(I) ∩ B] ≥
(

1− ρ

Rmin

)
gint

∑

i

H1(Γ ∩Aiρ).

12. Finally, we put together the estimates for B \ Nρ(I) and Nρ(I) ∩ B:

lim inf
n→∞

Πεn [un, dn] ≥
∫

B\(Γ∪Nρ(I))

W (x, ε(u)) dx+gbH1(Γ\Nρ(I))+

(
1− ρ

Rmin

)
gint

∑

i

H1(Γ

Since the left-hand-side is independent of ρ, we may shrink ρ to zero. We proceed term by
term:

(a) The strain energy density W (·, ε(u)) belongs to L1(B \Γ;R) and is non-negative. Thus,
L2 W (·, ε(u)) is a measure on subsets of B \ Γ (cf. [63, §3.2]). Because

⋃

ρ>0

B \ (Γ ∪Nρ) = B \ (Γ ∪ I),

6More precisely, there are representatives in the equivalence classes of uzn and dn for which this property holds;
owever, we abuse notation and do not distinguish between the representative and the equivalence class.
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by continuity of measures on nested sets, we have

lim
ρ→0+

∫

B\(Γ∪Nρ(I))

W (x, ε(u)) dx =

∫

B\(Γ∪I)

W (x, ε(u)) dx =

∫

B\Γ
W (x, ε(u)) dx.

For the last equality, we used the fact that any function f ∈ L1(B \ (Γ ∪ I);R) also
belongs to L1(B \Γ;R), since L2(I) = 0 and we may arbitrarily define values for f along
I without changing the integral.

(b) Similarly, for the nesting sets (Γ \ Nρ(I))ρ, continuity of the Hausdorff measure gives

lim
ρ→0+

H1(Γ \ Nρ(I)) = H1(Γ \ I).

(c) Since Rmin is independent of ρ,

lim
ρ→0+

(
1− ρ

Rmin

)
= 1.

(d) Finally, by construction of Aiρ, we have

lim
ρ→0+

∑

i

H1(Γ ∩Aiρ) =
∑

i

H1(Γ ∩ Ii) = H1(Γ ∩ I).

Hence

lim inf
n→∞

Πεn [un, dn] ≥
∫

B\Γ
W (x, ε(u)) dx+ gbH1(Γ \ I) + gintH1(Γ ∩ I).

as desired.

.4. Proof of Γ-lim sup

Next, we prove Theorem 1(ii). We require a preliminary result for this step, the proof of which
s left to the appendices, which concerns the arc length of the boundary of the ρ-neighborhood of
C2 curve.

roposition 4. For any Ii, let 0 ≤ s1 < s2 ≤ H1(Ii). Then, for ρ < Rmin,

H1(∂Nρ(γi([s1, s2]))) ≤ 4πρ+ 2

(
1 +

ρ

Rmin

)
H1(γi([s1, s2]))

We are now ready for the proof. Throughout this proof, we make use of the Γ-convergence proof
f Chambolle [62, Theorem 4] for domains with constant fracture toughness.

roof of Theorem 1(ii).
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1. Without loss of generality, we assume that for each Ii, the set Γ ∩ Ii may be decomposed
into the images of Ji disjoint closed intervals contained in [0,H1(Ii)], (γi([sj1, sj2]))Jij=1.7 Let
(Γj)j be the collection of all the subsets over all Ii, and let J =

∑
i Ji be the total number

of subsets. Because the subsets are disjoint for each Ii, while Ii and Ij may intersect only at
their endpoints, H1(Γ ∩ I) =

∑
j H1(Γj).

2. Construct a sequence (αn)n converging to 0 such that αn = o(εn), ensuring kεn = o(αn) as
in [62, Theorem 4].

3. We now construct the recovery sequences (un)n and (dn)n. As in [62, Theorem 4], define

un(x) =





0 dist(x,Γ) < αn/2,(
2dist(x,Γ)

αn
− 1
)
u(x) αn/2 ≤ dist(x,Γ) < αn,

u(x) otherwise.

By the regularity of the distance function, it is straightforward to show that un ∈ H1(B;R2)
and ‖un − u‖L2(B;R2) → 0 as n → ∞. Moreover, since |un(x)| ≤ |u(x)| for almost every
x ∈ B, we have ‖un‖L∞(B;R2) ≤ ‖u‖L∞(B;R2).

4. Next, let

d̃n(t) =

{
exp

(
αn−|t|

2εn

)
|t| ≥ αn

1 |t| < αn.

We remark that the function d̃n(dist(x,Γ \ I)) is precisely that used in the recovery sequence
by Chambolle. Here, we will use this function around the bulk (i.e., non-interfacial) cracks.

5. Around the interface cracks, we require another damage profile d. Let ρ > 0 and define

dn(t) =





0 |t| ≥ ρ,
2gi sinh

(
|t|−ρ
εn

)

(gb + gi) sinh
(
αn−ρ
εn

)
+ (gi − gb) sinh

(
αn−2mεn+ρ

εn

) mεn ≤ |t| < ρ,

(gb + gi) sinh
(
|t|−ρ
εn

)
+ (gi − gb) sinh

(
|t|−2mεn+ρ

εn

)

(gb + gi) sinh
(
αn−ρ
εn

)
+ (gi − gb) sinh

(
αn−2mεn+ρ

εn

) αn ≤ |t| < mεn,

1 |t| < αn.

In the prior equation, we have assumed that αn < mεn < ρ. Because αn = o(εn), we can
always choose n sufficiently large so that this is the case. The function dn(t) is computed by
minimizing

Π
f

εn [d] =

∫ ρ

−ρ

g(t/εn)

2

(
d2

εn
+ εn(d′)2

)
dt

7This assumption is not terribly restrictive, see Proposition 8. For any η > 0, we can cover Γ∩ Ii by Niη pairwise
isjoint, simply connected, closed subsets (Aj)j so that

H(Γ ∩ Ii) ≤
Niη∑

j=1

H1(Aj) ≤ H(Γ ∩ Ii) + η.

e then proceed through the proof with this new set, and take η → 0+ at the end.

18



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

over the set

Vαnρn :=
{
d ∈ H1((−ρ, ρ);R) : d(t) = 1 for t ∈ [−αn, αn], d(±ρ) = 0

}
,

and extending the minimizer by 0 outside of the interval [−ρ, ρ] (compare with the proof of
Proposition 3). By construction,

lim
n→∞

Π
f

εn [dn] = gint.

6. Finally, we build dn as the point-wise maximum of d̃n and dn:

dn(x) = max
{
d̃n(dist(x,Γ \ Nρ(I))), dn(dist(x,Γ ∩ I))

}
,

where ρ is chosen to be the same as in the previous step. Just like the constituent functions,
we remark that 0 ≤ dn ≤ 1. Moreover, dn(x) = 1 whenever x ∈ Nαn(Γ). Importantly, dn
is Lipschitz continuous (as it is the point-wise maximum of the compositions of the Lipschitz
functions d̃n and dn with the respective distance functions). Hence, by Rademacher’s Theo-
rem, dn ∈ H1(B;R). Going forward, we will abuse notation by writing d̃n(dist(x,Γ \Nρ(I)))

as d̃n(x), with similar abuse of notation for dn(x).

7. Now, we show that the sequences (un)n and (dn)n are indeed recovery sequences. As in the
proof of Theorem 1(i), we let Πe

ε and Πf
ε be the two functionals in (7). Then, for the elastic

energy
Πe
εn [un, dn] = Πe

εn [u, dn,B \ Nαn(Γ)] + Πe
εn [un, 1,B ∩Nαn(Γ)],

where we have used that un ≡ u in B \ Nαn(Γ) and the fact that dn ≡ 1 in Nαn(Γ).

8. For the first term,

Πe
εn [u, dn,B \ Nαn(Γ)] ≤ (1 + kεn)

∫

B\Nαn (Γ)

W (x, ε(u)) dx ≤ (1 + kεn)

∫

B\Γ
W (x, ε(u)) dx,

where the first inequality follows from the bounds on dn (so that (1−dn)2 ≤ 1) and the second
inequality follows from integrating a non-negative function over nested domains. Taking the
limit as n→∞, we get

lim sup
n→∞

Πe
εn [u, dn,B \ Nαn(Γ)] ≤

∫

B\Γ
W (x, ε(u)) dx.

9. Meanwhile, for the second term, we first note that

∇un(x) =

(
2dist(x,Γ)

αn
− 1

)
∇u(x) +

2

αn
u(x)⊗∇dist(x,Γ)

when x ∈ Nαn(Γ) \ Nαn/2(Γ). Because W (x, ε(u)) is a quadratic function of ∇u, we must
have that

W (x, ε(un)) ≤ 2

(
2dist(x,Γ)

αn
− 1

)2

W (x, ε(u)) + 2C1
4

α2
n

‖u‖2L∞(B;R2),
8

8W (x, ε(u)) may be shown to have the form ∇u : C̃(x) : ∇u, where the symmetric, fourth-order tensor C̃(x) is
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where the constant C1 depends on the elastic properties of the bulk material. In computing
the previous constant, we used that |∇dist(x,Γ)| = 1 almost everywhere in B, so that |u ⊗
∇dist(x,Γ)| ≤ ‖u‖L∞(B;R2). Hence, also noting that the prefactor 2dist(x,Γ)/αn − 1 ≤ 1,

Πe
εn [un, 1,B ∩Nαn(Γ)] ≤ 2kεn

∫

B∩Nαn (Γ)\Nαn/2(Γ)

W (x, ε(u)) dx

+ 8C1

kεn‖u‖2L∞(B;R2)

α2
n

L2(B ∩Nαn(Γ) \ Nαn/2(Γ)),

≤ 2kεn

∫

B∩Nαn (Γ)

W (x, ε(u)) dx+ 8C1

kεn‖u‖2L∞(B;R2)

α2
n

L2(Nαn(Γ)).

