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Abstract

Design against adhesion in microelectromechanical devices is predicated on the
ability to quantify this phenomenon in microsystems. Previous research related
the work of adhesion for an adhered microbeam to the beam’s unadhered length,
and as such, interferometric techniques were developed to measure that length.
We propose a new vibration-based technique that can be easily implemented with
existing atomic force microscopy tools or similar metrology systems. To make
such a technique feasible, we analyzed a model of the adhered microbeam using
the nonlinear beam theory put forth by Woinowsky-Krieger. We found a new
relation between the work of adhesion and the unadhered length; this relation is
more accurate than the one by Mastrangelo redand Hsu (J. Microelectromech S.,
2, 44-55. (doi:10.1109/84.232594)) which is commonly used. Then, we derived a
closed-form approximate relationship between the microbeam’s natural frequency
and its unadhered length. Results obtained from this analytical formulation are in
good agreement with numerical results from 3D nonlinear finite element analysis.
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1. Introduction

Microelectromechanical systems (MEMS) technology has the capability of
connecting digital electronics to the physical world through sensing, actuation
or other mechanical means. Current MEMS technologies under research include
pressure transducers, accelerometers, microactuators [1, 2], biomedical devices [3],
optical components [4] and radio frequency (RF) MEMS switches [5]. However, a
critical impediment to the full commercialization of MEMS devices is reliability.
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Figure 1: (a) Scanning electron micrograph of RF MEMS bridge composed of aluminum (with
small additional percentage of silicon) and tantalum pentoxide dielectric coating on the substrate
[6]. b) Close-up of adhered (front) and unadhered (rear) members of bridge [6]. (c) Array of
cantilevered microbeams with the foremost beam adhered [7]

Stiction, the unintentional adhesion of compliant microstructure surfaces [8], is
notorious for causing serious reliability concerns [9]. Stiction occurs because sur-
face forces (e.g. capillary, electrostatic and van der Waals) dominate at submicron
scales [10, 7]. When elastic restoring forces of structures are unable to overcome
these strong adhesive forces, surfaces remain permanently adhered to each other
and cause device failure [11] (see Fig. 1).

Stiction may occur at two stages in the life of a MEMS device: fabrication and
in-use. Stiction failure during the fabrication stage is usually caused by capillary
forces during the release process. Thus, it can be avoided through methods such
as dry etching [12], super critical drying [13] and freeze drying [9]. In-use stiction
is more difficult to prevent. Straightforward methods for preventing in-use stic-
tion include the stiffening of structures [14] and increasing the gap size between
the devices and substrates [15]. However, these two methods may be undesir-
able for device performance [16]. Other solutions have been reported such as the
use of bumps [17], electric force induced vibration [18, 19, 20] and surface textur-
ing [21]. The most promising results have come from research in anti-stiction [22]
and self-assembled monolayer coatings [23]. Standardization of these techniques
requires the ability to quantify stiction – measuring the work of adhesion w 1and
studying its dependence on parameters such as surface morphology, hydrogen ter-
mination [24] and environmental conditions [25].

1The work of adhesion w is defined as w = γ1 + γ2 − γ12 where γ1 and γ2 are the energies
needed to create new surfaces of each respective material and γ12 is the energy required to create
a unit area of interface between the two surfaces [26]. In the case where the two materials are the
same, γ12 is zero and the w reduces to w = 2γ1 = 2γ2. Other notations may simply refer to this
case as w = 2γ with w also called the interfacial surface energy [27]. In our formulation, we refer
to w in the general sense, whereas in the work of Mastrangelo redand Hsu [28], the materials of
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1.1. Measuring the work of adhesion using microbeam arrays
Previous work [29, 30] has related w to the unadhered length a (see Fig. 2red(c))

of the microbeam. This length a is a characteristic of the cantilever’s geometry,
mechanical properties of the cantilever’s material, and w between the surfaces of
the cantilever and substrate. Experiments could then be performed to measure a
and calculate w.

Mastrangelo redand Hsu [29] developed an interferometric method for find-
ing a through an array of cantilevers of increasing length, similar to that shown
in Fig. 1(c). For this method, they fabricated an array of microbeams on a sin-
gle chip through sacrificial etching with hydrofluoric acid. Microbeams of length
greater than a would become adhered due to capillary forces during the drying
process, while shorter microbeams would be unadhered. The shortest adhered mi-
crobeam with length closest to a could then be identified through a change in the
interference pattern over the array. This technique has limitations that prevent its
widespread application. First, it is required that a whole array of cantilevers be
manufactured on a single chip such that the adherence is caused by capillary forces
pulling the beams down to the substrate. The combinations of substrate and mi-
crobeam materials in such arrays are limited to what can be made on a single chip
through such microfabrication techniques. If one desires to characterize adhesion
between surface pairs that have been made of different materials, have undergone
different surface treatments or have different small-scale geometric features, then
multiple arrays must be manufactured. If one redwants to calculate statistics on
the measurement of a, redthen even more arrays must be made. The resolution of
each measurement also depends on the difference in length between each adjacent
cantilever, and choice of what range of lengths of cantilevers to manufacture pre-
supposes some knowledge of what the unadhered length a could be (knowledge
which is not always available since that is the value that the experiment is meant
to find).

redDe Boer and Michalske [30] performed similar experiments but redused
long microbeams adhered over long attachment lengths. Instead of observing a
change in the interference pattern over a whole array redof microbeams, a lines-
can over the top surface of redeach single beam was performed to acquire redthe
vertical displacements over the redwhole length of that beam. From plots of the
vertical displacementreds of the beam versus the length of the beam, a could
redthen be found. redDe Boer and Michalske’s method provides improvements

the beam and substrate are assumed to be the same so that w = 2γ.
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over that of Mastrangelo redand Hsu’s. For example, issues of the resolution of
the measurement depending on the difference in lengths of adjacent cantilevers
redare avoided. It is also not necessary redto make a full array of cantilevers.
However, it does require a full linescan of the microbeam such that multiple data
points must be processed to find a single experimental value of a. This data pro-
cessing must then be repeated for multiple microbeams if one wanted to calculate
statistics on the measured value of a.

