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Abstract

Design against adhesion in microelectromechanical devices is predicated on the
ability to quantify this phenomenon in microsystems. Previous research related
the work of adhesion for an adhered microbeam to the beam’s unadhered length,
and as such, interferometric techniques were developed to measure that length.
We propose a new vibration-based technique that can be easily implemented with
existing atomic force microscopy tools or similar metrology systems. To make
such a technique feasible, we analyzed a model of the adhered microbeam using
the nonlinear beam theory put forth by Woinowsky-Krieger. We found a new
relation between the work of adhesion and the unadhered length; this relation is
more accurate than the one by Mastrangelo redand Hsu (J. Microelectromech S.,
2, 44-55. (doi:10.1109/84.232594)) which is commonly used. Then, we derived a
closed-form approximate relationship between the microbeam’s natural frequency
and its unadhered length. Results obtained from this analytical formulation are in
good agreement with numerical results from 3D nonlinear finite element analysis.
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1. Introduction

Microelectromechanical systems (MEMS) technology has the capability of
connecting digital electronics to the physical world through sensing, actuation
or other mechanical means. Current MEMS technologies under research include
pressure transducers, accelerometers, microactuators [1, 2], biomedical devices [3],
optical components [4] and radio frequency (RF) MEMS switches [5]. However, a
critical impediment to the full commercialization of MEMS devices is reliability.
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Figure 1: (a) Scanning electron micrograph of RF MEMS bridge composed of aluminum (with
small additional percentage of silicon) and tantalum pentoxide dielectric coating on the substrate
[6]. b) Close-up of adhered (front) and unadhered (rear) members of bridge [6]. (c) Array of
cantilevered microbeams with the foremost beam adhered [7]

Stiction, the unintentional adhesion of compliant microstructure surfaces [8], is
notorious for causing serious reliability concerns [9]. Stiction occurs because sur-
face forces (e.g. capillary, electrostatic and van der Waals) dominate at submicron
scales [10, 7]. When elastic restoring forces of structures are unable to overcome
these strong adhesive forces, surfaces remain permanently adhered to each other
and cause device failure [11] (see Fig. 1).

Stiction may occur at two stages in the life of a MEMS device: fabrication and
in-use. Stiction failure during the fabrication stage is usually caused by capillary
forces during the release process. Thus, it can be avoided through methods such
as dry etching [12], super critical drying [13] and freeze drying [9]. In-use stiction
is more difficult to prevent. Straightforward methods for preventing in-use stic-
tion include the stiffening of structures [14] and increasing the gap size between
the devices and substrates [15]. However, these two methods may be undesir-
able for device performance [16]. Other solutions have been reported such as the
use of bumps [17], electric force induced vibration [18, 19, 20] and surface textur-
ing [21]. The most promising results have come from research in anti-stiction [22]
and self-assembled monolayer coatings [23]. Standardization of these techniques
requires the ability to quantify stiction — measuring the work of adhesion w 'and
studying its dependence on parameters such as surface morphology, hydrogen ter-
mination [24] and environmental conditions [25].

'The work of adhesion w is defined as w = y; + ¥, — y1» where y; and y, are the energies
needed to create new surfaces of each respective material and vy, is the energy required to create
a unit area of interface between the two surfaces [26]. In the case where the two materials are the
same, |, is zero and the w reduces to w = 2y; = 2y,. Other notations may simply refer to this
case as w = 2y with w also called the interfacial surface energy [27]. In our formulation, we refer
to w in the general sense, whereas in the work of Mastrangelo redand Hsu [28], the materials of



1.1. Measuring the work of adhesion using microbeam arrays

Previous work [29, 30] has related w to the unadhered length a (see Fig. 2red(c))
of the microbeam. This length a is a characteristic of the cantilever’s geometry,
mechanical properties of the cantilever’s material, and w between the surfaces of
the cantilever and substrate. Experiments could then be performed to measure a
and calculate w.

Mastrangelo redand Hsu [29] developed an interferometric method for find-
ing a through an array of cantilevers of increasing length, similar to that shown
in Fig. 1(c). For this method, they fabricated an array of microbeams on a sin-
gle chip through sacrificial etching with hydrofluoric acid. Microbeams of length
greater than a would become adhered due to capillary forces during the drying
process, while shorter microbeams would be unadhered. The shortest adhered mi-
crobeam with length closest to a could then be identified through a change in the
interference pattern over the array. This technique has limitations that prevent its
widespread application. First, it is required that a whole array of cantilevers be
manufactured on a single chip such that the adherence is caused by capillary forces
pulling the beams down to the substrate. The combinations of substrate and mi-
crobeam materials in such arrays are limited to what can be made on a single chip
through such microfabrication techniques. If one desires to characterize adhesion
between surface pairs that have been made of different materials, have undergone
different surface treatments or have different small-scale geometric features, then
multiple arrays must be manufactured. If one redwants to calculate statistics on
the measurement of a, redthen even more arrays must be made. The resolution of
each measurement also depends on the difference in length between each adjacent
cantilever, and choice of what range of lengths of cantilevers to manufacture pre-
supposes some knowledge of what the unadhered length a could be (knowledge
which is not always available since that is the value that the experiment is meant
to find).