10. To bound L2(Nαn(Γ)), we appeal to the Minkowski content:

lim
α→0+

L2(Nα(Γ))

2α

which coincides with H1(Γ) for closed, rectifiable subsets of R2 [64, Theorem 3.2.39]. From
the fact that this is a convergent, non-negative sequence when evaluated on (αn)n, we observe
that there must exist a constant C2 > 0 such that

L2(Nαn(Γ)) ≤ 2αnC2

holds for all n. Hence,

Πe
εn [un, 1,B ∩Nαn(Γ)] ≤ 2kεn

∫

B∩Nαn (Γ)

W (x, ε(u)) dx+ 16C1C2

kεn‖u‖2L∞(B;R2)

αn
.

The first term must shrink to zero, because B∩Nαn(Γ) ⊆ B, 0 ≤
∫
BW (x, ε(u)) dx <∞, and

kεn → 0 as n → ∞. The second term must also shrink to zero since we have selected (αn)n
so that kεn = o(αn). Hence,

lim sup
n→∞

Πe
εn [un, 1,B ∩Nαn(Γ)] = 0.

11. Next, we turn to the surface energy. Define the set

An =
{
x ∈ B : dn(x) = dn(x)

}
.

Then
Πf
εn [un, dn,B] = Πf

εn [un, d̃n,B \An] + Πf
εn [un, dn, An].

ounded and has nonnegative components. For such quadratic forms, if ∇u = U1 +U2, then

(U1 +U2) : C̃(x) : (U1 +U2) ≤ 2U1 : C̃(x) : U1 + 2U2 : C̃(x) : U2.

Noting that U1 = f(x)∇u gives 2U1 : C̃(x) : U1 = 2f(x)2W (x, ε(u)). Meanwhile, by the boundedness of C̃(x),
here exists a constant C1 > 0 such that U2 : C̃(x) : U2 ≤ C1|U2|2.
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12. For integration on B \An , we use the fact that gε(x) ≤ gb for any x ∈ B, while B \An ⊆ B,
and so

Πf
εn [un, d̃n,B \An] ≤

∫

B\An

gb
2

(
d̃2
n

εn
+ εn|∇d̃n|2

)
dx ≤

∫

B

gb
2

(
d̃2
n

εn
+ εn|∇d̃n|2

)
dx.

The set Γ \ Nρ(I) is closed and rectifiable. Hence, the integral on the right is simply the one
that results from Chambolle’s construction for the crack set Γ \ Nρ(I). Repeating his steps,
we get

lim sup
n→∞

Πf
εn [un, d̃n,B \An] ≤ lim sup

n→∞

∫

B

gb
2

(
d̃2
n

εn
+ εn|∇d̃n|2

)
dx ≤ gbH1(Γ \ Nρ(I)).

13. For integration on An, we consider the subsets (Anj)j , where

Anj =
{
x ∈ An : dn(x) = dnj(x)

}
,

where we use the shorthand dnj(x) := dn(dist(x,Γj)). We recall that the simply connected
pieces (Γj)j which compose Γ ∩ I were defined in Step 1. Then, because these subsets might
overlap (in particular, if dnj(x) = dnk(x) = 1 for some j 6= k),

Πf
εn [un, dn, An] ≤

J∑

j=1

Πf
εn [un, dnj , Anj ]

Additionally, because dnj(x) = 0 for x /∈ Nρ(Γj), we have Anj ⊆ Nρ(Γj), and so for each j

Πf
εn [un, dnj , Anj ] ≤ Πf

εn [un, dnj ,Nρ(Γj)] =

∫

Nρ(Γj)

gεn(x)

2

(
d

2

nj

εn
+ εn|∇dnj |2

)
dx.

Finally, because dist(x,Γj) ≥ dist(x, I), we have gε(x) = g(dist(x, I)/ε) ≤ g(dist(x,Γj)/ε),
and so

∫

Nρ(Γj)

gεn(x)

2

(
d

2

nj

εn
+ εn|∇dnj |2

)
dx ≤

∫

Nρ(Γj)

g(dist(x,Γj)/εn)

2

(
d

2

nj

εn
+ εn|∇dnj |2

)
dx.

14. Let z = dist(x,Γj). Then dnj(x) = dn(z). Meanwhile, ∇dnj(x) = d
′
n(z)∇dist(x,Γj), where

we recall that |∇dist(x,Γj)| = 1 almost everywhere, and so |∇dnj(x)|2 = (d
′
n(z))2 almost

everywhere. Hence, the above integrand depends only on z, the distance to Γj . Via integration
over level sets of the distance function [56, Theorem 3.11], this may be written as

∫

Nρ(Γj)

g(dist(x,Γj)/εn)

2

(
d

2

nj

εn
+ εn|∇dnj |2

)
dx =

∫ ρ

0

g(z/εn)

2

(
dn(z)2

εn
+ εn(d

′
n(z))2

)
H1(∂

Using Proposition 4, we may bound
∫ ρ

0

g(z/εn)

2

(
dn(z)2

εn
+ εn(d

′
n(z))2

)
H1(∂Nz(Γj)) dz

≤
(

4πρ+ 2

(
1 +

ρ

Rmin

)
H1(Γj)

)∫ ρ

0

g(z/εn)

2

(
dn(z)2

εn
+ εn(d

′
n(z))2

)
dz.
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The integral on the right is precisely that which is minimized by our choice of dn. Hence,

lim
n→∞

∫ ρ

0

g(z/εn)

2

(
dn(z)2

εn
+ εn(d

′
n(z))2

)
dz =

gint

2
.

As a shorthand, let gn/2 be the above integral for integer n, so that limn→∞ gn = gint.

15. Putting together the bounds for the integrals over each set Anj , we conclude that

lim sup
n→∞

Πf
εn [un, dn, An] ≤ lim

n→∞

J∑

j=1

gn
2

(
4πρ+ 2

(
1 +

ρ

Rmin

)
H1(Γj)

)

= lim
n→∞

gn


2πJρ+

(
1 +

ρ

Rmin

) J∑

j=1

H1(Γj)




= gint

(
2πJρ+

(
1 +

ρ

Rmin

)
H1(Γ ∩ I)

)
.

16. Finally, putting together Steps 8, 10, 12, and 15 yields

lim sup
n→∞

Πεn [un, dn] ≤
∫

B\Γ
W (x, ε(u)) dx+gbH1(Γ\Nρ(I))+gint

(
2πJρ+

(
1 +

ρ

Rmin

)
H1(Γ

Since ρ > 0 is arbitrary, we may take it to zero to yield the conclusion. In particular, for the
second term, we note that ⋃

ρ>0

Γ \ Nρ(I) = Γ \ I

and so by continuity of measures on nested sets

lim
ρ→0+

H1(Γ \ Nρ(I)) = H1(Γ \ I).
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. Numerical implementation

The model and analysis of the previous sections does not address crack evolution in response to
ime-varying external loads. Rather, the variational principle itself is general, providing a framework
o study problems with interfaces. In the following sections, we apply our approach to problems
eaturing crack growth in order to study toughening mechanisms in SBs. While a crack growth
odel is not part of our theoretical framework, for concreteness we summarize the approach used

n the computations. For further details of the model and method, we refer the reader to [65].

.1. Evolution via local stationary points

We suppose that the applied displacements vary with time t (i.e., û = û(t)). Then, at time t,
e seek (u(t), d(t)) to be stationary points of the functional Πε. That is, recalling the admissible

unction spaces

Uu(t) =
{
v ∈ H1(B;R2) : v(x) = û(t,x) for x ∈ ∂Bu

}
(17a)

Ud = H1(B;R), (17b)

nd defining test spaces

Vu =
{
v ∈ H1(B;R2) : v ≡ 0 on ∂Bu

}
(18a)

Vd = Ud, (18b)

t time t we seek (u(t), d(t)) ∈ Uu(t)× Ud which satisfy

0 =

∫

B

(
(1− d)2 + kε

) ∂W (x, ε(u))

∂ε
: ε(v) dx

+

∫

B

{[
gε(x)d

ε
− 2(1− d)W (x, ε(u))

]
φ+ gε(x)ε∇d · ∇φ

}
dx

(19)

or any (v, φ) ∈ Vu × Vd.
We remark that stationarity of Πε is a very different condition from global minimality [46].

oreover, a consequence of Γ-convergence is that global minimizers of Πε will converge to those of
as ε→ 0 [66]; in general, this result does not hold for local minimizers or stationary points.