1.2. Vibration based technique for measuring work of adhesion
Alternatively, we envision a vibration-based technique which we believe could

give a highly accurate estimate of a from a single point measurement. The mo-
tivation for this idea is that vibration-based techniques of measurement are well
established, are known to have high sensitivity and repeatability and are easy to
use on a MEMS chip [31, 32]. This technique would be implementable on an
atomic force microscope (AFM) or related surface metrology tools that involve
mechanical contact between a cantilevered structure and a surface. We illustrate
how this technique would work in Fig. 2(a)–(d).
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Figure 2: (a) Cantilever is positioned above the substrate. (b) The cantilever is brought down to the
substrate until it has adhered. (c) The cantilever is brought up a fixed distance g. (d) The natural
frequency ωB of the adhered configuration of the cantilever is measured to compute a.

In an AFM system, a commercially available tipless cantilever [33] or one that
is specially manufactured [34] can be brought into contact with a surface and then
lifted a distance g. With the cantilever in its adhered configuration, its natural fre-
quency can redthen be found by measuring its thermal fluctuations; measurement
of the natural frequency through thermal fluctuations is already implemented as
part of a well-defined calibration method for AFM cantilevers [35, 36, 37, 38, 39].
Besides AFMs, there exist other examples of cantilever-based mechanical mea-
surement systems being used in research [40, 41]. Thus, measuring the vibration
of a microbeam is a feasible method to find a. However, as we detail below, no
satisfactory formula connecting the fundamental natural frequency of the adhered
microbeam ωB to a is currently available. Therefore, we derive such a formula in
Section 33.2.
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1.3. Justification for deriving a new relation between the unadhered length and
natural frequency of the adhered microbeam

Study of the vibrations of structures is a well established subject. Closed-form
expressions for the natural frequencies of a number of structural mechanics mod-
els can be found in standard textbooks on the subject. These structures include
strings, bars, shafts and beams in 1D and membranes, plates and shells in 2D [42].
Due to the microbeam’s high aspect ratio, several researchers have studied both
the free and forced vibrations of microbeams using beam theories. For example,
Tilmans et al. [43, 44, 45] studied the natural vibration of a free standing MEMS
microbeam using a modified Euler-Bernoulli beam theory. In the original version
of the Euler-Bernoulli theory, the structure only transmits bending moments and
shear forces along its length, whereas in the modified theory used by Tilmans
et al., the structure additionally transmits a constant tensile force. redGhayesha
et al.[46, 47, 48, 49, 50, 51] and Farokhi et al. [52, 53] studied redthe nonlin-
ear dynamics of microbeams by considering the size effect. They obtained size-
dependent frequency-response curves of both Euler-Bernoulli beams and Timo-
shenko beams through Galerkin and pseudo-arclength continuation techniques.
Zhang redand Zhao [54] studied the forced vibration of an adhered MEMS mi-
crobeam. The forcing was applied through a time varying voltage between the
microbeam and substrate, and the adhered beam was modeled using a nonlinear
beam theory. In addition to the bending energy, the model included two additional
terms in the elastic potential energy of the beam that the authors refer to as the
“stretching energy” terms. They used Galerkin and Newton-Raphson numerical
methods to solve the governing equations of their model. However, they provided
neither a closed form expression for the adhered microbeam’s fundamental natu-
ral frequency nor any theoretical analysis on the frequency’s dependence on the
problem parameters. Such a closed form expression is critical for determining a
from ωB. Consequently, the previous work of Zhang redand Zhao is not directly
applicable to our proposed vibration based method for measuring ωB.

Therefore, we derive a closed form expression relating a to ωB using nonlinear
beam theory. We used the theory commonly called “extensible beam theory” to
predict the microbeam’s natural frequency. This theory is based off of the work
of Woinowsky-Kreiger [55] who used it to study the effect of axial stress on the
vibration of a simply supported beam. Thus, we will refer to it as Woinowsky-
Kreiger theory.

Outline of paper. In Section 2, we review previous theory by Mastrangelo redand
Hsu [29, 28] relating a to w of the microbeam. The full derivation of our formula
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connecting a to ωB is presented in Section 3. Our predictions of the deformed
configuration of the microbeam match nonlinear finite element analysis (FEA)
results better than the configuration reported by Mastrangelo redand Hsu [28],
which is currently widely used; these comparisons are shown in Section 44.1.
In Section 44.2, we use our model to compute fundamental frequencies under
different parameters and compare those values with nonlinear FEA results; errors
were found to be less than or equal to 1% for a range of parameters representative
of beam structures typically found in MEMS devices and AFM cantilevers.

2. Previous work connecting the unadhered length to the work of adhesion
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Figure 3: Schematic of the reference configuration, B0, (a) of a cantilevered microbeam and (b)
of a fixed-fixed microbeam. (c) Schematic of a static, adhered configuration of a microbeam.
This adhered configuration corresponds to both the cantilever and the left half of the fixed-fixed
microbeam which is symmetric with the right. For elaboration on this point, see Section 22.2.
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Mastrangelo redand Hsu [29, 56, 28] previously studied the adhered shapes of
microbeams whose geometries are shown in Fig. 3.