redDe Boer and Michalske [30] performed similar experiments but redused
long microbeams adhered over long attachment lengths. Instead of observing a
change in the interference pattern over a whole array redof microbeams, a lines-
can over the top surface of redeach single beam was performed to acquire redthe
vertical displacements over the redwhole length of that beam. From plots of the
vertical displacementreds of the beam versus the length of the beam, a could
redthen be found. redDe Boer and Michalske’s method provides improvements

the beam and substrate are assumed to be the same so that w = 2y.



over that of Mastrangelo redand Hsu’s. For example, issues of the resolution of
the measurement depending on the difference in lengths of adjacent cantilevers
redare avoided. It is also not necessary redto make a full array of cantilevers.
However, it does require a full linescan of the microbeam such that multiple data
points must be processed to find a single experimental value of a. This data pro-
cessing must then be repeated for multiple microbeams if one wanted to calculate
statistics on the measured value of a.

1.2. Vibration based technique for measuring work of adhesion

Alternatively, we envision a vibration-based technique which we believe could
give a highly accurate estimate of a from a single point measurement. The mo-
tivation for this idea is that vibration-based techniques of measurement are well
established, are known to have high sensitivity and repeatability and are easy to
use on a MEMS chip [31, 32]. This technique would be implementable on an
atomic force microscope (AFM) or related surface metrology tools that involve
mechanical contact between a cantilevered structure and a surface. We illustrate
how this technique would work in Fig. 2(a)—(d).



(a) (b)

Cantilever
Substrate Lower
D777 ‘ T
© (d
Raise
Measure w, to compute a

BB

g

L

Figure 2: (a) Cantilever is positioned above the substrate. (b) The cantilever is brought down to the
substrate until it has adhered. (c) The cantilever is brought up a fixed distance g. (d) The natural
frequency wg of the adhered configuration of the cantilever is measured to compute a.

In an AFM system, a commercially available tipless cantilever [33] or one that
is specially manufactured [34] can be brought into contact with a surface and then
lifted a distance g. With the cantilever in its adhered configuration, its natural fre-
quency can redthen be found by measuring its thermal fluctuations; measurement
of the natural frequency through thermal fluctuations is already implemented as
part of a well-defined calibration method for AFM cantilevers [35, 36, 37, 38, 39].
Besides AFMs, there exist other examples of cantilever-based mechanical mea-
surement systems being used in research [40, 41]. Thus, measuring the vibration
of a microbeam is a feasible method to find a. However, as we detail below, no
satisfactory formula connecting the fundamental natural frequency of the adhered
microbeam wg to a is currently available. Therefore, we derive such a formula in
Section 33.2.



1.3. Justification for deriving a new relation between the unadhered length and
natural frequency of the adhered microbeam

Study of the vibrations of structures is a well established subject. Closed-form
expressions for the natural frequencies of a number of structural mechanics mod-
els can be found in standard textbooks on the subject. These structures include
strings, bars, shafts and beams in 1D and membranes, plates and shells in 2D [42].
Due to the microbeam’s high aspect ratio, several researchers have studied both
the free and forced vibrations of microbeams using beam theories. For example,
Tilmans et al. [43, 44, 45] studied the natural vibration of a free standing MEMS
microbeam using a modified Euler-Bernoulli beam theory. In the original version
of the Euler-Bernoulli theory, the structure only transmits bending moments and
shear forces along its length, whereas in the modified theory used by Tilmans
et al., the structure additionally transmits a constant tensile force. redGhayesha
et al.[46, 47, 48, 49, 50, 51] and Farokhi et al. [52, 53] studied redthe nonlin-
ear dynamics of microbeams by considering the size effect. They obtained size-
dependent frequency-response curves of both Euler-Bernoulli beams and Timo-
shenko beams through Galerkin and pseudo-arclength continuation techniques.
Zhang redand Zhao [54] studied the forced vibration of an adhered MEMS mi-
crobeam. The forcing was applied through a time varying voltage between the
microbeam and substrate, and the adhered beam was modeled using a nonlinear
beam theory. In addition to the bending energy, the model included two additional
terms in the elastic potential energy of the beam that the authors refer to as the
“stretching energy” terms. They used Galerkin and Newton-Raphson numerical
methods to solve the governing equations of their model. However, they provided
neither a closed form expression for the adhered microbeam’s fundamental natu-
ral frequency nor any theoretical analysis on the frequency’s dependence on the
problem parameters. Such a closed form expression is critical for determining a
from wg. Consequently, the previous work of Zhang redand Zhao is not directly
applicable to our proposed vibration based method for measuring wg.

Therefore, we derive a closed form expression relating a to wg using nonlinear
beam theory. We used the theory commonly called “extensible beam theory” to
predict the microbeam’s natural frequency. This theory is based off of the work
of Woinowsky-Kreiger [55] who used it to study the effect of axial stress on the
vibration of a simply supported beam. Thus, we will refer to it as Woinowsky-
Kreiger theory.