.2. Discretization and solution procedure

We partition the time interval of interest [0, T ] into N steps: 0 = t0 < t1 < . . . < tN =
. For simplicity, we assume a fixed time step ∆t = tn+1 − tn for any n. We seek functions
un, dn) which approximate (u(tn), d(tn)). We spatially discretize the stationarity equation using
he Finite Element Method (e.g., [67]) with bilinear quadrilateral (Q1) finite elements. In other
ords, we partition B into a mesh T h of non-overlapping quadrilaterals with maximum diameter
; the admissible and test functions are those that are continuous and whose restriction to any
uadrilateral E ∈ T h are bilinear. We let Uhu (tn) denote the admissible finite element function
pace for u at tn, and we use similar notation for the other function spaces. We construct our mesh
h to conform to the boundaries of the widened interface (i.e., the mε-neighborhood of I). This

nsures that the restriction of gε(x) to each quadrilateral is a constant (either gb or gi).
We define (un, dn) ∈ Uhu (tn)× Uhd to be the functions satisfying (19) for any (v, φ) ∈ Vhu × Vhd .

hoosing a set of basis functions for the finite element spaces results in a finite-dimensional system
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f nonlinear equations. We solve these equations monolithically (simultaneously for both un and

n) using Newton-Raphson iteration in Abaqus [68]. Instead of a monolithic scheme, we could have
taggered the solution of un and dn (the so-called “Alternate Minimization” approach [45]) to take
dvantage of the biconvexity of Πε.

.3. Modifications to the equations

Motivated by physical modeling considerations, we make three modifications to (19) before
se in the examples. First, the previous equations do not distinguish energetically between open
racks and interpenetrated cracks, a symmetry also present in classical fracture mechanics without
ontact. Hence, cracks may nucleate and grow in regions under compression. To combat this,
everal approaches have been proposed in the literature (cf. the review [69]). These approaches
plit the strain energy density W into positive and negative parts (corresponding to tensile and
ompressive strains and/or stresses), and only the positive part is degraded by the damage. That
s, we replace

(
(1− d)2 + kε

)
W (x, ε)→

(
(1− d)2 + kε

)
W+(x, ε) +W−(x, ε).

n this work, we adopt the spectral split of Miehe et al. [49]. For the isotropic, linear elastic
onstitutive response, the forms of W± are

W±(x, ε) =
1

2
λ(x)〈ε1 + ε2〉± + µ(x)

(
〈ε1〉2± + 〈ε2〉2±

)

here ε1 and ε2 are the principal strains of the tensor ε, and 〈ε〉+ = max{0, ε} while 〈ε〉− =
in{0, ε}.

Second, we impose irreversibility on the crack evolution. We remark that this condition was
art of the original VFT [44] and RVFT [45], though it may not be applicable for all engineering
ituations (i.e., crack healing). In RVFT, this condition is d(t1,x) ≥ d(t2,x) for any t1 ≥ t2 and
∈ B. Numerically, this condition can be enforced via inequality constraint (dn+1(x) ≥ dn(x) for
∈ B) [45]. We instead adopt the approach of [70], which replaces the strain energy density W+

n the damage-field portion of (19) with a history variable

H(t,x) = max
s∈[0,t)

W+(x, ε(u(s))).

n the time-discrete case, this variable is

H(tn,x) = max
0≤m<n

W+(x, ε(um))

In the formulation in §3, we have neglected inertial effects, i.e. we have assumed that the defor-
ation is static. When we introduce time-varying external loading, we maintain the assumption

f negligible inertia, which is referred to as quasi-static behavior. Hence, time t only acts to pa-
ameterize the external loads and does not need to correspond to physical time. Rather t can be
eplaced by any increasing load parameter. As a consequence of neglecting inertia, numerical insta-
ilities can arise when the damage field evolves rapidly from one time step to another, for example

n the case of catastrophic crack propagation, where the crack may grow large distances in very
mall intervals of time. In particular, conventional methods to solve (19) such as Newton iteration
an fail to find solutions because (un+1, dn+1) is “far” from (un, dn). To mitigate these numerical
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nstabilities, as the final modification, when seeking dn+1 we add to the damage field equation (19)
viscous damping term of the form η

2∆t

(
d−dn

∆t

) ∣∣d−dn
∆t

∣∣φ, where η > 0 [70]. This term may be

erived by adding the cubic penalty η
6 |ḋ|3 to the modified energy (7), introducing the finite time

ifference ḋ(tn+1) ≈ d−dn
∆t , and taking the variation with respect to d.

In summary, the modified version of (19) incorporating the above three changes is as follows.
t time tn+1, we seek (u, d) ∈ Uhu (tn+1)× Uhd which satisfy

0 =

∫

B

[(
(1− d)2 + kε

) ∂W+(x, ε(u))

∂ε
+
∂W−(x, ε(u))

∂ε

]
: ε(v) dx

+

∫

B

{[
gε(x)d

ε
− 2(1− d)H(tn+1,x) +

η

2∆t

(
d− dn

∆t

) ∣∣∣∣
d− dn

∆t

∣∣∣∣
]
φ+ gε(x)ε∇d · ∇φ

}
dx

(20)

or any (v, φ) ∈ Vhu × Vhd . We denote the solution to (20) as (un+1, dn+1).
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. Numerical verification

In this section, we assess the implementation of the modified RVFT for interfaces (RVFTI) in
5 and, in particular, how it relates to the theory of §3.3. The verification provided in this section
s two-fold:

1) In standard RVFT, it has been shown that crack initiation occurs when the energy release rate
is equal to the constant fracture toughness g [71]. We show for RVFTI that crack initiation
occurs when the energy release rate is equal to gint in (8).

2) We study the problem of the kinking of a crack at the bi-material interface subjected to far-field
loading. We compare the computationally-observed kink angles against those predicted by the
semi-analytical solutions of He and Hutchinson [25]. We also study the ability of RVFTI to
predict crack trapping by the interface, which we also compare with [25].

.1. Crack initiation fracture toughness for the interface model

We first study a single edge notch (SEN) specimen under plane strain conditions with Young’s
odulus E and Poisson’s ratio ν. The bulk fracture toughness is gb, and we set the fracture

oughness in the widened interface as gi. The specimen has width b, while the initial notch has
ength a. We take the interface thickness to be 2mε. The specimen is depicted in Figure 3(a).

We prescribe along the boundary of the specimen the asymptotic mode I displacement field with
rescribed stress intensity factor K∞I (see [72])

ux(x) = K∞I u
I
x(x) =

K∞I
2µ

√
r

2π
cos

(
θ

2

)
(3− 4ν − cos(θ)) (21a)

uy(x) = K∞I u
I
y(x) =

K∞I
2µ

√
r

2π
sin

(
θ

2

)
(3− 4ν − cos(θ)), (21b)

here r and θ are the usual polar coordinates associated with the point x ∈ R2. Under plane strain
onditions, the energy release rate G is related to K∞I via G = (1− ν2)(K∞I )2/E.

From Griffith’s criterion [39], crack growth occurs when the energy release rate at the crack tip
s equal to the fracture toughness of the material, i.e. G = gint. Hence, from a simulation we may
stimate the interface fracture toughness, denoted by ghint, using the relationship

ghint =
1− ν2

E
(K∞I,cr)

2, (22)

here K∞I,cr is the critical value of the prescribed mode I stress intensity factor at which the crack
nitiates.

In our computations, b = 100 mm, a = b/4, and we took the height of the SEN specimen to
e 100b. The material has shear modulus µ = 22× 103 MPa and Poisson’s ratio ν = 1/4. For the
amage field, we set ε = b/500, kε = 0, and we vary m ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, gi ∈ {1, 5} N/mm,
nd gb/gi ∈ {2, 5, 20}.

For the finite-width notch, we initialize the damage field by setting d = 1 in the rectangle
a ≤ x ≤ 0 and −h ≤ y ≤ h, where h = b/1000 is the half-width of the notch. We estimate K∞I,cr

or the above parameter combinations by slowly incrementing the parameter K∞I from zero until
he first node ahead of the notch (at x = 0) attains a damage value of d = 0.99. These values of
∞
I,cr are then used to estimate ghint in (22).
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In Fig. 3(b), we compare the analytical expression for the ratio gint/gb of (8) against the nu-
erically computed value ghint/gb. The thick dashed line with unit slope corresponds to one-to-one

quivalence. We observe good agreement between ghint and gint, and the error between the two is
ithin 0.065gb. Additionally the precise values of gi and gb had minimal impact on ghint/gb, which is
onsistent with (8). Hence, we conclude that the numerically obtained values for interface fracture
oughness are largely consistent with their analytical counterparts.

For the cases where m = 0.2 and gi = 1 N/mm, we also ran simulations with variable ε. We
how the computed values of ghint/gb versus ε in Fig. 3(c). All simulations results in this subfigure
ere computed on a single mesh with h ≈ 0.01 mm. We observe that as ε decreases, the value
f ghint gets closer to the exact value gint. Because of the differences between RVFTI in §5 and
he theory in §4, and several other differences, it is not guaranteed that the numerical simulations
hould converge under ε refinement. For these reasons, we find the results in Fig. 3(c) especially
emarkable.

igure 3: (a) Schematic of SEN specimen subjected to the asymptotic mode I displacement field along the boundary.
he specimen has width b, the initial notch has length a = b/4, and the interface thickness is 2mε. (b) Comparison
etween the theoretical interface fracture toughness, gint/gb, and that computed from the simulations, ghint/gb, for
∈ {0.1, 0.2, 0.3, 0.4, 0.5}, ε = b/500, gi ∈ {1,5} N/mm and gb/gi ∈ {2, 5, 20}. (c) Variation in the computed value

f ghint/gb versus ε for the cases where m = 0.2 and gi = 1 N/mm.

.2. Kinking of a crack at a bi-material interface

We benchmark RVFTI by comparing against kink angle predictions made by He and Hutchin-
on [25] for a semi-infinite crack along the interface between two materials and subjected to far-field
oading. The geometry of the crack is illustrated in Figure 4, where a semi-infinite crack is present
long the interface of material 1 and 2. The shear modulus and Poisson’s ratio of materials 1 and
are (µ1, ν1) and (µ2, ν2), respectively.