2.1. Cantilevered microbeams
The microbeam shown in Fig. 3(a) is a cantilevered beam, as in, one of its

ends is fixed while the other is free. This is the geometry of micromachined AFM
probes (Fig. 2) and redthose of other cantilever-based metrology systems and is
therefore relevant to our proposed vibration-based method for measuring w. Fig. 3
also shows the vectors Êi, i = 1, 2, 3, which form an orthonormal set of Cartesian
basis vectors. The origin of the coordinate system, marked O, is located at the
left fixed support of the microbeam. We refer to the unadhered, free-standing
configuration of the microbeam (Fig. 3(a)) as the reference configuration B0. In
its reference configuration, the cantilever is stress free2 and occupies the cuboidal
region [0, L]× [−H/2,H/2]× [−W/2,W/2]. That is, it is straight with length L and
has a rectangular cross-section of width W and height H that is perpendicular to
the Ê1 direction. It is positioned parallel to the substrate at a distance g above it.

Mastrangelo redand Hsu and other researchers [58, 30, 59] have previously
studied the mechanics of adhered microbeams using a configurational force bal-
ance approach. This approach was pioneered by Griffith [60]. The techniques
of configurational force balance have since been greatly expanded [61] and have
been applied to problems such as redthe adhesion of thin films, redthe peeling of
lap joints and double torsion tests [62]. Per this perspective, a configuration is
considered to be locally stable (metastable) if and only if infinitesimal perturba-
tions around that configuration lead to an increase in the system’s potential energy
Π. For the adhered microbeam, this requirement implies that

∂Π

∂Aa
= 0 (2.1)

2In [56], Mastrangelo redand Hsu give the elastic potential energy of the fixed-fixed microbeam

to be 512g2EI
5(2a)3

[
1 + T (2a)2

42EI +
256
735

(
g
H

)2 a
L

]
, where T = WHσR is the axial residual tensile force and σR

is the internal residual tensile stress. Such residual stresses generally arise as a consequence of the
microfabrication processes used for manufacturing the microbeams [57]. However, such stresses
are likely to be absent in the AFM microcantilevers that will be employed in our proposed, new
experimental method (Fig. 2red(a)–(d). Thus, we ignore residual stresses in our current work. The
expression for the elastic potential energy given in (2.8) was obtained by putting σR = 0 in the
expression given by Mastrangelo redand Hsu in [56, 28]. Also, there is a difference of a factor
of 1/2 between the two expressions. This is because the expression in (2.8) corresponds to only
one half of the symmetric, fixed-fixed microbeam, whereas that given by Mastrangelo redand Hsu
in [56, 28] corresponds to the full beam.
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where Aa is the magnitude of the area over which the microbeam and the substrate
are in contact. Generally, it is assumed that the contact region formed between
the cantilever and the substrate is simply connected and its delamination front is
straight and parallel to the Ê3 direction. Consequently, (2.1) is equivalent to the
condition

∂Π

∂a
= 0, (2.2)

where a is the unadhered length of the microbeam (see Fig. 3(c)).
For the adhered microbeam, the total potential energyΠ consists of two terms:

the redadhesion energy ΠS and the elastic potential energy ΠE. The redadhesion
energy (see [29]3) is generally taken to be

ΠS = −w(L − a)W. (2.3)

In [29], Mastrangelo redand Hsu used Euler-Bernoulli beam theory [63] to model
the adhered microbeam. As such, the microbeam’s elastic potential energy was
taken to be

ΠE =

∫ a

0

EI
2

(
∂2U2(X1)
∂X2

1

)2

dX1 (2.4)

where E is the Young’s modulus, I is the second moment of area of the mi-
crobeam’s cross-section, X1 is the Cartesian coordinate corresponding to the Ê1

direction, and

U2(X1) = −g
(X1

a

)2 (
3 − 2

X1

a

)
, (2.5)

which is the the displacement of the microbeam’s midsurface in the Ê2 direction
(Fig. 3(c)). By substituting (2.5) into (2.4), we find ΠE to be

ΠE =
6EIg2

a3 . (2.6)

Computing Π by summing the expressions for ΠE and ΠS given by (2.6) and
(2.3), respectively, then substituting into (2.2), Mastrangelo redand Hsu found the
relation between w and a to be

w =
3EH3g2

2a4 . (2.7)

3 In this case, the authors of [29] followed the assumption that the two surfaces, substrate and
beam, were of the same material; then, w is equivalent to 2γ.
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2.2. Fixed-fixed microbeams
Mastrangelo redand Hsu [28] also studied the adhered microbeam in the fixed-

fixed configuration shown in Fig. 3(b). These types of microbeams are found in
RF MEMS capacitive switches (Fig. 1(a)). This geometry is not relevant to our
proposed experimental method. Nonetheless, we still discuss it since our results
apply to it.

In its reference configuration, the cantilever microbeam that we use for our
derivations is equivalent to the reference configurations of both the left and right
halves of the fixed-fixed microbeam. Following Mastrangelo redand Hsu [28],
we assume that the fixed-fixed beam is symmetric about its midsection even in
its adhered configuration. Owing to this assumpton and the manner in which our
cantilever microbeam comes into contact with the substrate (Fig. 2(a)–(d)), even
when adhered, the cantilever microbeam we study is equivalent to both the left
and right halves of the fixed-fixed microbeam.