Outline of paper. In Section 2, we review previous theory by Mastrangelo redand
Hsu [29, 28] relating a to w of the microbeam. The full derivation of our formula



connecting a to wg is presented in Section 3. Our predictions of the deformed
configuration of the microbeam match nonlinear finite element analysis (FEA)
results better than the configuration reported by Mastrangelo redand Hsu [28],
which is currently widely used; these comparisons are shown in Section 44.1.
In Section 44.2, we use our model to compute fundamental frequencies under
different parameters and compare those values with nonlinear FEA results; errors
were found to be less than or equal to 1% for a range of parameters representative
of beam structures typically found in MEMS devices and AFM cantilevers.

2. Previous work connecting the unadhered length to the work of adhesion
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Figure 3: Schematic of the reference configuration, By, (a) of a cantilevered microbeam and (b)
of a fixed-fixed microbeam. (c) Schematic of a static, adhered configuration of a microbeam.
This adhered configuration corresponds to both the cantilever and the left half of the fixed-fixed
microbeam which is symmetric with the right. For elaboration on this point, see Section 22.2.



Mastrangelo redand Hsu [29, 56, 28] previously studied the adhered shapes of
microbeams whose geometries are shown in Fig. 3.

2.1. Cantilevered microbeams

The microbeam shown in Fig. 3(a) is a cantilevered beam, as in, one of its
ends is fixed while the other is free. This is the geometry of micromachined AFM
probes (Fig. 2) and redthose of other cantilever-based metrology systems and is
therefore relevant to our proposed vibration-based method for measuring w. Fig. 3
also shows the vectors E,-, i =1, 2, 3, which form an orthonormal set of Cartesian
basis vectors. The origin of the coordinate system, marked O, is located at the
left fixed support of the microbeam. We refer to the unadhered, free-standing
configuration of the microbeam (Fig. 3(a)) as the reference configuration 8. In
its reference configuration, the cantilever is stress free? and occupies the cuboidal
region [0, L] X[-H/2, H/2]1x[-W/2, W/2]. That is, it is straight with length L and
has a rectangular cross-section of width W and height H that is perpendicular to
the E, direction. It is positioned parallel to the substrate at a distance g above it.

Mastrangelo redand Hsu and other researchers [58, 30, 59] have previously
studied the mechanics of adhered microbeams using a configurational force bal-
ance approach. This approach was pioneered by Griffith [60]. The techniques
of configurational force balance have since been greatly expanded [61] and have
been applied to problems such as redthe adhesion of thin films, redthe peeling of
lap joints and double torsion tests [62]. Per this perspective, a configuration is
considered to be locally stable (metastable) if and only if infinitesimal perturba-
tions around that configuration lead to an increase in the system’s potential energy
I1. For the adhered microbeam, this requirement implies that

o
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%In [56], Mastrangelo redand Hsu give the elastic potential energy of the fixed-fixed microbeam
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is the internal residual tensile stress. Such residual stresses generally arise as a consequence of the
microfabrication processes used for manufacturing the microbeams [57]. However, such stresses
are likely to be absent in the AFM microcantilevers that will be employed in our proposed, new
experimental method (Fig. 2red(a)—(d). Thus, we ignore residual stresses in our current work. The
expression for the elastic potential energy given in (2.8) was obtained by putting og = 0 in the
expression given by Mastrangelo redand Hsu in [56, 28]. Also, there is a difference of a factor
of 1/2 between the two expressions. This is because the expression in (2.8) corresponds to only
one half of the symmetric, fixed-fixed microbeam, whereas that given by Mastrangelo redand Hsu
in [56, 28] corresponds to the full beam.

to be

2
(%) %], where T = WHoy is the axial residual tensile force and o



where A, is the magnitude of the area over which the microbeam and the substrate
are in contact. Generally, it is assumed that the contact region formed between
the cantilever and the substrate is simply connected and its delamination front is
straight and parallel to the £5 direction. Consequently, (2.1) is equivalent to the

condition
oIl 3

da
where a is the unadhered length of the microbeam (see Fig. 3(c)).
For the adhered microbeam, the total potential energy I1 consists of two terms:
the redadhesion energy Ils and the elastic potential energy Ilg. The redadhesion
energy (see [29]°) is generally taken to be

0, (2.2)

IIs = —w(L — a)W. (2.3)

In [29], Mastrangelo redand Hsu used Euler-Bernoulli beam theory [63] to model
the adhered microbeam. As such, the microbeam’s elastic potential energy was

taken to be )
“EI (0°Uy(X,)
IIg = —[—————| dX 2.4
g fo 5 ( o | 2.4)

where E is the Young’s modulus, / is the second moment of area of the mi-
crobeam’s cross-section, X; is the Cartesian coordinate corresponding to the E|
direction, and