He and Hutchinson assume that a new crack grows from the tip of the semi-infinite crack along
fixed direction. In this section, the original semi-infinite crack is termed the interface crack and

he new crack segment is termed the kinked crack. The angle that the kinked crack makes with
espect to the interface (measured clockwise from the x-axis) is called the kink angle ω and its
ength is denoted as a.
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The domain is loaded at infinity so that the interface crack (without the kink) is under a state
f mode I and mode II stress intensity; these remote stress intensity factors are denoted K1 and

2, respectively. Following [25], the mode mixity is described using a non-dimensional parameter
alled the phase angle γ = arctan(K2/K1). The parameter γ indicates whether the loading is mode
or mode II dominant; γ = 0 under pure mode I loading, while γ = π/2 for pure mode II loading,
nd γ < π/4 (resp. γ > π/4) for mode I (resp. mode II) dominant loading. Expressions for the
symptotic mode I and mode II displacement fields in the vicinity of the interface crack in terms
f K1 and K2 will be described later.

igure 4: Semi-infinite crack along a bi-material interface. (a) Schematic of the geometry, showing a crack along
he interface between materials 1 (gray) and 2 (brown), which has kinked by an angle ω (defined clockwise) into
aterial 2. The far-field loading is characterized by stress intensity factors K1 and K2 with stress intensity phase

ngle γ = arctan(K2/K1). The kink length a is assumed to be very small compared to any other relevant problem
imensions. (b) Quadrilateral mesh used in the finite element computations. The computational domain has radius

0 = 1000 mm and finite-width notch. (c) Closeup of the notch tip, showing the notch radius r0 = R0/1000, and
he wide interface with width 2mε = r0/5.

For the bi-material problem studied in [25], it had been shown that the kink angle depends on
wo non-dimensional material parameters called the Dundurs mismatch parameters α and β [73],
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hich depend as follows on the four material moduli:

α :=
µ1 (1− ν2)− µ2 (1− ν1)

µ1 (1− ν2) + µ2 (1− ν1)
, (23a)

β :=
1

2

(
µ1 (1− 2ν2)− µ2 (1− 2ν1)

µ1 (1− ν2) + µ2 (1− ν1)

)
. (23b)

he parameter α can be interpreted as a relative measure of stiffness; α = 1 when material 1 is
igid and α = −1 when material 2 is rigid. Physical interpretation for β is unclear. In this work
e choose β = 0 because for the case of β 6= 0 it has been shown that the interface crack faces

nterpenetrate [22, 74, 75], which is unphysical.
The mode I and II stress intensity factors of the kinked crack are denoted by KI and KII ,

espectively. They may be related to the remote stress intensity factors, K1 and K2, for the case
f β = 0, as given in [25],

KI + iKII =
(
c (ω, α) + d̄ (ω, α)

)
K1 + i

(
c (ω, α)− d̄ (ω, α)

)
K2, (24)

here i =
√
−1. The functions c and d are complex-valued in terms of ω and α, and the symbol

¯) denotes the complex conjugate.

.2.1. Analytical results

The procedure employed in [25] to predict the kink angle for a given loading γ and α (and
articularized to β = 0) is briefly reviewed. For a given loading γ, the interface crack is assumed
o have kinked by an angle ω, forming an extended crack of length a. The kinked crack surfaces
re free of traction. In [25], the kinked crack is considered to be a distribution of edge dislocations.
o enforce traction free conditions on the kinked crack segment, the stress fields from the interface
rack and the distribution of edge dislocations are superimposed and set to zero. This leads to a
ingular integral equation which is solved numerically using Chebyshev polynomials. The complex
alued functions c and d are tabulated for different values of ω. The energy release rate G, given by

G = q−2 G0

[
|c|2 + |d|2 + 2<

(
cde2iγ

)]
, (25)

s computed as a function of ω, where | · | denotes the magnitude of a complex number. In this
quation, the symbol q :=

√
1/(1 + α), the symbol G0 is the energy release rate of the interface

rack and the symbol <(·) is the real part of complex number. A crack propagation criterion is
ecessary to specify the kink angle ω. In [25], the crack is assumed to kink in the direction that
aximizes G for a given α and γ. This condition is called the maximum energy release rate (MER)

riterion. The optimal kink angle is denoted by ω̂. For a given γ and α, the kink angle ω̂ can be
omputed by setting dG/dω|ω=ω̂ = 0 for d2G/dω2|ω=ω̂ < 0.

To compute ω̂ from (25), the functional form of the complex valued functions c(ω, α) and
(ω, α) are necessary. No analytical solution exists, so one would need to solve the singular integral
quation as in [25] and tabulate the coefficients for c(ω, α) and d(ω, α). To circumvent this issue,
eljkovic [76] proposed closed form approximations to the complex valued functions c(ω, α) and
(ω, α), given as

c(ω, α) ≈ 1

2

√
1

1 + α

(
e−

iω
2 + e−

3iω
2

)
, (26a)

d(ω, α) ≈ 1

4

√
1

1− α
(
e−

iω
2 − e 3iω

2

)
. (26b)
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e reiterate that the prior expressions are specialized for the case of β = 0.
We evaluate the accuracy of the approximate functions given in (26) by computing the kink

ngles for the cases of α = {0, 0.25, 0.5} and comparing them to those computed with the tabulated
ata provided in [25]. In Fig. 5(a), we plot the computed kink angles as a function of phase angle
using the tabulated data of [25] and the approximate functions [76] for α = 0. The tabulated

ata and approximate functions produce similar kink angles ω̂, particularly at low γ. We also plot
he kink angles for α = 0.25 and 0.5 in Figs. 5(b) and (c), respectively. The values of ω̂ computed
sing the approximate functions of [76] are less accurate for α = 0.5 than for α = 0 or α = 0.25.
hus, we can conclude that the approximate closed form solutions for c(ω, α) and d(ω, α) given in

26) should not be used for α > 0.5.

.2.2. Simulations with RVFTI

To benchmark RVFTI, we propose to compute the kink angles for an interface crack for α =
0, 0.25, 0.5} and 0 ≤ γ ≤ π/4. We consider a circular domain as shown in Fig. 4(b), where the
nterface crack is modeled as a notch whose length is equal to that of the radius R0 = 1000 mm.
he region above the notch is material 1 and the region below the notch is material 2. An enlarged
iew of the notch root is shown in Fig. 4(c), along with a local polar coordinate system attached
o the notch tip. Contrary to polar angle θ, we measure kink angle ω̂ clockwise with respect to the
-axis. The notch root radius is r0 = R0/2000. For the phase-field model, we select ε = r0 and

ε = 2.5×10−4, while the widened interface ahead of the notch has width mε = r0/10 = R0/20000.
We set µ1 = 1000 MPa and ν1 = 0.3 for material 1, while the elastic parameters for material 2

re determined from β = 0 and α ∈ {0, 0.25, 0.5}. We assign to both materials an identical bulk
racture toughness gb, while the widened interface has fracture toughness gi. The values of gb and

i are chosen to ensure that the crack will always kink into material 2 (see [25] for details).
Along the outer boundary (at r = R0, a sufficient distance from the notch tip), the domain is

ubjected to the asymptotic displacement fields for an interface crack. With β = 0, these may be
ritten in complex notation as

ux + iuy =
|K|√R0

µ1

√
1

8π

(
(3− 4ν1) ei(

θ
2−γ) − e−i( θ2 +γ) − i sin θ ei(

θ
2 +γ)

)
, (27a)

or material 1, and

ux + iuy =
|K|√R0

µ2

√
1

8π

(
(3− 4ν2) ei(

θ
2−γ) − e−i( θ2 +γ) − i sin θ ei(

θ
2 +γ)

)
(27b)

or material 2, where |K| =
√
K2

1 +K2
2 . The individual displacement components ux or uy are

xtracted from (27) as the real or imaginary parts of the previous equations, respectively. In our
imulations, for each γ, we slowly increase the stress intensity magnitude |K| until a crack nucleates
t the notch tip and grows into material 2.

The presence of a non-zero notch root radius and the phase-field length scale ε slightly alters
he stress field around the crack tip. However, by choosing these dimensions to be small compared
ith R0, the alteration to the stress field should be minor. As a check, we compare the resulting

tresses on the outer boundary (at r = R0) with the analytical expressions, which are given for
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= 0 in the following form:

σ11 + σ22 =
|K|√
R0

1√
2π

(
e−i(

θ
2 +γ) + ei(

θ
2 +γ)

)
, (28a)

σ11 − σ22 + 2iσ12 =
|K|√
R0

eiθ√
2π

(
ei(

θ
2 +γ) cos θ − e−i( θ2 +γ)

)
. (28b)

he individual stress components may be computed by extracting the real and imaginary compo-
ents in (28), though we omit these expressions for brevity. In Fig. 6, we plot the analytical stress
omponents as well as those computed from the finite element simulations, and we observe close
greement between the two.

