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Abstract. The contact force–indentation-depth (P -h) measurements in adhesive

contact experiments, such as atomic force microscopy, display hysteresis. In some cases,

the amount of hysteretic energy loss is found to depend on the maximum indentation-

depth. This depth-dependent hysteresis (DDH) is not explained by classical contact

theories, such as JKR and DMT, and is often attributed to surface moisture, material

viscoelasticity, and plasticity. We present molecular statics simulations that are devoid

of these mechanisms, yet still capture DDH. In our simulations, DDH is due to a

series of surface mechanical instabilities. Surface features, such as depressions or

protrusions, can temporarily arrest the growth or recession of the contact area. With

a sufficiently large change of indentation-depth, the contact area grows or recedes

abruptly by a finite amount and dissipates energy. This is similar to the pull-in and

pull-off instabilities in classical contact theories, except that in this case the number

of instabilities depends on the roughness of the contact surface. Larger maximum

indentation-depths result in more surface features participating in the load-unload

process, resulting in larger hysteretic energy losses. This mechanism is similar to

the one recently proposed by one of the authors using a continuum mechanics-based

model. However, that model predicts that the hysteretic energy loss always increases

with roughness, whereas experimentally it is found that the hysteretic energy loss

initially increases but then later decreases with roughness. Our simulations capture

this non-monotonic dependence of hysteretic energy loss on roughness.
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1. Introduction

Adhesive contacts play a central role in several important engineering applications

and biological phenomena, such as friction [1–6], wear [7–9], stiction failure in

‡ Author to whom any correspondence should be addressed



Molecular simulation of DDH in adhesive elastic contacts 2

MEMS [10, 11], cell adhesion [12], and gecko and insect locomotion [13, 14]. In

particular, a clear understanding of adhesive contact processes and mechanics is critical

for spatially mapping out a material’s mechanical properties at the µm–nm length scales

using techniques such as the atomic force microscopy (AFM) and nano-indentation

(NI) [15–17]. The material properties are mapped by performing a set of contact

experiments over a grid of points on the material’s surface. The contact experiments

often involve measuring the contact force, P , between the AFM or nanoindenter tip

and the material substrate as a function of the indentation-depth, h, which is the

maximum of the displacements the substrate’s surface points undergo in the direction

of the tip’s motion. The material properties are then mapped by fitting the P -h

curves measured at each location to an appropriate contact mechanics theory. At the

µm–nm length scales surface forces, which include adhesive force arising due to van

der Waals interactions, dominate, and are equally, if not more, important than the

forces arising due to material mechanical deformations. Therefore the AFM and NI

measured P -h curves are usually fitted to classical adhesive contact theories, such as

the Johnson-Kendall-Roberts (JKR) [18], the Derjaguin-Muller-Toporov (DMT) [19],

and the Maugis-Dugdale (MD) [20] theories.

The classical adhesive contact theories predict that once the solids are in contact

(the region h < 0 in figure 1) the contact force between the solids depends only on

the indentation-depth, irrespective of the history of the contact process (see figure 1

(a)). However, in many adhesive contact experiments [21–25] the contact force is

observed to depend not only on the indentation-depth but also on whether the solids

are moving towards (“loading phase”) or away (“unloading phase”) from one another

(figure 1 (b)). And if the contact is in the unloading phase, then the contact force

additionally depends on the maximum indentation-depth of the contact cycle. The

maximum indentation-depth of a contact cycle, marked as |hmin| in figure 1 (b), is the

indentation-depth at the beginning of the unloading phase in that contact cycle, which

includes the loading and unloading phases. Thus, in experiments, the measured P -h

curves from each contact cycle form a loop whose size depends on the |hmin| of that

cycle. This depth-dependent hysteresis (DDH) phenomenon was often attributed to the

formation of hydrogen bonds [22], meniscus related effects of ambient moisture [23], the

entanglement and interdigitation of polymer chains [21, 26], and the inelastic material

behaviors, such as viscoelasticity [27,28] and plasticity [29,30].