Mastrangelo redand Hsu analyzed the fixed-fixed microbeam using a nonlinear
beam theory. Per that theory, the elastic potential energy of half of the fixed-fixed
microbeam is2

ΠE =
256g2EI
5(2a)3

[
1 +

256
735

( g
H

)2 a
L

]
. (2.8)

Computing Π by summing ΠE given by (2.8) with ΠS given by (2.3), then substi-
tuting into (2.2), we find that for the fixed-fixed beam model given in [28], w and
a are related by4

w =
8Eg2H3

5a4

[
1 +

512
2205

( g
H

)2 a
L

]
. (2.9)

In the next section, we present a new, more accurate formula relating w to a.

3. Nonlinear model for the adhered microbeam

We model the adhered microbeam using Woinowsky-Kreiger beam theory [55]red
, which is a geometricredally nonlinear beam theory. We derive the equations

4 Mastrangelo redand Hsu [28] give the relation between w and a as w = 8Eg2H3

5a4

[
1 + 256

2205

(
g
H

)2
]
.

We believe that the numerical factor 256/2205 in this equation is an error. Based on the expres-
sions for the adhesion and elastic potential energies given in (2.3) and (2.8), respectively, the
numerical factor should instead be 512/2205 (c.f. (2.9)).
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governing its motion using Lagrangian mechanics. The potential and kinetic en-
ergies of the microbeam as per Woinowsky-Kreiger theory are

ΠE =

∫ a

0

EI
2

(
∂2U2

∂X2
1

)2

+
EA
2

∂U1

∂X1
+

1
2

(
∂U2

∂X1

)22 dX1, (3.1a)

T = ρA
2

∫ a

0

(∂U1

∂t

)2

+

(
∂U2

∂t

)2 dX1, (3.1b)

respectively, where U1 (X1, t) and U2 (X1, t) are the displacements of the material
point X1 on the beam’s centroidal axis at time t in the Ê1 and Ê2 directions, re-
spectively. Here, A is the area of the beam’s cross-section and ρ is the density of
the material of the beam.

We introduce the following non-dimensional variables: â := a/H, ĝ := g/H,
ŵ := w/(EH), ξ := X1/a, ζ := U1/H, η := U2/H, ω0 :=

√
EI/ρAreda4, τ :=

tω0, Π̂E := 24a3ΠE/(H5WE), and T̂ := 24a3T /(H5WE). In terms of these
variables (3.1a)–(3.1b) read as

Π̂E =

∫ 1

0

(∂2η

∂ξ2

)2

+ 12
â∂ζ
∂ξ
+

1
2

(
∂η

∂ξ

)22 dξ, (3.2a)

T̂ =
∫ 1

0

(∂ζ
∂τ

)2

+

(
∂η

∂τ

)2 dξ. (3.2b)

Applying Hamilton’s principle and using the expressions for the potential and ki-
netic energies given in (3.2a) and (3.2b), the Euler-Lagrange equations governing
the motion of the microbeam come out to be

∂2ζ

∂τ2 − 12â
∂

∂ξ

â∂ζ
∂ξ
+

1
2

(
∂η

∂ξ

)2 = 0, (3.3a)

∂2η

∂τ2 +
∂4η

∂ξ4 − 12
∂

∂ξ

â∂ζ
∂ξ
+

1
2

(
∂η

∂ξ

)2 ∂η
∂ξ

 = 0. (3.3b)

The equations (3.3a)–(3.3b) are subject to the boundary conditions5

ζ = 0, η = 0,
∂η

∂ξ
= 0, at ξ = 0, ∀τ, (3.4a)

ζ = 0, η = −ĝ,
∂η

∂ξ
= 0, at ξ = 1, ∀τ. (3.4b)
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It is challenging to derive a general, closed form solution to the nonlinear
partial differential equations (PDEs) (3.3a)–(3.3b). However, recall that we do not
need to know the general dynamical behavior of the adhered microbeam. We are
only interested in the vibratory motion that the microbeam may execute about a
static, adhered configuration (see Fig. 4), which is relevant within the context of
our proposed experimental method. Therefore, we attempt to solve (3.3a)–(3.3b)
approximately by making the ansatz that the vibratory solution that we seek admits
the asymptotic expansion

, static adhered configuration

, mode shape 
g

a
L

Substrate

Figure 4: Schematic of the static configuration and the mode shape of the adhered, vibrating
microbeam.

red

ζ(ξ, τ) = ζ0(ξ) + εζ1(ξ) cos(ω̂Bτ) + O(ε3), (3.5a)

η(ξ, τ) = η0(ξ) + εη1(ξ) cos(ω̂Bτ) + O(ε3), (3.5b)

where redζ0(ξ) and redη0(ξ) describe the static shape of the adhered microbeam
assumed in the absence of any dynamical motion, and redεζ1(ξ) cos(ω̂Bτ) and