We show example contour plots of the damage field d from the RVFTI simulations in Fig. 7,
orresponding to the cases with α = 0.25 and γ = π/12 and π/6. We also show how the kink angle

is measured from the damage field. The final kink angles are presented in Fig. 5, alongside the
heoretical predictions of [25]. Despite our use of a finite-radius notch and the subtle ambiguity of
easuring kink angles from d, it can be seen that the kink angles compare reasonably well to the

nalytical values.
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igure 5: Theoretical and computed kink angles ω̂ versus mode mixity γ = tan(K2/K1) for a crack at a bi-material
nterface with Dundurs mismatch parameters β = 0 and (a) α = 0, (b) α = 0.25, and (c) α = 0.5. The black circles
how the theoretical angles computed from (25) using tabulated values of c(ω, α) and d(ω, α) from [25]. The red lines
how the theoretical angles computing using approximations of c(ω, α) and d(ω, α) in (26). The blue circles are the
ink angles observed in the simulations using RVFTI.

.2.3. Crack trapping at the interface

We now consider the same semi-infinite crack at the bi-material interface, but we examine the
onditions under which the crack would continue to grow along the interface, rather than kinking
nto material 2, see Fig. 8(a). In this situation, despite possible shear loading, the interface “traps”
he crack. The possibility of crack trapping is considered in [25], where the authors state that
s long as the material fracture toughness (gb) is sufficiently larger than the interface fracture
oughness (gint), the crack will remain trapped at the interface. The authors make the condition
ore precise: if γ is fixed, but the loading intensity is slowly increased, then by Griffith’s criterion

nd the condition of maximum energy release, the crack will grow in the first direction which reaches
(ω) = g(ω). From (25), there emerges two cases. First, if the crack were to kink into material 2,
hen G∗ = maxω G(ω) = gb, while G0 < gint. In words, there exists a non-zero potential kink angle
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igure 6: Variation of the far-field stress components versus polar angle θ. The red circles show the data obtained
rom a simulation using RVFTI with α = 0.25 and γ = π/12. The black lines are the analytical formula in (28).

x

y

ω̂

a

x

y

b

0.00

0.25

0.50

0.75

1.00
d

igure 7: Contour maps of the damage field computed using RVFTI for the crack at a bi-material interface. The
imulations were for α = 0.25 and (a) γ = π/12 and (b) γ = π/6. The crack set is taken where the material is
ully-damaged, d = 1, and the kink angle ω̂ is measured clockwise from the x-axis.

or which G reaches the fracture toughness gb, while there is insufficient driving force for the crack
o continue along the interface. The second case is the opposite, wherein G0 = gint, but G∗ < gb.
hese two cases may be checked simultaneously by comparing the ratios G∗/G0 and gb/gint; the
inking and trapping cases correspond to G∗/G0 > gb/gint and G∗/G0 < gb/gint, respectively.

We assess the prior condition using RVFTI. For these simulations, we use the same domain and
oundary conditions as before; however we use a wider weak interface with mε = 2r0 = R0/1000.
e also select kε ∈ [10−6, 10−3]. We fix γ = 3π/20 and vary α ∈ [0, 0.5]. We choose gi = 0.4 N/mm,

nd we select gb so that gb/gint ∈ [1, 2.6], a range which encompasses the predicted values of G∗/G0.
In Fig. 8(b), we show the results of our computations, indicating for which combinations of α

nd gb/gint the crack is trapped versus kinks. Using the expressions of [76] for the functions c(ω, α)
nd d(ω, α), we also plot the variation of G∗/G0 with respect to α. The points above (resp. below)
his curve are those for which gb/gint > G∗/G0 (resp. gb/gint < G∗/G0), which indicates trapping
resp. kinking) according to the theory of [25]. We observe some quantitative disagreement between
he simulations and theory. Notably, there are data points for which the crack kinks despite the
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heory predicting trapping. Nonetheless, there is qualitative agreement between the theoretical and
omputational boundaries between the trapping and kinking regimes.

igure 8: Investigation of crack trapping at a bi-material interface. (a) Visual representation of crack kinking and
rack trapping at a bi-material interface. (b) Simulation results using RVFTI for mode mixity γ = 3π/20, and
arying the Dundurs mismatch parameter α and the fracture toughness ratio gb/gint. Circles denote simulations
here kinking out of the interface was observed, while crosses correspond to simulations where the crack remained

rapped at the interface. The solid black curve shows the ratio G∗/G0, computed using the approximations of [76].
rom the theory of [25], crack trapping is expected whenever gb/gint > G∗/G0 (above the black curve), while kinking
ccurs otherwise.
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. Numerical simulations of toughness enhancement

In this section, we use RVFTI to investigate toughness enhancement in materials with weak
nterfaces. In particular, we study two-dimensional analogues of micro-architectural designs in
Bs and ceramic composites to gain insights into the mechanisms which enhance toughness. Two
pecimens with specific micro-architectural designs are considered in this section:

1) a three-point bending in a multi-layered composite, where the bulk material has weak interfaces
aligned perpendicular to the fracture growth direction, and

2) a single edge notch (SEN) geometry with a sinusoidal interface aligned with the crack growth
direction.

.1. Multi-layered specimen

The motivation to study multi-layered composites comes from the micro-architecture of spicules.
s previously noted, spicules have a three-dimensional micro-architecture where the bulk material

mineral phase) is arranged in concentric layers separated by interfaces (organic phase).
Multi-layered geometries, which can be considered two-dimensional analogues of spicules, have

een studied extensively in the context of ceramics [15]. Clegg et al. [15] conducted experiments on
iC, which was made into thin sheets and coated with graphite forming weak interfaces. The sheets
ere then pressed together to form a layered micro-architecture which can be seen in Fig. 9(a.ii).
he work of fracture for the layered SiC-graphite material, which was notched and tested under

hree point bending, was found to be 4625 J/m2, while that of monolithic SiC was 62 J/m2.
s seen in Fig. 9(a.ii), the fracture surface of the layered material showed crack deflection into

he weak interfaces. Meanwhile, the load-displacement response in Fig. 9(a.i) indicates that the
eramic composite did not catastrophically fail once the peak load was reached; rather, the material
ailed in a sequence of catastrophic steps beyond the peak load. From these experiments, it is
nclear whether crack deflection was the only toughness-enhancing mechanism. Furthermore, any
orrelation between the crack path and the observed step-like features in the load-displacement
esponse was not well investigated. We aim to address these points using RVFTI.

We consider the three-point bending specimen shown in Fig. 9(b), where the bulk material
ontains a number of weak interfaces that are aligned parallel to the span of the geometry. These
nterfaces are roughly uniformly-spaced along the vertical direction of the specimen. For the purpose
f RVFTI, we take ε = 0.025 mm, and we widen the interfaces to have total thickness 2mε =
.05 mm. We set kε ∈ [0, 5 × 10−4]. The bulk material has fracture toughness gb = 0.5 N/mm.
eanwhile, we select the fracture toughness in the widened interfaces to be gi = 0.05 N/mm, a

actor of ten smaller than gb. Via (8), the effective interface fracture toughness is around gint ≈
.125gb. The V-notch is oriented perpendicular to the interfaces and the geometry is subjected to
isplacement-controlled three-point bending loads applied at the midpoint of the top surface. We
ote that the elastic properties are uniform throughout the composite (here, we take µ = 8000 MPa
nd ν = 0.3); only the toughness is varied in the widened interfaces.

Figure 9(c) shows the effect of the number of layers on the load-displacement response. We
bserve that the geometry with zero interfaces (i.e., with uniform toughness gb) reaches a peak load
nd fails in a brittle manner, as shown by the almost vertical reduction in load after the peak is
eached. However, in the specimen with one interface, the load-displacement curve shows a step-like
eature after the peak load is reached similar to that seen by Clegg et al. [15]. We examine this
urther for the specimen with three interfaces, with the final crack path shown in Fig. 9(d). In
ig. 9(e), we show six stages of the evolution of the crack path, labelled A–F; the corresponding
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oints in the load displacement curve are indicated with black dots in Fig. 9(c). The peak load is
eached at A, when the specimen fractures and grows up to the first weak interface at B. Between

and C, the crack deflects into the first weak interface. The crack then grows up to the second
eak interface at D and is trapped in the second weak interface until E. Finally, the crack grows

o the third interface at F, where it remains trapped until the simulation is terminated.
Observing the experimental and simulated load displacement curves in Fig. 9, one might expect

hat the vertical sections of the curve would coincide with rapid crack growth in the bulk material,
hile the flat parts of the steps would correspond to stable crack growth within the weak interfaces.

n contrast to our expectation, points B and D (when the crack first reaches an interface) are not at
he bottom of the steps of the load-displacement curve. Rather, the load continues to drop even as
he crack deflects into the interface. While this behavior may be an artifact of the simulation, the
xperiments of Clegg et al. [15] do not use high-speed video recordings, and hence do not rule out
he possibility of unstable growth of the deflected cracks within the weak layers. We believe this to
e an interesting phenomenon which requires further experimental and numerical investigation.

We also remark that the load-displacement curve is flatter and longer on subsequent steps
between B–C and D–E, and beyond F). These features are also present in the load-displacement
urve for SiC-graphite, Fig. 9(a.i). The increase in step flatness parallels the increase in system
ompliance as the crack grows. A possible interpretation for the increase in step length comes
rom beam bending theory. In beam bending theory, the maximum bending stress is proportional
o both the applied displacement and the height of the beam. As the crack grows upward and
eflects along a weak interface, the effective height of the beam decreases as the bottom layers of
he beam are delaminated. Hence, if a vertical crack will nucleate when a critical stress is reached,
hen the necessary displacement must increase as the height is reduced. Finally, with respect to
he remaining beam height, the thickness of a single layer represents an increasing fraction as the
umber of layers is reduced, thereby resulting in longer steps.