Kesari et al. [25,31] reported an alternate, new mechanism for DDH in which DDH

emerged as the smeared out effect of a series of small-scale surface imperfection created

mechanical instabilities (SIMI) that take place at the growing and the receding edges

of the contact interface. Their work is related to the works of Li and Kim [32] and

Guduru [33]. Li and Kim [32] considered the adhesive contact problem between two

solids, in which one of them was an elastic half-space and the other was a rigid solid

with two-dimensional sinusoidal undulations on its surface. Guduru [33] considered

the JKR-type adhesive contact between an elastic half-space and a rigid paraboloidal

punch with superimposed sinusoidal undulations. Both works showed that the surface
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undulations could create surface mechanical instabilities and consequently lead to an

effective toughening of the contact interface. The mechanism through which small-scale

roughness gives rise to DDH in the work of Kesari et al. [25, 31] is the same as the

mechanism through which the undulations cause adhesive toughening in the work of Li

and Kim [32] and Guduru [33].

Kesari et al. [25, 31] presented a continuum mechanics model for DDH. Using that

model they argued that surface roughness features, such as depressions and protrusions,

can temporarily arrest the contact area during both the loading and the unloading

phase. And with a sufficiently large change of the indentation-depth, the arrested

contact interface abruptly grows and recedes during the loading and the unloading

phase, respectively, through the occurrence of energy dissipating surface mechanical

instabilities. These instabilities are similar to the pull-in and pull-off instabilities seen

in the classical adhesive elastic contact theories (figure 1 (a)), except that they occur

at the length scale of surface roughness and can be numerous. The larger the |hmin|,
the more the number of the surface features that participate in the contact process,

leading to the occurrence of a greater number of contact instabilities. Consequently, the

energy loss, which is the cumulative energy lost at each of the instabilities, increases

with |hmin|, thus explaining the depth-dependence feature of DDH. The mechanism

and model presented by Kesari et al. also captured a number of other experimentally

observed features of DDH, such as (eo.i) the repeatability of the hysteresis loop on

cyclically indenting the substrate to the same |hmin|, (eo.ii) the force varying linearly

with h during the initial stages of the unloading phase, (eo.iii) the loading branch of

the P -h loop always falling on the same master curve, and (eo.iv) the unloading branch

of the P -h loop converging to a master curve on sufficient unloading.

However, the surface instabilities postulated in the SIMI mechanism, to date,

have not been directly observed in experiments. Furthermore, the model presented

in [31] is based on many idealizations about the material’s behavior and the topology

of the contact region. For example, it assumes that the material is linear elastic

and its deformation is infinitesimally small, the inter-body adhesive interactions are

infinitesimally short ranged, and most importantly, the contact region is simply-

connected. In view of these two points, it is natural to question whether the SIMI

mechanism can indeed operate in real materials, in which due to surface asperities the

contact region can be multiply-connected, and due to the highly localized nature of the

surface tractions at any contacting asperities the asperities would have a high propensity

to deform inelastically. Inelastic deformations are intrinsically dissipative process, and

can, at least in theory, give rise to DDH.

We address this question by reporting here molecular-statics simulations of adhesive

contact that show the SIMI mechanism in action. We carried out simulations of a quasi

two-dimensional contact between a rigid tip and a deformable substrate in which the

Dupré’s work of adhesion [34] and the surface geometry were varied in a controlled

manner. In the simulations, roughness is represented through surface’s imperfections,

such as pits and steps on the tip. Our simulations capture the primary features
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Figure 1. (color online) (a) The P -h curve as per the JKR theory. The pull-in

(B → C) and pull-off (D → A) instabilities are marked along with the corresponding

contact configurations. A contact cycle includes the loading and unloading phases.

The shaded area, i.e., the size of the hysteresis loop formed in a contact cycle due

to the instabilities, is depth independent. (b) The P -h curves measured in the glass

bead-Poly(dimethylsiloxane) (PDMS) contact experiment. The size of the hysteresis

loop depends on the maximum indentation-depth |hmin|. See [25] for the details of the

contact experiment.

of the SIMI mechanism reported in [25, 31]. However, the primary significance of

our simulations is that they demonstrate that the SIMI mechanism can operate at

conditions that are much more general than those assumed in [31]. For example, in

our simulations the contact region is multiply-connected with the contact tractions

being highly localized at the surface imperfections, the inter-body forces have a finite

range, and the material model—Stillinger-Weber (SW) potential for silicon [35]—is fairly

general, since it allows for the free operation of various inelastic mechanisms, such as

plasticity, phase transformations, and the creation and motion of dislocations. Thus,

our simulations provide critical support to the SIMI mechanism as a viable explanation

for DDH in real materials.