X1\ X

vax) = -g(Z) (3-25). 2.5)

a a
which is the the displacement of the microbeam’s midsurface in the E, direction
(Fig. 3(c)). By substituting (2.5) into (2.4), we find Ilg to be

6EIg?
T

&= (2.6)

a

Computing IT by summing the expressions for Ilg and Ils given by (2.6) and
(2.3), respectively, then substituting into (2.2), Mastrangelo redand Hsu found the
relation between w and a to be

_ 3EH?g?
2a*

w 2.7)

3 In this case, the authors of [29] followed the assumption that the two surfaces, substrate and
beam, were of the same material; then, w is equivalent to 2.
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2.2. Fixed-fixed microbeams

Mastrangelo redand Hsu [28] also studied the adhered microbeam in the fixed-
fixed configuration shown in Fig. 3(b). These types of microbeams are found in
RF MEMS capacitive switches (Fig. 1(a)). This geometry is not relevant to our
proposed experimental method. Nonetheless, we still discuss it since our results
apply to it.

In its reference configuration, the cantilever microbeam that we use for our
derivations is equivalent to the reference configurations of both the left and right
halves of the fixed-fixed microbeam. Following Mastrangelo redand Hsu [28],
we assume that the fixed-fixed beam is symmetric about its midsection even in
its adhered configuration. Owing to this assumpton and the manner in which our
cantilever microbeam comes into contact with the substrate (Fig. 2(a)—(d)), even
when adhered, the cantilever microbeam we study is equivalent to both the left
and right halves of the fixed-fixed microbeam.

Mastrangelo redand Hsu analyzed the fixed-fixed microbeam using a nonlinear
beam theory. Per that theory, the elastic potential energy of half of the fixed-fixed
microbeam is?

256g%El 256 (g\}a
= 12 (£) 2] 28
©7 5Q2ay [ 735\H) L (28)
Computing II by summing Ilg given by (2.8) with ILs given by (2.3), then substi-
tuting into (2.2), we find that for the fixed-fixed beam model given in [28], w and

a are related by*

AR (2.9)

In the next section, we present a new, more accurate formula relating w to a.

S8Eg’H’ 512 (g )2 a
w= 1+—(2) =
5a* 2205 \H
3. Nonlinear model for the adhered microbeam

We model the adhered microbeam using Woinowsky-Kreiger beam theory [55]red
, which is a geometricredally nonlinear beam theory. We derive the equations

: 2
4 Mastrangelo redand Hsu [28] give the relation between w and a as w = SESZ": A : [1 + 2225—065 (%) ]
We believe that the numerical factor 256/2205 in this equation is an error. Based on the expres-
sions for the adhesion and elastic potential energies given in (2.3) and (2.8), respectively, the

numerical factor should instead be 512/2205 (c.f. (2.9)).
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governing its motion using Lagrangian mechanics. The potential and kinetic en-
ergies of the microbeam as per Woinowsky-Kreiger theory are

2

ne= [ FU\" | EA(0Uy 1 (00

e~ |2 axz) " 2 6X1 2 \ax,
2
pA “ (9U 1 c’)U 2

T == — + aXi, 3.1b
2 j; [( ot ) ( ot ! ( )
respectively, where U; (X1, t) and U, (Xi, t) are the displacements of the material
point X; on the beam’s centroidal axis at time ¢ in the E 1 and Ez directions, re-
spectively. Here, A is the area of the beam’s cross-section and p is the density of

the material of the beam.

We introduce the following non-dimensional variables: a := a/H, g := g/H,
w = w/(EH), & := Xy/a, ¢ := U\/H, n := Uy/H, wy := +JEI/pAreda*, T :=

twy, Mg 1= 24aTlg/(HSWE), and T := 24a>7T /(HWE). 1In terms of these
variables (3.1a)—(3.1b) read as

R T—
L1

Applying Hamilton’s principle and using the expressions for the potential and ki-
netic energies given in (3.2a) and (3.2b), the Euler-Lagrange equations governing
the motion of the microbeam come out to be

dXi, (3.1a)

¢ x ’
— 12— .

o P [ erala) )= (30

an o'y o an
— +—-12—|la= =0. 3.3b
7 * o 06[( 0§+2(0§)]3§ (-39

The equations (3.3a)—(3.3b) are subject to the boundary conditions’
=0, =0, g—g —0, até=0,Vr, (3.4)
. O

=0, n=-g, % =0, até&=1, VY (3.4b)



It is challenging to derive a general, closed form solution to the nonlinear
partial differential equations (PDEs) (3.3a)—(3.3b). However, recall that we do not
need to know the general dynamical behavior of the adhered microbeam. We are
only interested in the vibratory motion that the microbeam may execute about a
static, adhered configuration (see Fig. 4), which is relevant within the context of
our proposed experimental method. Therefore, we attempt to solve (3.3a)—(3.3b)
approximately by making the ansatz that the vibratory solution that we seek admits
the asymptotic expansion