We lastly compute the work of fracture (i.e. the area under the load-displacement curves) for
he multi-layered specimens. Respectively, for zero, one, two, three, and four interfaces the work
f fracture is 1250, 1950, 2330, 2240, and 2110 J/m2. The work of fracture increases from zero
o two interfaces, but then decreases for three and four interfaces. This suggests that there may
e an optimal number of interfaces for toughness enhancement, though further work is needed to
nderstand how this number depends on design choices such as the material parameters, interface
pacing, and specimen geometry.

.2. Wavy interface

We demonstrated in the previous example how the presence of weak interfaces can enhance
oughness via crack deflection and arrest. We next explore how the shape of the interface can also
nhance toughness, which plays an important role in some SBs. For example, rams have wavy
nterfaces in their skull called suture joints that have been experimentally shown to enhance tough-
ess [77]. Suture joints which enhance toughness are also found in the beaks of woodpeckers [78].
here have been experimental studies to determine the role of wavy, weak interfaces in enhanc-

ng toughness [79, 80], and several models have been used to understand this process [28, 81, 82].
owever, the role of other geometric factors, such as the amplitude of waviness, on toughness en-
ancement, is not well understood because the aforementioned models do not predict the crack
ath.

In this section, we review how interface geometry affects the toughness of the structure by
omputing the work of fracture for single edge notch (SEN) specimens with straight and wavy
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igure 9: Toughening in a multi-layered specimen. (a.i) Load-deflection response of a SiC-graphite composite [15].
a.ii) Final fracture surface in SiC-graphite composite [15]. (b) Geometry and loading of a micro-architecture with
ayers. The bulk material has fracture toughness gb, while the widened interfaces are assigned fracture toughness

i. The geometry has a V-notch and is subjected to three point bending loading conditions. (c) Load-displacement
esponse for the layered micro-architecture specimen with zero to four interfaces. (d) Final crack path for the
pecimen with three interfaces. (e) Evolution of the crack path. The labels A–F in the panels of (e) coincide with
he points of the load-displacement curve in (c).
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nterfaces, depicted in Fig. 10(a). The notch has radius 0.01 mm and length 0.1 mm. For the
avy interface specimen, the interface is initially straight ahead of the notch so that the crack

nitiation load is identical to that of the straight interface specimen. After the straight portion, the
avy interface is sinusoidal with wavelength and amplitude Λ = A = 0.0625 mm. The specimens
ave the same elastic parameters as the previous example, µ = 8000 MPa and ν = 0.3. The bulk
aterial has fracture toughness gb = 0.5 N/mm, and we select a wide-interface fracture toughness

i = gb/100. For RVFTI, ε = 0.004 mm, kε = 5× 10−5, and we widen the interfaces by an amount
mε = 0.004 mm. From these parameters, we compute gint ≈ 0.02gb. The specimens are subjected
o vertical displacement on the top surface of the domain.

The load-displacement response for both the specimens is shown in Fig. 10(b). The wavy
nterface specimen shows a higher work of fracture than the straight interface specimen. When the
nterface is straight, the crack propagates along the interface (see Fig. 10(c)). However, when the
nterface is wavy, the crack path becomes more complicated (see Fig. 10(d)).

Similar to the crack evolution in the multi-layered specimens, one might expect the crack to
xhibit unstable growth between segments of the sinusoidal interface, followed by interludes of stable
rowth or trapping along the interface. However, the simulations show a more complicated behavior
ith three regimes. In Fig. 10(e), we show snapshots of a portion of the crack evolution as it grows
etween two segments of the weak interface corresponding to load steps A–E. The corresponding
oints in the load-displacement curve are shown in Fig. 10(b). From A to B, the crack is trapped
long a segment of the weak interface. From B-C, the crack breaks out of the interface and grows
n a stable fashion until the crack tip is roughly halfway between segments of the weak interface.
rom C-D, the crack growth becomes unstable and the crack rapidly grows to the next segment of
he weak interface, where it is trapped until E and the cycle continues. This crack growth behavior
s highly nontrivial, featuring growth along the interface and in the bulk material, as well as stable
nd unstable propagation, which highlights the ability of RVFTI to capture a wide variety of crack
rowth phenomena.

There are other interesting observations during the crack growth process. Cracks nucleate in
he weak interface even before the main crack intersects it (see load step C in Fig. 10(e)). These
aughter cracks form at the peaks and troughs of the weak interface and immediately ahead of
he main crack. The effective interface fracture toughness is weaker than the bulk material (by
pproximately a factor of 1/50), so cracks nucleate due to the tensile stresses which are present
head of main crack. This phenomenon is similar to the Cook-Gordon mechanism [83], where the
tress field of a crack approaching perpendicularly to a weak interface causes the nucleation of
aughter cracks along said interface.

Lastly, like with the number of interfaces in the previous example, there is further room to
xplore how the amplitude A and wavelength λ of the wavy interface can be chosen to optimize the
ork of fracture.
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igure 10: The effect of interface shape on specimen toughness. (a) Geometry and loading for the (a.i) straight
nd (a.ii) wavy interface specimens. (b) Load-displacement curves for the two specimens. Step-like features are
een in the wavy interface specimen’s load-displacement response, see inset. (c) Final damage field for the straight
nterface specimen. (d) Final damage field for the wavy interface specimen. (e) Zoomed view for a portion of the
amage field evolution in the wavy specimen. The labels A–E in subfigure (e) coincide with the black points in the

oad-displacement curve in subfigure (b).
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. Discussion and conclusions

In this work, we presented a modified regularization of VFT to incorporate weak interfaces.
ur goal was to model SBs, which are composites primarily made of a stiff mineral phase and

nterfaces composed of a compliant organic phase. In SBs, the interface thickness is several orders
f magnitude smaller than that of the stiff mineral phase, and it is infeasible to resolve numerically
cross the interface. We note that our procedure may also be applied to problems with zero-thickness
atomically-thin) interfaces, such as grain boundaries or adhesive contact between dissimilar media.

In our modified regularization approach, we widened the weak interfaces by 2mε, where ε is
he regularization length scale for VFT, and set the fracture toughness inside to a value gi < gb,
here gb is the fracture toughness of the surrounding material. In this way, the interfaces had

educed toughness, and the thickness of the interface decreased to 0 along with ε. We presented
n analytical expression for the effective interface fracture toughness gint in the limit of vanishing
hickness of the interface, which depended on m, gb, and gi. Notably, one was able to select m and

i to achieve any desired value for the interface toughness gint. We then proved a Γ-convergence
esult for two-dimensional domains with weak interfaces.

The regularization approach in this work is an important step towards modeling interface frac-
ure and the complex crack patterns that form in SBs. In particular, we derived an effective fracture
oughness for interfaces in a material with homogenous gb. In SBs such as spicules, the organic
hase is mixed with the mineral phase, which may cause the fracture toughness gb to vary within the
ineral phase. Future work is needed to determine how the effective interface fracture toughness
epends on local variation in gb. Further, even under constant gb, one may wish to model interfaces
ith varying toughness (i.e. gint(x)); it is interesting to explore whether the approach in this paper
ay accommodate such behavior, perhaps through appropriate selection of gi or m.

We applied the modified regularization approach within a numerical implementation of VFT,
hich we termed RVFTI. While additional work is needed to connect the numerical model with

he theory, we demonstrated that RVFTI reproduced the expected interface fracture toughness pre-
icted by the theory. RVFTI was also used to study two toughening mechanisms in SBs due to the
resence of layered microarchitectures and wavy interfaces. For the layered microarchitecture, we
bserved the “stepped” load-displacement curves present in experiments [15], which corresponded
n the simulations to crack arrest and deflection at the weak interfaces. Meanwhile, for the wavy
nterface specimen, bulk crack growth was impeded by both crack arrest and deflection, as well
s the formation of daughter cracks. In both cases, more exhaustive parameter studies may be
erformed to explore which configurations achieve “optimal” toughness.
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ppendix A. Additional mathematical results

roposition 5 (Properties of the distance function). Let A ⊂ Rn be a bounded domain. Then
ist(x, A) : Rn → R is a Lipschitz continuous function with Lipschitz constant 1. Moreover,
ist(x, A) = dist(x, A).

roof.

1. Let y ∈ Rn. Then dist(x, {y}) = |x− y| : Rn → R is Lipschitz continuous with constant 1.

(a) For any x, z ∈ Rn, we apply the reverse triangle inequality

∣∣dist(x, {y})− dist(z, {y})
∣∣ =

∣∣|x− y| − |z − y|
∣∣ ≤ |(x− y)− (z − y)| = |x− z|.

2. The function dist(x, A) : Rn → R is Lipschitz continuous with constant 1.

(a) Fix x ∈ Rn. Via Step 1 the function dist(z, {x}) : A → R is Lipschitz continuous over
a compact set. Hence, it has a minimum, which it achieves at some point a ∈ A. Thus,
dist(x, A) = |x− a|.

(b) Then, for any x,y ∈ Rn:

dist(y, A)− dist(x, A) = inf
z∈A
|y − z| − |x− a| ≤ |y − a| − |x− a| ≤ |y − x|,

where the last inequality results from the reverse triangle inequality.
(c) We may repeat item (a) for y; we define its closest point in A to be b. Then,

dist(x, A)− dist(y, A) = inf
z∈A
|x− z| − |y − b| ≤ |x− b| − |y − b| ≤ |x− y|.

(d) Combining the two inequalities gives the desired conclusion.

∣∣dist(x, A)− dist(y, A)
∣∣ ≤ |x− y|.