2. Simulation model and method

In our molecular-statics simulation, we consider a quasi two-dimensional contact

between a rigid tip and a deformable substrate. The tip is created by sculpting and/or

deforming a slab of perfect Si crystal. To investigate the effect of surface roughness on

adhesive contact, we create tips with various model surface profiles, such as the smooth-

wedge tip, the pitted-wedge tip, the parabolic tip, and the stepped tip (see figures 2

(a)–(d), respectively). Atoms in the tip are initially arranged to have perfect lattice

structure of crystalline silicon, with the [100], [010], and [001] crystal orientations being

in the x, y, and z directions, respectively. And their relative positions are rigidly fixed

through out the simulation to facilitate the introduction of the above mentioned surface

features. The substrate is a single crystal of Si with dimensions 815 Å, 272 Å, and 10 Å

in x, y and z directions, respectively, which has the same crystal orientation as the tip.
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Figure 2. (color online) The tips and substrate used in the simulations. The colors

denote the atomic coordination number, with gray-4, green-3, and gold-2. (a) Smooth-

wedge tip. The tip has three atomically smooth facets; the right and the left facets are

at an inclination of θ ≈ ±1◦ to the substrate’s surface, respectively, while the middle

one is parallel to it. The blunt region is of width 2 nm. (b) Pitted-wedge tip. This

tip is the same as the smooth-wedge tip except for that a surface pit of width 9 nm

and depth 5 Å, has been carved into its right facet. (c) Parabolic, atomically smooth,

tip. The tip has a curvature of 1/R = 150 nm−1 at its vertex. (d) Stepped tip with

steps of length λ = 8.7 nm and height A = 1.36 Å. We use stepped tips of different λ

and A in our simulations. (e) shows the substrate along with the x and y coordinate

directions. The scale bar of 2 nm applies to all subfigures.

Periodic boundary conditions are applied in the x and z directions. The bottom eight

atomic planes of the substrate are held fixed during the simulations. The interactions

among atoms in the substrate are modeled by the SW potential of Si [35]. And the

interaction between the substrate and the tip are modeled by the Lennard-Jones (LJ)

potential [36] V (r) = 4ε [(σ/r)12 − (σ/r)6], where ε is the depth of the potential well, σ

is the distance at which the potential is zero, and r is the interatomic distance. For the

purpose of computational efficiency, each potential has a cut-off following the method

in [37], with a maximum range of 3.8 Å for SW and 2.8 Å for LJ. In our simulations,

the Dupré’s work of adhesion, w, is equal to 1.537εn2σ4, where n = 5× 1028 m−3 is the

atomic density of Si. We set σ = 2.095 Å and vary ε to modulate w. Unless stated

otherwise, we use ε = 0.521 eV, which corresponds to w = 618 mJ/m2.

At the beginning of each simulation the tip is positioned such that there is no

interaction between the tip and the substrate atoms. In our simulations, the indentation-

depth, h, is the distance traveled by the tip in the y direction. The datum for h is chosen

such that h = σ when the tip and the substrate just start interacting. The tip is moved

towards the substrate in the −y direction until h equals a pre-assigned value, |hmin|,
and then retracted back until the tip-substrate contact force vanishes. The tip’s motion

is controlled in steps of 0.01 Å. Each step is followed by a relaxation of the potential

energy to a local minimum using the conjugate-gradient algorithm [38]. To obtain the

P -h curve in the simulation, we compute the net tip-substrate contact force in the y
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direction after each relaxation by summing up the forces acting on all the tip atoms.

3. Results and discussions

Figure 3 (a) shows the P -h curve (thick curve) from a contact simulation involving the

smooth-wedge tip shown in figure 2 (a) and the substrate shown in figure 2 (e). The P -h

curve exhibits a single and repeatable hysteresis loop, caused by the initial pull-in and

the final pull-off instabilities predicted by the classical adhesive elastic contact theories.

The energy loss due to the classical pull-in and pull-off instabilities is a characteristic

phenomenon during adhesive elastic contact of any tip having a smooth monotone

profile. Though this hysteresis loop is repeatable on cyclic loading, it is qualitatively

different from DDH since its size does not depend on |hmin|.
Next, we perform the same simulation but with the pitted-wedge tip (figure 2 (b)).

The pitted-wedge tip was created by removing a thin strip of atoms from the surface of

the wedge tip. Interestingly, this leads to another hysteresis loop in figure 3 (a) (thin

curve). At the end of the first load-unload cycle, the atomic displacements with respect

to the initial positions are negligible and the P -h curve for the second cycle essentially

overlaps with the first one. It is easy to see that the additional hysteresis loop would

not appear if |hmin| was less than 1 Å. This proves, in principle, that DDH can exist

without any plasticity, even though the shape of the hysteresis loop is still somewhat

different from that observed in experiments (e.g., see figure 1 (b)).