CoEy + noEs , static adhered configuration

T | (G Er + mE>) , mode shape
g
1
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Figure 4: Schematic of the static configuration and the mode shape of the adhered, vibrating
microbeam.

red

L& 1) = (&) + 81(€) cos(@gT) + O(), (3.5a)
N, 7) = 10(€) + £11(€) cos(@gT) + O(Y), (3.5b)

where red{y(¢) and redny(¢) describe the static shape of the adhered microbeam
assumed in the absence of any dynamical motion, and redel;(¢) cos(wgt) and

> Due to manner in which the microbeam is brought into contact with the substrate (see Figs. 2
(c)—(d)) there are no displacements in the microbeam until it comes into contact with the substrate.
After the microbeam and the substrate make contact, we assume that there is no slippage, i.e.
{ = 0, in the adhered portion of the microbeam as its base moves to a height g above the substrate
(see Figs. 2red(b)—(d)). Recall that once the microbeam’s base reaches a height g, it is held fixed at
that height. We assume that after the microbeam’s base reaches the height g, the unadhered length
a also remains fixed irrespective of any dynamical behavior that the microbeam may display.
Finally, we assume that there is no slippage in the adhered portion of the microbeam after the
microbeam’s base reaches the height g. The boundary condition { = 0 at £ = 1 is a consequence
of these assumptions.

12



reden; (£) cos(wgT) are the leading order terms relating to the microbeam’s vi-
bratory motion. The parameter ¢ is the non-dimensional amplitude of the mi-
crobeam’s vibratory motion, and @g = wg/wy is the non-dimensional fundamen-
tal, natural frequency of the adhered microbeam. The symbol O(&?) in (3.5b) and
(3.5a) denotes all terms in the solution that vanish at a rate that is faster than or
equal to & as & — 0. Since vibratory motion is by definition of infinitesimal
magnitude, we limit our analysis to the special case of € — 0.

Substituting the asymptotic forms red(3.5a)—(3.5b) into the nonlinear PDEs (3.3a)—
(3.3b) and the boundary conditions (3.4a)—(3.4b) and then integrating the resulting
equations with respect to 7 for 0 to 27/ &g, we find that red{, and redn, satisfy the
nonlinear ordinary differential equations

de _ 3.6
dé-‘ - 9 ( . a)
d*no 2d2770
g =0 (3.6b)

where eg red: = 3a(dy/dé) + 3 (0ny/ 8§)2 /2, that are subject to the boundary
conditions

dmo

=0, m=0, T2=0 a=0, (3.7a)
dno

= = —0 —_— = tE=1. .7b

=0, no=-8, di 0, até& (3.7b)

Solving (3.6a)—(3.7b), we get

3(1 — 2¢) sinh (2¢y) + sinh (2¢y — 4€€y) — 8 cosh () sinh (g — 2560))

4€y — 3 sinh (2¢y) + 2€ cosh (2¢) ’
(3.8a)

_5
() = 22

. 2&€y cosh g + sinh(ey — 2£€) — sinh &

= s 3.8b
(&) =& 2 sinh g — 2¢; cosh g ( )

where ¢ is related to g through the equation
. 8e(sinh & — & cosh &)?
& = Gey(cosh 26 + 2) — 9sinh 26’

Unfortunately, we could not invert (3.9) to get ¢ as a function of g. However, we
found that

(3.9

3z |32[48 - V5sinh(62/V5) +2g cosh (63/ V5)]
o~ = = (3.10)
2 2[ V5 sinh (3g/ V5) - 3g cosh (3g/ V5)]
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redDetails of how this approximation was obtained can be found in Appendix Ap-
pendix A. The quality of this approximation for g, can be ascertained from Fig. 5,
in which the approximate values of g, given by (3.10) are compared with the exact
values of €, that we obtained by numerically solving (3.9).

6!
5t
4t
€ 3
2L
1t —— Exact, (3.9)
0 O Approximate, (3.10)
0 i 2 3 4 5
g

Figure 5: A plot of the values of ¢ calculated through the approximate relation (3.10) and cal-
culated through numerically solving the exact relation (3.9). The relative error between the two
equations at g = 5 is approximately 0.174%.

3.1. A new relation between the unadhered length and the work of adhesion

Substituting red{, and redn, given by red(3.8a)—(3.8b) into red(3.5a)—(3.5b)
and then substituting the resulting asymptotic expansions for red{ and redn into (3.2a),
we get

ﬁg(‘l’) = <ﬁg> + 28COS(6)BT)f [ d§2 dfz + ad—g df dg

2) 2
e 2] ol %) ]

where

d*n, d* dc,  dnyd
o d°mi GO(A $i dmo '71)]d§

dé + o(&?),

(3.11)

Mgy 38%€;(4€) — 3 sinh 2€) + 26 cosh 2€)* 2 *€)(€ — sinh € cosh &)
8) =

16(sinh €y — € cosh &)* (sinh g — g cosh g))?
(3.12)

is a constant with respect to time. We refer to (T1g) as the (non-dimensional) static,
potential energy of the adhered microbeam.
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The dimensional, elastic potential energy of the adhered microbeam, Ilg, can
be obtained by multiplying ITg(t) given by (3.11) by the factor H* WE/(24a).
Combining the thus obtained I1g with the redadhesion energy I1s given by (2.3) to
get I1, substituting that result into the configurational force balance equation (2.2),
then taking the limit € — 0, we get

EH(Ig)
W= ——-"7—.

i (3.13)

Note that (I1g) only depends on g. Thus, knowing a, an approximate value for w
can be calculated using (3.13).