3. Finally, we prove dist(x, A) = dist(x, A).

(a) For any x ∈ Rn, let a ∈ A be a closest point (i.e. dist(x, A) = |x− a|).
(b) There is a sequence (an)n ⊂ A which converges to a.
(c) Because A ⊇ A, we must have dist(x, A) ≤ dist(x, A).
(d) For any n, we have

|x− a| = dist(x, A) ≤ dist(x, A) = inf
z∈A
|x− z| ≤ |x− an| ≤ |x− a|+ |a− an|.

(e) Since |a− an| can be made arbitrarily small as n→∞, we have by the squeeze lemma

|x− a| ≤ dist(x, A) ≤ |x− a|.

which gives the conclusion.

Here, we present some mathematical results related to the Hausdorff measure of curves and
ubsets of curves, which are used in the proofs in §4. The first result shows an equivalence between
he Hausdorff measure and the arc length of a curve.
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roposition 6 (Hausdorff measure and arc-length). Let γ : [a, b]→ R2 be a continuous, injective,
ectifiable curve with length L. Then, if Γ := γ([a, b]),

H1(Γ) = H1(γ((a, b))) = L.

roof. The proof may be found in an equivalent result [84, Theorem 6.3.8].

The next result concerns the Hausdorff measure of subsets of curves.

roposition 7 (Hausdorff measure of subsets of curves). Let γ : [0, L] → R2 be an injective,
1-continuous function such that |γ′(s)| = 1 for almost every s ∈ [0, L]. This is an arc-length

arameterization of the curve γ([0, L]). Then, for any A ⊆ [0, L],

H1(γ(A)) = L1(A).

roof.

1. We recapitulate [56, Theorem 1.8]. For any Radon measure µ (such as the Lebesgue measure),

µ(A) = inf{µ(U) : A ⊆ U, U open}.

2. Any open set U ⊂ R may be written as a countable union of pairwise-disjoint open intervals
(Ik)k.

3. Combining Steps 1 and 2,

L1(A) = inf

{ ∞∑

k=1

L1(Ik) : A ⊆
∞⋃

k=1

Ik, Ik pairwise-disjoint

}
.

Without issue, we may restrict these sets to lie within the interval [0, L] (i.e. redefine Ik ←
Ik ∩ [0, L]).

4. Next, let us take an infimizing sequence of open sets (Uj)j . Then, we have

L1(Uj)→ L1(A).

Moreover, L1(Uj \A)→ 0.

5. By [56, Theorem 2.8], we have

H1(γ(Uj \A)) ≤ Lip(γ)L1(Uj \A)→ 0,

where Lip(γ) is the Lipschitz constant for γ (here equal to 1). This means

H1(γ(Uj))→ H1(γ(A)).

Moreover, applying Proposition 6 to each pairwise-disjoint interval Ijk in Uj ,

H1(γ(Uj)) =

∞∑

k=1

H1(γ(Ijk)) =

∞∑

k=1

L1(Ijk) = L1(Uj).

Hence, taking the limit as j →∞ of both sides, we reach the conclusion

H1(γ(A)) = L1(A).
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The final result concerns covering closed subsets of a rectifiable curve by a finite number of
airwise disjoint, closed, simply-connected subsets.

roposition 8. Let γ : [0, L] → R be as in Proposition 7, and let A ⊂ γ([0, L]) be closed or
1-almost closed (i.e. H1(A/A) = 0). Then, for any η > 0, there exists a finite cover of A by

airwise disjoint sets (Ai)
Nη
i=1 such that each Ai is the image of [ai, bi] ⊆ [0, L] under γ, and

H1(A) = H1(A) ≤ H1



Nη⋃

i=1

Ai


 =

Nη∑

i=1

H1(Ai) < H1(A) + η.

roof.

1. If A isH1-almost closed, thenH1(A) = H1(A), and so the result is unchanged. Going forward,
we assume A is closed.

2. Let B := γ−1
i (A). By Proposition 7, we have

H1(A) = L1(B).

3. Because γ is a continuous function and A is closed, B must also be closed.

4. As in the proof of Proposition 7, for any η > 0, we may find an open set U ⊃ B such that

L1(U) = L1(B) + η.

Again, this is an open subset of R, and hence can be expressed as a countable union of
pairwise-disjoint open intervals (Ui)

∞
i=1. Again, without issue, we may restrict these sets to

the domain [0, L] (the domain of γ).

5. The set (Ui)
∞
i=1 is a cover of B. Meanwhile, B is a closed and bounded subset of R, and hence

is compact. Thus, there exists a finite subcover consisting of pairwise-disjoint open intervals

(Ui)
Mη

i=1 (we have not relabeled in i) such that

B ⊂
Mη⋃

i=1

Ui

and hence

L1(B) ≤
Mη∑

i=1

L1(Ui) <
∞∑

i=1

L1(Ui) = L1(U) = L1(B) + ε.

6. For each i, we may write Ui = (ai, bi), and Ui = [ai, bi]. We have L1(Ui) = L1(Ui) = bi − ai.
7. For any i 6= j, if Ui ∩ Uj 6= ∅, then these sets must overlap at one of the endpoints (since the

open sets are disjoint). Hence, we can define Vi = Ui ∪Uj = [min(ai, aj),max(bi, bj)], and we
have L1(Vi) = L1(Ui) + L1(Uj) = max(bi, bj) −min(ai, aj). Repeating this way, we end up

with a finite set (Vi)
Nη
i=1 of closed, pairwise disjoint intervals (with Nη ≤Mη) such that

Nη∑

i=1

L1(Vi) =

Mη∑

j=1

L1(Uj) =

Mη∑

j=1

L1(Uj) < L1(B) + η.
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8. Set Ai := γ(Vi). Then

A ⊂
Nη⋃

i=1

Ai.

We remark that since the closed intervals (Vi)i are pairwise disjoint, then so too must be the
sets (Ai)i. Thus,

H1(A) ≤ H1



Nη⋃

i=1

Ai


 =

Nη∑

i=1

H1(Ai).

9. Finally, by Proposition 7,

H1(A) ≤
Nη∑

i=1

H1(Ai) =

Nη∑

i=1

L1(Vi) < L1(B) + η = H1(A) + η.

ppendix B. Proof of preliminary results

Here, we present the proofs for the preliminary results in §4.3 and §4.4.

roof of Proposition 2.

1. As the composition of two continuous functions (the distance function to Ji and γi), the
function dist(γi(·), Ji) : [0,H1(Ii)] → R is also continuous. Moreover, it is defined over the
compact set [0,H1(Ii)] and so it achieves its maximum.

2. By assumption on I (cf. §4.1), an interface curve only intersects other interface curves (or the
domain boundary) at its endpoints. Hence, maxs∈[0,H1(Ii)] dist(γi(s), Ji) > 0. Thus,

{s ∈ [0,H1(Ii)] : dist(γi(s), Ji) > 3ρ}

is nonempty whenever 3ρ < maxs∈[0,H1(Ii)] dist(γi(s), Ji); hence Aiρ is also nonempty.

3. We prove Property 1 in the Proposition. For this step, let x ∈ Aiρ.
(a) Let y ∈ Ij for j 6= i. Suppose `ixρ ∩ `iyρ 6= ∅, and let z ∈ `ixρ ∩ `iyρ. Then, via the

triangle inequality
|x− y| ≤ |x− z|+ |z − y| ≤ 2ρ.

However, y ∈ Ji, and so
|x− y| ≥ dist(x, Ji) > 3ρ,

which yields the contradiction 3ρ < 2ρ. Hence, `ixρ ∩ `iyρ = ∅.
(b) A similar sequence of steps may be used to show that `ixρ ∩ ∂B = ∅.
(c) Let y ∈ Ii with x 6= y. Suppose `ixρ ∩ `iyρ 6= ∅, and let z ∈ `ixρ ∩ `iyρ. Under the

coordinate map (11), we have

z = γi(sx) + |z − x|n̂i(sx) = γi(sy) + |z − y|n̂i(sy)

where sx = γ−1
i (x) and sy = γ−1

i (y). However, since sx 6= sy and |z−x|, |z−y| < ρ <
ρi, this implies that the coordinate map is not injective, which contradicts the existence
of the tubular neighborhood. Hence, `ixρ ∩ `iyρ = ∅.
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4. We next prove Property 2 in the Proposition. Let y ∈ `ixρ for some x ∈ Aiρ. Because
∪j 6=iIj ⊂ Ji, dist(y,∪j 6=iIj) ≥ dist(y, Ji) > dist(x, Ji)−|y−x| > 2ρ. Meanwhile dist(y, Ii) <
|y − x| < ρ, and so we must have

dist(y, I) = dist(y, Ii).

Next, suppose there exists z ∈ Ii (with z 6= x) such that dist(y, Ii) = |y − z|. From the
previous argument, we know z 6∈ {γi(0),γi(H1(Ii))} ⊂ Ji. Hence, γ−1

i (z) =: sz ∈ (0,H1(Ii)).
As a minimizer of the distance function in the interior of the interval [0,H1(Ii)], sz must also
be a stationary point of the function |y − γi(s)|2/2. However, this means that

(y − γi(sz)) · γ′i(sz) = (y − z) · t̂i(sz) = 0.

Thus, y ∈ `izρ or `ixρ ∩ `izρ 6= ∅, which contradicts Property 1. Hence, z = x, and so

dist(y, Ii) = |y − x|.