5 Due to manner in which the microbeam is brought into contact with the substrate (see Figs. 2
(c)–(d)) there are no displacements in the microbeam until it comes into contact with the substrate.
After the microbeam and the substrate make contact, we assume that there is no slippage, i.e.
ζ = 0, in the adhered portion of the microbeam as its base moves to a height g above the substrate
(see Figs. 2red(b)–(d)). Recall that once the microbeam’s base reaches a height g, it is held fixed at
that height. We assume that after the microbeam’s base reaches the height g, the unadhered length
a also remains fixed irrespective of any dynamical behavior that the microbeam may display.
Finally, we assume that there is no slippage in the adhered portion of the microbeam after the
microbeam’s base reaches the height g. The boundary condition ζ = 0 at ξ = 1 is a consequence
of these assumptions.
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redεη1(ξ) cos(ω̂Bτ) are the leading order terms relating to the microbeam’s vi-
bratory motion. The parameter ε is the non-dimensional amplitude of the mi-
crobeam’s vibratory motion, and ω̂B = ωB/ω0 is the non-dimensional fundamen-
tal, natural frequency of the adhered microbeam. The symbol O(ε3) in (3.5b) and
(3.5a) denotes all terms in the solution that vanish at a rate that is faster than or
equal to ε3 as ε → 0. Since vibratory motion is by definition of infinitesimal
magnitude, we limit our analysis to the special case of ε→ 0.

Substituting the asymptotic forms red(3.5a)–(3.5b) into the nonlinear PDEs (3.3a)–
(3.3b) and the boundary conditions (3.4a)–(3.4b) and then integrating the resulting
equations with respect to τ for 0 to 2π/ω̂B, we find that redζ0 and redη0 satisfy the
nonlinear ordinary differential equations

dϵ20
dξ
= 0, (3.6a)

d4η0

dξ4 − 4ϵ20
d2η0

dξ2 = 0, (3.6b)

where ϵ20 red: = 3â(dζ0/dξ) + 3 (∂η0/ ∂ξ)2 /2, that are subject to the boundary
conditions

ζ0 = 0, η0 = 0,
dη0

dξ
= 0, at ξ = 0, (3.7a)

ζ0 = 0, η0 = −ĝ,
dη0

dξ
= 0, at ξ = 1. (3.7b)

Solving (3.6a)–(3.7b), we get

ζ0(ξ) =
ϵ20
6â

(
3(1 − 2ξ) sinh (2ϵ0) + sinh (2ϵ0 − 4ξϵ0) − 8 cosh (ϵ0) sinh (ϵ0 − 2ξϵ0)

4ϵ0 − 3 sinh (2ϵ0) + 2ϵ0 cosh (2ϵ0)
),

(3.8a)

η0(ξ) = ĝ
2ξϵ0 cosh ϵ0 + sinh(ϵ0 − 2ξϵ0) − sinh ϵ0

2 sinh ϵ0 − 2ϵ0 cosh ϵ0
, (3.8b)

where ϵ0 is related to ĝ through the equation

ĝ2 =
8ϵ0(sinh ϵ0 − ϵ0 cosh ϵ0)2

6ϵ0(cosh 2ϵ0 + 2) − 9 sinh 2ϵ0
. (3.9)

Unfortunately, we could not invert (3.9) to get ϵ0 as a function of ĝ. However, we
found that

ϵ0 ≈
3ĝ
2

√√√√√3ĝ
[
4ĝ −

√
5 sinh

(
6ĝ/
√

5
)
+ 2ĝ cosh

(
6ĝ/
√

5
)]

2
[√

5 sinh
(
3ĝ/
√

5
)
− 3ĝ cosh

(
3ĝ/
√

5
)]2 . (3.10)
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redDetails of how this approximation was obtained can be found in Appendix Ap-
pendix A. The quality of this approximation for ϵ0 can be ascertained from Fig. 5,
in which the approximate values of ϵ0 given by (3.10) are compared with the exact
values of ϵ0 that we obtained by numerically solving (3.9).

Approximate, (3.10)
Exact, (3.9)

Figure 5: A plot of the values of ϵ0 calculated through the approximate relation (3.10) and cal-
culated through numerically solving the exact relation (3.9). The relative error between the two
equations at ĝ = 5 is approximately 0.174%.

3.1. A new relation between the unadhered length and the work of adhesion
Substituting redζ0 and redη0 given by red(3.8a)–(3.8b) into red(3.5a)–(3.5b)

and then substituting the resulting asymptotic expansions for redζ and redη into (3.2a),
we get

Π̂E(τ) = ⟨Π̂E⟩ + 2ε cos(ω̂Bτ)
∫ 1

0

[
d2η0

dξ2

d2η1

dξ2 + 4ϵ20

(
â

dζ1
dξ
+

dη0

dξ
dη1

dξ

)]
dξ

+ ε2 cos2(ω̂Bτ)
∫ 1

0

(d2η1

dξ2

)2

+ 12
(
â

dζ1
dξ
+

dη0

dξ
dη1

dξ

)2

+ 4ϵ20

(
dη1

dξ

)2 dξ + o(ε2),

(3.11)

where

⟨Π̂E⟩ =
3ĝ4ϵ20 (4ϵ0 − 3 sinh 2ϵ0 + 2ϵ0 cosh 2ϵ0)2

16(sinh ϵ0 − ϵ0 cosh ϵ0)4 −
2ĝ2ϵ30 (ϵ0 − sinh ϵ0 cosh ϵ0)

(sinh ϵ0 − ϵ0 cosh ϵ0)2

(3.12)
is a constant with respect to time. We refer to ⟨Π̂E⟩ as the (non-dimensional) static,
potential energy of the adhered microbeam.
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The dimensional, elastic potential energy of the adhered microbeam, ΠE, can
be obtained by multiplying Π̂E(τ) given by (3.11) by the factor H5WE/(24a3).
Combining the thus obtained ΠE with the redadhesion energy ΠS given by (2.3) to
getΠ, substituting that result into the configurational force balance equation (2.2),
then taking the limit ε→ 0, we get

w =
EH5⟨Π̂E⟩

8a4 . (3.13)

Note that ⟨Π̂E⟩ only depends on ĝ. Thus, knowing a, an approximate value for w
can be calculated using (3.13).