3.2. Relating the fundamental, natural frequency of an adhered microbeam to its
unadhered length

We solve for wg by equating the maximum of the absolute value of the differ-
ence in the adhered beam’s kinetic energy between any two times instances to the
corresponding maximum difference in its potential energy. This idea, based on
the principle of energy conservation in elastic structures, is very similar to what is
termed Rayleigh’s energy method [64] in structural dynamics.

Substituting the functions red(, and redn, given by red(3.8a)—(3.8b) into red(3.5a)—
(3.5b), substituting the resulting asymptotic expansions into (3.2a)—(3.2b), evalu-
ating the integrals in the resulting equations and simplifying, we get the maximum
changes in the non-dimensional potential and kinetic energies to be

. ! d*n, : dey dnodm 2 dm :
2 2 3
Amax|Ilg] = & fo [(_ng ) + 12(a—d§ + _f _dg ) + 4¢, (_df) dé + 0(g),
(3.14a)

1
Amax[T] = E@%red f (7 +nt) dé + O(Y). (3.14b)
0

Equating A .« [ﬁg] and Apax [‘f'] given by (3.14a) and (3.14b), dividing both sides
of the resulting equation by £, and taking the limit € — 0, we get that

L[5 120 ) e () |ae
o = : . (319
redfo ({12 + 17%) dé

Equations governing red{; and redrn; can be derived using a procedure simi-
lar to that employed for deriving the governing equations (3.6a)—(3.6b) for red{,
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and redny. However, we were unable to solve those equations analytically. Con-
sequently, we derive an approximate expression for wg by making a reasonable
choice for red{; and redn; in (3.15). This step is similar to the process of choos-
ing an approximate mode shape in Rayleigh’s method.

Considering the boundary conditions (3.4a)—(3.4b), a reasonable choice for
n; is the fundamental mode shape of a straight fixed-fixed beam, which can be
described as

(&) = (cosh bé — cos bé) — A(sinh bé — sin bE) (3.16)

where
A = (coshb — cosb)/(sinh b — sin b),

and b, approximately equal to 4.730, is the first non-trivial root of
cos(b) cosh(b) = 1.

It can be shown that when the chosen red{; and redn; are only approximate, i.e.,
they do not exactly satisfy (3.3a)—(3.3b), then the corresponding estimate for wg
is an upperbound. Thus, we should choose {; to make the numerator of the ex-
pression on the right hand side of (3.15) as small as possible and denominator as
large as possible. In light of this knowledge, a good choice for ¢ is

_ L (Ydmdn
LHily) = afo JE dé dé, (3.17)

where 779 and 7, are, respectively, given by (3.8b) and (3.16). This is because,
for this choice of i, the second term in the numerator of (3.15) vanishes. Also,
the expression for {; given by (3.17) satisfies the essential boundary conditions
stipulated by (3.4a)—(3.4b).

Substituting the approximate red{; and redn; given by (3.16) and (3.17) into (3.15)
and simplifying we get that

ws = By [1 + @] (3.18)

where wy := EI/pAreda* and

€y(cosh 2¢y + 2) — 3 sinh g cosh g

c(€&) = co& , (3.19)

3(& cosh & — sinh &)?

in which the numerical constant ¢, ~ 0.22. Again, the exact relation between ¢,
R . . . 1 . .
and g was given by (3.9). redAfter integrating the term fo n2d¢ in the denominator
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of (3.15), the term becomes unity. In arriving at (3.18), we redthen ignored the
term fol lzdf in the denominator in (3.15). This is because in (3.15) the term

fol £3d¢ is being added to unity, and fol £3d¢ is very small compared to unity;

since fol {1dé ~ 0.87(g/a)* + O((g/a)*), and for typical microbeam structures,
g/a << 1 (see Figure 7 for typical ranges of g and a).

4. Discussion

3000
Eqn. (2.8)

2500¢ Numerical calculation
Section 4(a)
2000

Tle {500t

1000+ Eqn. (3.12)

500f Eqn. (2.6)

Figure 6: Elastic strain energy as a function of g as predicted by (2.6), (2.8), and (3.12) and nu-
merical calculations. The numerical calculation results shown correspond to the parameter values
a4 =50, W = 10, and v = 0.22. The details of the numerical calculation are described in Sec-
tion 44.1.