5. Finally, we prove Property 3 in the Proposition.

(a) We may show

Ii \Aiρ = γi
(
{s ∈ [0,H1(Ii)] : dist(γi(s), Ji) ≤ 3ρ}

)
.

(b) Applying Proposition 7,

H1(Ii \Aiρ) = L1({s ∈ [0,H1(Ii)] : dist(γi(s), Ji) ≤ 3ρ}).

(c) Via continuity of measures on nesting sets,

lim
ρ→0+

L1({s ∈ [0,H1(Ii)] : dist(γi(s), Ji) ≤ 3ρ}) = L1

(⋂

ρ>0

{s ∈ [0,H1(Ii)] : dist(γi(s), Ji)

= L1({s ∈ [0,H1(Ii)] : dist(γi(s), Ji) = 0

(d) By construction of I, the interface curve Ii may only intersect another interface curve
Ij or the domain boundary at its endpoints. Hence

{s ∈ [0,H1(Ii)] : dist(γi(s), Ji) = 0} = {0,H1(Ii)},

which is a set with only two elements, and so

L1({s ∈ [0,H1(Ii)] : dist(γi(s), Ji) = 0}) = 0.

(e) Hence,
lim
ρ→0+

H1(Ii \Aiρ) = 0.

(f) Finally,
H1(Γ ∩Aiρ) = H1(Γ ∩ Ii)−H1(Γ ∩ (Ii \Aiρ)).

Because H1(Γ ∩ (Ii \Aiρ)) ≤ H1(Ii \Aiρ), which shrinks to zero as ρ→ 0+, we have

lim
ρ→0+

H1(Γ ∩Aiρ) = H1(Γ ∩ Ii).
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We next prove Proposition 3. Our proof strategy mirrors existing proof strategies for Γ-lim inf
esults for domains with homogeneous fracture toughness g, for example [85, Theorem 8.1].

roof of Proposition 3.

1. Let us denote the functional in (15a) as Πεn . Without loss of generality, we may assume that
lim infn→∞Πεn [un, dn] <∞. Otherwise, the result is trivial to show.

2. Take a subsequence (unk , dnk)k of (un, dn)n so that

lim
k→∞

Πεn [unk , dnk ] = lim inf
n→∞

Πεn [un, dn].

Going forward, we abuse notation by referring to the subsequence as (un, dn)n.
3. Because limn→∞Πεn [un, dn] <∞, then there must be a constantM <∞ such that Πεn [un, dn]
M . In particular, the same bound holds for the elastic energy:

0 ≤
∫ ρ

−ρ
(1− dn)2C(u′n)2 dz ≤M <∞.

4. Via the Sobolev Embedding Theorem [86], H1((−ρ, ρ);R) ↪→ C0([−ρ, ρ];R), so that un and dn
have continuous representatives in their equivalence classes. In particular, these representative
functions are bounded on [−ρ, ρ]. Going forward, where it is necessary we will abuse notation
and let un and dn to refer to the continuous representatives in the original equivalence classes.

5. Pick 0 < δ < ρ. Using the uniform bound for the elastic energy and the continuity (and
boundedness) of the function (1− dn)2, we trivially have

M ≥
∫ δ

−δ
(1− dn)2C(u′n)2 dz ≥ C min

[−δ,δ]
(1− dn)2

∫ δ

−δ
(u′n)2 dz.

6. Take a subsequence (unk , dnk)k of (un, dn)n such that

lim
k→∞

(
min
[−δ,δ]

(1− dnk)2

)
= lim inf

n→∞

(
min
[−δ,δ]

(1− dn)2

)

and define this limit to be mδ, which must be non-negative. As before, we abuse notation by
referring to the new subsequence as (un, dn)n.

7. Suppose mδ > 0. There must exist an index N such that, for all n > N , we have

min
[−δ,δ]

(1− dn)2 > mδ/2.

This implies ∫ δ

−δ
(u′n)2 dz ≤ max

{
max

1≤k≤N

∫ δ

−δ
(u′k)2 dz,

2M

Cmδ

}
,

or that (u′n)n is a bounded sequence in L2((−δ, δ);R). By weak compactness in L2((−δ, δ);R) [5
Theorem 1.42], there is a subsequence (u′nk)k of (u′n)n such that u′nk ⇀ f ∈ L2((−δ, δ);R) as
k →∞. That is, for any v ∈ L2((−δ, δ);R), we have

∫ δ

−δ
u′nkv dz →

∫ δ

−δ
fv dz.
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If we restrict our attention to v ∈ C∞c ((−δ, δ);R), then applying integration by parts gives

∫ δ

−δ
u′nkv dz = −

∫ δ

−δ
unv

′ dz.

Using strong convergence of unk to u in L2((−δ, δ);R), we also have

−
∫ δ

−δ
unkv

′ dz → −
∫ δ

−δ
uv′ dz.

If we combine the weak convergence of u′nk to f and the strong convergence of unk to u, we
arrive at ∫ δ

−δ
fv dz = −

∫ δ

−δ
uv′ dz,

which holds for any v ∈ C∞c ((−δ, δ);R). However, the previous equation is precisely the
definition of the weak derivative of u, which implies that u ∈ H1((−δ, δ);R). This contradicts
the assumptions on u in the proposition statement.

8. Hence,

lim
n→∞

(
min
[−δ,δ]

(1− dn)2

)
= 0.

Thus, there must exist (zn)n ⊂ [−δ, δ] so that dn(zn)→ 1.

9. For each n, define
Vn =

{
d ∈ H1((−ρ, ρ);R) : d(zn) = dn(zn)

}
.

We have

Πεn(un, dn) ≥
∫ ρ

−ρ

g(z/εn)

2

(
d2
n

εn
+ εn(d′n)2

)
dz ≥ inf

d∈Vn

∫ ρ

−ρ

g(z/εn)

2

(
d2

εn
+ εn(d′)2

)
dz.

10. Any d ∈ Vn may be written as d = dn(zn)d̃, where d̃ ∈ Ṽn =
{
d ∈ H1((−ρ, ρ);R) : d(zn) = 1

}

Moreover,

inf
d∈Vn

∫ ρ

−ρ

g(z/εn)

2

(
d2

εn
+ εn(d′)2

)
dz = (dn(zn))

2
inf
d̃∈Ṽn

∫ ρ

−ρ

g(z/εn)

2

(
d̃2

εn
+ εn(d̃′)2

)
dz.

11. As a shorthand, let us define f(εn, zn, ρ) to be the infimum on the right hand side of the
previous equation. From the Euler-Lagrange equations, one may directly compute f(εn, ·, ρ)
and show that it is continuous on [−δ, δ] and hence admits a minimum. Then,

Πεn(un, dn) ≥ (dn(zn))
2
f(εn, zn, ρ) ≥ (dn(zn))

2
min

z∈[−δ,δ]
f(εn, z, ρ).

12. We take the limits of both sides of the previous equation as n→∞:

lim
n→∞

Πεn(un, dn) ≥ lim
n→∞

(
(dn(zn))

2
min

z∈[−δ,δ]
f(εn, z, ρ)

)
.
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Via Step 8, we have that limn→∞ dn(zn) = 1. We may show that

lim
n→∞

(
min

z∈[−δ,δ]
f(εn, z, ρ)

)
= gint.

Combining these limits, and recalling that the subsequences were chosen in Step 2 and Step 6
so that limn→∞Πεn(un, dn) is precisely the original limit inferior in (15a), we reach the desired
conclusion.

Finally, we prove Proposition 4.

roof of Proposition 4.

1. Let A := γi([s0, s1]). We claim that ∂Nρ(A) is a subset of the union of four sets: the
boundaries of ρ-neighborhoods of γi(s0) and γi(s1) (i.e. circles with radius ρ about the two
endpoints) and the images of [s0, s1] under under the maps

y±(s) = γi(s)± ρn̂i(s).

Proof of the claim:
(a) For any x ∈ ∂Nρ(A), let the closest point projection onto A be πA(x). We note that

this may not be unique depending on the value of ρ. Let s = γ−1
i (πA(x)).

(b) If s = s0 or s1, then we trivially have that x ∈ ∂Nρ(γi(s0)) or ∂Nρ(γi(s1)).
(c) If s ∈ (s0, s1), then x − γi(s) must be orthogonal to t̂i(s). Hence, it can be written as

γi(s)± ρn̂i(s).
We next bound the length of each of the four sets.

2. Each circle has circumference 2πρ.
3. Meanwhile, the arc lengths of the other two sets are computed using

∫ s1

s0

|y′±(s)|ds.

We may directly compute the derivatives of y±:

y′±(s) =

(
1± ρ

Ri(s)

)
t̂i(s)

9

Thus,
∫ s1

s0

|y′±(s)|ds =

∫ s1

s0

∣∣∣∣1±
ρ

Ri(s)

∣∣∣∣ ds ≤
∫ s1

s0

(
1 +

ρ

Rmin

)
ds ≤

(
1 +

ρ

Rmin

)
(s1 − s0).

4. Since s1 − s0 = H1(A), we can put together the estimates for the four pieces to yield the
conclusion.

9This follows from the fact that n̂i(s) = Qt̂i(s) = Qγ′i(s). Hence n̂′i(s) = Qγ′′i (s), which we note must be

rthogonal to n̂i(s). Finally, t̂i(s) · n̂′i(s) = t̂i(s) · (Qγ′′i (s)) = (QTt̂i(s)) · γ′′i (s) = −n̂i(s) · γ′′i (s) = 1/Ri(s), where
T is the transpose of the orthogonal transformation Q.
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