3.2. Relating the fundamental, natural frequency of an adhered microbeam to its
unadhered length

We solve for ωB by equating the maximum of the absolute value of the differ-
ence in the adhered beam’s kinetic energy between any two times instances to the
corresponding maximum difference in its potential energy. This idea, based on
the principle of energy conservation in elastic structures, is very similar to what is
termed Rayleigh’s energy method [64] in structural dynamics.

Substituting the functions redζ0 and redη0 given by red(3.8a)–(3.8b) into red(3.5a)–
(3.5b), substituting the resulting asymptotic expansions into (3.2a)–(3.2b), evalu-
ating the integrals in the resulting equations and simplifying, we get the maximum
changes in the non-dimensional potential and kinetic energies to be

∆max
[
Π̂E

]
= ε2

∫ 1

0

(d2η1

dξ2

)2

+ 12
(
â

dζ1
dξ
+

dη0

dξ
dη1

dξ

)2

+ 4ϵ20

(
dη1

dξ

)2 dξ + O(ε3),

(3.14a)

∆max
[T̂ ]
= ε2ω̂2

Bred
∫ 1

0

(
ζ2

1 + η
2
1

)
dξ + O(ε4). (3.14b)

Equating ∆max
[
Π̂E

]
and ∆max

[T̂ ]
given by (3.14a) and (3.14b), dividing both sides

of the resulting equation by ε2, and taking the limit ε→ 0, we get that

ω̂2
B =

∫ 1

0

[(
d2η1
dξ2

)2
+ 12

(
âdζ1

dξ +
dη0
dξ

dη1
dξ

)2
+ 4ϵ20

(
dη1
dξ

)2
]

dξ

red
∫ 1

0

(
ζ2

1 + η
2
1

)
dξ

. (3.15)

Equations governing redζ1 and redη1 can be derived using a procedure simi-
lar to that employed for deriving the governing equations (3.6a)–(3.6b) for redζ0
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and redη0. However, we were unable to solve those equations analytically. Con-
sequently, we derive an approximate expression for ωB by making a reasonable
choice for redζ1 and redη1 in (3.15). This step is similar to the process of choos-
ing an approximate mode shape in Rayleigh’s method.

Considering the boundary conditions (3.4a)–(3.4b), a reasonable choice for
η1 is the fundamental mode shape of a straight fixed-fixed beam, which can be
described as

η1(ξ) = (cosh bξ − cos bξ) − λ(sinh bξ − sin bξ) (3.16)

where
λ = (cosh b − cos b)/(sinh b − sin b),

and b, approximately equal to 4.730, is the first non-trivial root of

cos(b) cosh(b) = 1.

It can be shown that when the chosen redζ1 and redη1 are only approximate, i.e.,
they do not exactly satisfy (3.3a)–(3.3b), then the corresponding estimate for ωB
is an upperbound. Thus, we should choose ζ1 to make the numerator of the ex-
pression on the right hand side of (3.15) as small as possible and denominator as
large as possible. In light of this knowledge, a good choice for ζ1 is

ζ1(χ) = −1
â

∫ χ

0

dη0

dξ
dη1

dξ
dξ, (3.17)

where η0 and η1 are, respectively, given by (3.8b) and (3.16). This is because,
for this choice of ζ1, the second term in the numerator of (3.15) vanishes. Also,
the expression for ζ1 given by (3.17) satisfies the essential boundary conditions
stipulated by (3.4a)–(3.4b).

Substituting the approximate redζ1 and redη1 given by (3.16) and (3.17) into (3.15)
and simplifying we get that

ωB = b2ω0

[
1 + c(ϵ0)ĝ2

]1/2
, (3.18)

where ω0 :=
√

EI/ρAreda4 and

c(ϵ0) = c0ϵ0
ϵ0(cosh 2ϵ0 + 2) − 3 sinh ϵ0 cosh ϵ0

3(ϵ0 cosh ϵ0 − sinh ϵ0)2 , (3.19)

in which the numerical constant c0 ≈ 0.22. Again, the exact relation between ϵ0
and ĝ was given by (3.9). redAfter integrating the term

∫ 1

0
η2

1dξ in the denominator
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of (3.15), the term becomes unity. In arriving at (3.18), we redthen ignored the
term

∫ 1

0
ζ2

1dξ in the denominator in (3.15). This is because in (3.15) the term∫ 1

0
ζ2

1dξ is being added to unity, and
∫ 1

0
ζ2

1dξ is very small compared to unity;

since
∫ 1

0
ζ2

1dξ ≈ 0.87(ĝ/â)2 + O((ĝ/â)4), and for typical microbeam structures,
ĝ/â << 1 (see Figure 7 for typical ranges of ĝ and â).

4. Discussion

Numerical calculation
Section 4(a) 

Eqn. (2.8)

Eqn. (3.12)

Eqn. (2.6)

Figure 6: Elastic strain energy as a function of ĝ as predicted by (2.6), (2.8), and (3.12) and nu-
merical calculations. The numerical calculation results shown correspond to the parameter values
â = 50, Ŵ = 10, and ν = 0.22. The details of the numerical calculation are described in Sec-
tion 44.1.