4.1. Comparison of the static elastic potential energy given by (3.12) with numer-
ical results

In Figure 6, we compare a numerically computed (ITg) against that computed
from (3.12). We also show the elastic potential energy values given by equations
(2.6) and (2.8), which we discussed in Section 2. The (I1g) values given by (3.12)
match the numerical calculation results much better than the elastic potential en-
ergy values given by either (2.6) or (2.8). The details of the calculations are given
below.

We numerically computed the static elastic potential energy (I1g) by solving a
finite deformation continuum mechanics model of the adhered microbeam using
nonlinear finite element procedures. The geometry of the numerical microbeam
model was three dimensional and was the same as that shown in Fig. 3(a). We
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assumed hyperelastic material behavior. Specifically, we assumed a compressible,
neo-Hookean material model in which

S=amIC" +py(I-C™), 4.1

where S is the second Piola-Kirchhoff stress tensor, C is the right Cauchy-Green
deformation tensor, J is the Jacobian determinant, I is the identity tensor, the
parameters Ay and y are the Lamé constants, and (-)~! is the inverse operator.

The right Cauchy-Green deformation tensor and the Jacobian determinant are
defined as

C:=F'F, (4.2)

J :=det(F), (4.3)
where

F := Grad(U) 4.4)
is the deformation gradient, det(-) is the determinant operator, U := le UiEi

is the displacement vector, Grad(-) is the material gradient operator and (-)" is
the transpose operator. The static, adhered configuration of the microbeam was
obtained by solving the Cauchy momentum equation

Div(FS) =0, 4.5)

on B, where Div(-) is the material divergence operator subject to the following
boundary conditions: the displacements everywhere on the left face of the mi-
crobeam were fixed to be (U, U, U3) = (0, 0, 0), while that on the right face were
everywhere fixed to be (U, U,, U3) = (0, —g,0).

The governing equations (4.1)—(4.5) were discretized using standard finite el-
ement procedures to obtain a system of nonlinear algebraic equations [65]. We
used eight-node linear brick elements in the finite element mesh. The system of
nonlinear algebraic equations were solved using the Newton-Raphson iterative
procedure.

From the numerical solution, the static, elastic potential energy, (fIg), of the
adhered microbeam was computed as

1 1
f — 2o (In D)% = pioIn J + = (tr(C) - 3) dQ,
) 2

where dQ is an infinitesimal volume element belonging to By.
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4.2. Comparison of the fundamental natural frequency wg given by (3.18) with

numerical results
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Figure 7: The relative percentage errors between numerical calculation results and analytical pre-
dictions for the fundamental, natural frequency, wg, of an adhered microbeam. See Section 44.2
for details of the numerical calculations.

We also compared the value of wg given by (3.18) with numerical results.
Figure 7 shows that the relative error between the analytical results and numerical
calculation for wg is proportional to ¢ and inversely proportional to a. Figure 7(b)
shows that the difference between the analytical and numerical calculation for
beams with width W = 5 and Poisson’s ratio v = 0.22 is less than 1% when
g <25 and 1/a < 0.025, with other cases having similar error contours. Since
the dimensions of structures in micromechanical devices are typically below these
limits, we can conclude that (3.18) accurately represents the dependence of wg on
the system parameters. We detail the numerical calculations below.

Let U : By — R be the displacement field corresponding to the microbeam’s
static, adhered configuration 8. This configuration is shown schematically in
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Fig. 4. We discussed the method for numerically computing U in Section 44.1.
Similarly, the quantities S, F, J, C, and C~! are the second Piola-Kirchhoff stress
tensor, the deformation gradient, the Jacobian determinant, the right Cauchy-
Green deformation tensor and its inverse corresponding to the static adhered con-
figuration, respectively. We assume that the microbeam executes a vibratory mo-
tion with time varying displacements of the form AU cos(wgt) about the B con-
figuration, such that U = U + AU cos(wsat).

This vibratory motion leads to oscillations of the form AF cos(wgt) in F, such
that F = F + AF cos(wgt). It follows from (4.4) that

AF = Grad (AU). (4.6)

Using (4.1)—(4.4), it can be shown that the second Piola-Kirchhoff stress would
vary as ) )
S =8 + AS cos(wgt) + o(||AF])), 4.7)

where ||AF|| denotes the norm of AF and AS is related to AU as
_ - 1, _
AS=C: 5 (F"Grad (AU) + Grad (AU)" F), (4.8)

where the fourth order tensor C is the material elasticity tensor, and the symbol
“:” denotes double contraction.
For the constitutive law (4.1),

Cruxe = €7} Cp + (1o — Ao In 1) (CCr} + €7/ CRY)

where Cyyx,. and Ci} are the Cartesian components of the tensors C and C',
respectively. Noting that Div(FS) = 0, it follows from (4.5) that as ||AF]| — O the
displacement field AU satisfies the equation

Div (FAS + AFS) = —pwiAU, (4.9)

where p is the density of the material composing the microbeam. The boundary
conditions on U stipulate that as AU vanish on both ends of the microbeam.
Equation (4.9) is a linear partial differential equation in AU. We discretized (4.9)
using standard, finite element procedures to get a linear, matrix-vector equation.
However, in that matrix-vector equation, wg was still an unknown. We therefore
took it to be the smallest value for which the discretized form of (4.9) admitted
a non trivial solution. Thus, the discrtetized form of (4.9) defined a standard
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eigenvalue problem in linear algebra. We solved the eigenvalue problem using
Lanczos’ numerical method to get wg. In our finite element procedures, we used
the same finite elements that we used for computing the static, adhered solution
U. The number of elements varied from 2.5 x 10* (for W = 5 and & = 10) to
5% 10° (for W = 10 and & = 100).