4.1. Comparison of the static elastic potential energy given by (3.12) with numer-
ical results

In Figure 6, we compare a numerically computed ⟨Π̂E⟩ against that computed
from (3.12). We also show the elastic potential energy values given by equations
(2.6) and (2.8), which we discussed in Section 2. The ⟨Π̂E⟩ values given by (3.12)
match the numerical calculation results much better than the elastic potential en-
ergy values given by either (2.6) or (2.8). The details of the calculations are given
below.

We numerically computed the static elastic potential energy ⟨Π̂E⟩ by solving a
finite deformation continuum mechanics model of the adhered microbeam using
nonlinear finite element procedures. The geometry of the numerical microbeam
model was three dimensional and was the same as that shown in Fig. 3(a). We
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assumed hyperelastic material behavior. Specifically, we assumed a compressible,
neo-Hookean material model in which

S = λ0 ln J C−1 + µ0

(
I − C−1

)
, (4.1)

where S is the second Piola-Kirchhoff stress tensor, C is the right Cauchy-Green
deformation tensor, J is the Jacobian determinant, I is the identity tensor, the
parameters λ0 and µ0 are the Lamé constants, and (·)−1 is the inverse operator.

The right Cauchy-Green deformation tensor and the Jacobian determinant are
defined as

C := FTF, (4.2)
J := det (F) , (4.3)

where
F := Grad(U) (4.4)

is the deformation gradient, det (·) is the determinant operator, U :=
∑3

i=1 UiÊi

is the displacement vector, Grad(·) is the material gradient operator and (·)T is
the transpose operator. The static, adhered configuration of the microbeam was
obtained by solving the Cauchy momentum equation

Div(FS) = 0, (4.5)

on B0, where Div(·) is the material divergence operator subject to the following
boundary conditions: the displacements everywhere on the left face of the mi-
crobeam were fixed to be (U1,U2,U3) = (0, 0, 0), while that on the right face were
everywhere fixed to be (U1,U2,U3) = (0,−g, 0).

The governing equations (4.1)–(4.5) were discretized using standard finite el-
ement procedures to obtain a system of nonlinear algebraic equations [65]. We
used eight-node linear brick elements in the finite element mesh. The system of
nonlinear algebraic equations were solved using the Newton-Raphson iterative
procedure.

From the numerical solution, the static, elastic potential energy, ⟨Π̂E⟩, of the
adhered microbeam was computed as∫

B0

1
2
λ0 (ln J)2 − µ0 ln J +

1
2
µ0 (tr(C) − 3) dΩ,

where dΩ is an infinitesimal volume element belonging to B0.
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4.2. Comparison of the fundamental natural frequency ωB given by (3.18) with
numerical results
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Figure 7: The relative percentage errors between numerical calculation results and analytical pre-
dictions for the fundamental, natural frequency, ωB, of an adhered microbeam. See Section 44.2
for details of the numerical calculations.

We also compared the value of ωB given by (3.18) with numerical results.
Figure 7 shows that the relative error between the analytical results and numerical
calculation for ωB is proportional to ĝ and inversely proportional to â. Figure 7(b)
shows that the difference between the analytical and numerical calculation for
beams with width Ŵ = 5 and Poisson’s ratio ν = 0.22 is less than 1% when
ĝ < 2.5 and 1/â < 0.025, with other cases having similar error contours. Since
the dimensions of structures in micromechanical devices are typically below these
limits, we can conclude that (3.18) accurately represents the dependence of ωB on
the system parameters. We detail the numerical calculations below.

Let Ū : B0 → R3 be the displacement field corresponding to the microbeam’s
static, adhered configuration B. This configuration is shown schematically in
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Fig. 4. We discussed the method for numerically computing Ū in Section 44.1.
Similarly, the quantities S̄, F̄, J̄, C̄, and C̄−1 are the second Piola-Kirchhoff stress
tensor, the deformation gradient, the Jacobian determinant, the right Cauchy-
Green deformation tensor and its inverse corresponding to the static adhered con-
figuration, respectively. We assume that the microbeam executes a vibratory mo-
tion with time varying displacements of the form ∆U cos(ωBt) about the B con-
figuration, such that U = Ū + ∆U cos(ωBt).

This vibratory motion leads to oscillations of the form ∆F cos(ωBt) in F, such
that F = F̄ + ∆F cos(ωBt). It follows from (4.4) that

∆F = Grad (∆U) . (4.6)

Using (4.1)–(4.4), it can be shown that the second Piola-Kirchhoff stress would
vary as

S = S̄ + ∆S̄ cos(ωBt) + o(∥∆F∥), (4.7)

where ∥∆F∥ denotes the norm of ∆F and ∆S̄ is related to ∆U as

∆S̄ = C̄ :
1
2

(
F̄TGrad (∆U) + Grad (∆U)T F̄

)
, (4.8)

where the fourth order tensor C̄ is the material elasticity tensor, and the symbol
“:” denotes double contraction.

For the constitutive law (4.1),

C̄IJKL = λ0C̄−1
IJ C̄−1

KL + (µ0 − λ0 ln J̄)
(
C̄−1

IKC̄−1
JL + C̄−1

IL C̄−1
KJ

)
,

where C̄IJKL and C−1
KJ are the Cartesian components of the tensors C̄ and C̄−1,

respectively. Noting that Div(F̄S̄) = 0, it follows from (4.5) that as ∥∆F∥ → 0 the
displacement field ∆U satisfies the equation

Div
(
F̄∆S̄ + ∆FS̄

)
= −ρω2

B∆U, (4.9)

where ρ is the density of the material composing the microbeam. The boundary
conditions on U stipulate that as ∆U vanish on both ends of the microbeam.

Equation (4.9) is a linear partial differential equation in∆U. We discretized (4.9)
using standard, finite element procedures to get a linear, matrix-vector equation.
However, in that matrix-vector equation, ωB was still an unknown. We therefore
took it to be the smallest value for which the discretized form of (4.9) admitted
a non trivial solution. Thus, the discrtetized form of (4.9) defined a standard
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eigenvalue problem in linear algebra. We solved the eigenvalue problem using
Lanczos’ numerical method to get ωB. In our finite element procedures, we used
the same finite elements that we used for computing the static, adhered solution
Ū. The number of elements varied from 2.5 × 104 (for Ŵ = 5 and â = 10) to
5 × 105 (for Ŵ = 10 and â = 100).

4.3. Asymptotic behavior of the w–a equation (3.13)
As ĝ → 0, the displacements and displacement gradients become vanishingly

small and in Woinowsky-Krieger theory reduces to Euler-Bernoulli theory. There-
fore, we expect the w–a relation (3.13), which we derived using Woinowsky-
Krieger theory, to reduce to the w–a relation (2.7), which was derived by Mas-
trangelo and Hsu [29] using Euler-Bernoulli theory. We find that this is in fact the
case. For example, if we expand ⟨Π̂E⟩ given by (3.12) in powers of ĝ about ĝ = 0
in the w–a relation (3.13), the relation attains the aymptotic form

ŵ =
3ĝ2

2â4 + o(ĝ2), as ĝ→ 0. (4.10)

In terms of non-dimensional variables the w–a relation (2.7) reads as

ŵ =
3ĝ2

2â4 . (4.11)

As can be noted from (4.10) and (4.11), the w–a relation (3.13) and the w–a rela-
tion (2.7) are the same up to o(ĝ2) terms.

Interestingly, the w–a relation (2.9) derived by Mastrengelo and Hus [28] us-
ing a nonlinear beam theory does not match the Euler-Bernoulli w–a relation (2.7)
in the limit ĝ→ 0. On writing the w–a relation (2.9) in terms of non-dimensional
variables and expanding the right hand side in powers of ĝ about ĝ = 0, it attains
the asymptotic form

ŵ =
8ĝ2

5â4 + o(ĝ2). (4.12)

Note that the numerical factor in the leading order term in (4.12) is 8/5. Whereas,
if the w–a relation (2.9) were to match the w–a relation (2.7) exactly in the limit
ĝ → 0 then this numerical factor should have been 3/2. In summary, our results
for the w–a relation are consistent with Euler-Bernoulli theory in the limit ĝ→ 0,
while those given by Mastrangelo and Hsu [56] are not.
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5. Conclusion

We believe that the flexibility of a vibration-based method allows it to be ap-
plied to a wider variety of problems. Beyond the reliability of MEMS, the topic of
adhesion at submicron scales is important in its own right. For example, some of
the unique capabilities of biological materials, such as insect wings [66] and the
adhesive toe pads of geckos [67], are thought to arise through adhesion at small
scales. In addition, the adhesion between solids is generally measured using ax-
isymmetric, contact mechanics based methods [68]. However, surface roughness
is known to cause considerable difficulties in unambiguously measuring w using
such methods [69, 70, 71]. Therefore, it would be interesting to see how competi-
tive the proposed vibration based method for measuring w would be in comparison
to the contact mechanics based methods.

Implicit in our and previous models of the adhered microbeam is the assump-
tion that the interbody adhesion forces are infinitesimally short ranged. This is
similar to what is assumed in, for example, the Johnson-Kendall-Roberts (JKR)
adhesive contact model [72]. Equation (2.3), which states thatΠs = red−w(L − a)W,
is a consequence of this assumption. However, studies have shown that adhesive
forces (which, at submicron scales, are primarily due to van der Waals interac-
tions [73]) can act over long distances [74] and have been measured to act over
distances as large as a micrometer [75]. Therefore, the forces on the adhered mi-
crobeam can act over its full length and are spatially non-uniform. It remains to be
seen how important of an effect such non-uniformity has and if the assumption of
the interbody adhesion forces being infinitesimally short ranged is an acceptable
approximation. We plan to explore this effect in future experiments.
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Appendix A. Derivation of (3.10)

red We arrive at (3.10) through approximating the adhered beam’s static dis-
placements using the solution given by Mastrangelo and Hsu [29], which is based
on Euler-Bernoulli beam theory. Specifically, using (2.5) and the fact that lon-
gitudinal displacements are assumed to be of negligible magnitude in the Euler-
Bernoulli theory, we approximate ζ0 and η0 as

ζ0(ξ) ≈ 0, (A.1)

η0(ξ) ≈ ĝξ2(2ξ − 3). (A.2)

We use these approximations of ζ0 and η0 to approximate ϵ20 , which was previously
defined in Section 3 as

29



ϵ20 := 3â
dζ0
dξ
+

3
2

(
∂η0

∂ξ

)2

. (A.3)

Substituting the approximations (A.1) and (A.2) into (A.3), we get that ϵ20 is ap-
proximately equal to

9ĝ2

5
. (A.4)

However, we found the expression (A.4) to be a poor approximation of ϵ0. To
obtain a better approximation for the dependence of ϵ0 on ĝ, we compute new ap-
proximations for ζ0 and η0 by solving equations (3.6a)–(3.7b) under the assump-
tion that ϵ20 in them is given by (A.4). Then, we substitute the newly obtained
approximations for ζ0 and η0 into (A.3) to finally arrive at (3.10).
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