4.3. Asymptotic behavior of the w—a equation (3.13)

As g — 0, the displacements and displacement gradients become vanishingly
small and in Woinowsky-Krieger theory reduces to Euler-Bernoulli theory. There-
fore, we expect the w—a relation (3.13), which we derived using Woinowsky-
Krieger theory, to reduce to the w—a relation (2.7), which was derived by Mas-
trangelo and Hsu [29] using Euler-Bernoulli theory. We find that this is in fact the
case. For example, if we expand (I1g) given by (3.12) in powers of  about § = 0
in the w—a relation (3.13), the relation attains the aymptotic form
3g°
2a*

W= +0(3%), asg—0. (4.10)

In terms of non-dimensional variables the w—a relation (2.7) reads as

387

0%

W= (4.11)
As can be noted from (4.10) and (4.11), the w—a relation (3.13) and the w—a rela-
tion (2.7) are the same up to 0(?%) terms.

Interestingly, the w—a relation (2.9) derived by Mastrengelo and Hus [28] us-
ing a nonlinear beam theory does not match the Euler-Bernoulli w—a relation (2.7)
in the limit § — 0. On writing the w—a relation (2.9) in terms of non-dimensional
variables and expanding the right hand side in powers of g about g = 0, it attains

the asymptotic form
52

8 52
540 + 0(g°). (4.12)

Note that the numerical factor in the leading order term in (4.12) is 8/5. Whereas,
if the w—a relation (2.9) were to match the w—a relation (2.7) exactly in the limit
& — 0 then this numerical factor should have been 3/2. In summary, our results
for the w—a relation are consistent with Euler-Bernoulli theory in the limit § — O,
while those given by Mastrangelo and Hsu [56] are not.

W=
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5. Conclusion

We believe that the flexibility of a vibration-based method allows it to be ap-
plied to a wider variety of problems. Beyond the reliability of MEMS, the topic of
adhesion at submicron scales is important in its own right. For example, some of
the unique capabilities of biological materials, such as insect wings [66] and the
adhesive toe pads of geckos [67], are thought to arise through adhesion at small
scales. In addition, the adhesion between solids is generally measured using ax-
isymmetric, contact mechanics based methods [68]. However, surface roughness
is known to cause considerable difficulties in unambiguously measuring w using
such methods [69, 70, 71]. Therefore, it would be interesting to see how competi-
tive the proposed vibration based method for measuring w would be in comparison
to the contact mechanics based methods.

Implicit in our and previous models of the adhered microbeam is the assump-
tion that the interbody adhesion forces are infinitesimally short ranged. This is
similar to what is assumed in, for example, the Johnson-Kendall-Roberts (JKR)
adhesive contact model [72]. Equation (2.3), which states that I1; = red—w(L — a)W,
is a consequence of this assumption. However, studies have shown that adhesive
forces (which, at submicron scales, are primarily due to van der Waals interac-
tions [73]) can act over long distances [74] and have been measured to act over
distances as large as a micrometer [75]. Therefore, the forces on the adhered mi-
crobeam can act over its full length and are spatially non-uniform. It remains to be
seen how important of an effect such non-uniformity has and if the assumption of
the interbody adhesion forces being infinitesimally short ranged is an acceptable
approximation. We plan to explore this effect in future experiments.
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Appendix A. Derivation of (3.10)

red We arrive at (3.10) through approximating the adhered beam’s static dis-
placements using the solution given by Mastrangelo and Hsu [29], which is based
on Euler-Bernoulli beam theory. Specifically, using (2.5) and the fact that lon-
gitudinal displacements are assumed to be of negligible magnitude in the Euler-
Bernoulli theory, we approximate ¢, and n as

{o(&) ~ 0, (A.1)
n0(€) ~ g&X(2£ - 3). (A.2)

We use these approximations of {j and 1, to approximate eg, which was previously
defined in Section 3 as
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2
déy | 3 (%) : (A.3)

2 ._ 2~
€ = 3Cld—§ + 5 ag

Substituting the approximations (A.1) and (A.2) into (A.3), we get that eg is ap-
proximately equal to

98>

5

However, we found the expression (A.4) to be a poor approximation of €. To
obtain a better approximation for the dependence of €, on g, we compute new ap-
proximations for {, and 1, by solving equations (3.6a)—(3.7b) under the assump-
tion that € in them is given by (A.4). Then, we substitute the newly obtained
approximations for ¢, and 71 into (A.3) to finally arrive at (3.10).

(A4)
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