The underlying mechanism responsible for the additional hysteresis appearing for

the pitted-wedge tip but not for the smooth-wedge tip can be seen in action by visualizing

the configurations during a load-unload cycle. Some representative snapshots of the

configurations during a load-unload cycle of the pitted-wedge tip are shown in figure 3

(b)–(e). For the smooth-wedge tip simulation, after the classical pull-in instability (at

h ≈ −0.4 Å), the contact width grows continuously with increasing indentation-depth.

On the other hand, after the classical pull-in instability, the small surface pit on the

pitted-wedge tip is able to arrest the contact width, all the way until h reaches −2.6 Å

(figure 3 (b)). This is because the tip atoms in the surface pit are outside the interaction

range of the substrate atoms. With a slight further increase of |h| contact is suddenly

established in an area beyond the surface pit (figure 3 (c)). Upon unloading, the newly

formed contact area persists until h ≈ −1.2 Å (figure 3 (d)). Therefore, in the range

of −2.6 Å < h < −1.2 Å, the contact area is different during the loading and unloading

phases, giving rise to the additional hysteresis loop. It is interesting to note that in

this range the contact area is multiply-connected, which is in contrast with the simply-

connected contact region assumption made in [31].

It is known that a real surface is usually rough containing many imperfections such

as depressions and protrusions. To model the effect of surface roughness on adhesive

contact, we simulate the contact between the substrate and the stepped tip shown in

figure 2 (d). In the tip, each step has height A and neighboring steps are separated by

λ from each other. Figures. 4 and 5 show the P -h curves from the contact simulations
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Figure 3. (color online) (a) The P -h curves from simulations employing the smooth-

wedge tip (thick curve) and the pitted-wedge tip (thin curve). (b)–(e) Tip-substrate

configurations at different instances of the pitted-wedge tip simulation. The simulation

instances corresponding to those configurations are marked on the P -h curve in (a)

using labels b©– e©.

involving the stepped tip. The P -h curves for the small adhesion value of w = 35

mJ/m2 (figure 4 (a), thick solid curve) show five small hysteresis loops. The very first

loop, when counting from right to left, corresponds to the classical pull-in and pull-

off contact instabilities. By studying the evolution of the tip-substrate configurations

during the simulation we found that each of the remaining loops correspond to the

unstable contact growth and recession across an edge belonging to the tip’s surface

steps. We saw that during the loading phase the contact area got arrested at each of

the step edges and then only grew when further loading brought the region ahead of

the steps unstably into contact. And during the unloading phase as the contact region

receded and approached a step edge, a patch of the contact region ahead of the step

edge detached unstably. Thus, the second and the third loops correspond to unstable

contact growth and recession across the bottom most step’s two edges, one on the left

and the other on the right§. And the last two loops correspond to the edges of the left

and right steps that are immediately above the bottom most step. So, the mechanism

of unstable contact growth and recession across a surface imperfection previously seen

§ In our simulation the contact process was asymmetric between the left and the right sides of the tip.

This is in contrast with what is assumed in classical adhesive contact theories.
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Figure 4. (color online) (a) The P -h curves show the effect of w in the stepped

tip simulations. For w = 35 mJ/m2, each step induces a hysteresis loop, and these

coalesce with one another upon increasing w to 618 mJ/m2. When w = 0, no hysteresis

is observed. (b) The P -h curves from simulations employing the stepped tip. These

curves display repeatable hysteresis loops, whose size increases with |hmin|. (c)–(d)

Tip-substrate configurations at different instances of the stepped tip simulation. The

simulation instances corresponding to those configurations are marked on the P -h

curve in (a) using labels c©– d©.

in the pitted-wedge simulation operates here as well, and more importantly, it operates

repeatedly at each imperfection.

The events of unstable contact growth and recession across surface imperfections are

in some ways similar to the classical pull-in and pull-off contact instabilities. However,

there are two important differences between the two. First, the newly observed contact

instabilities occur at the length scale of the surface imperfections, whereas the classical

pull-in and pull-off instabilities occur at a much larger length scale. For example, as

per the JKR theory, after the pull-in instability the radius of the contact patch formed

is equal to (2πR2w/E∗)1/3, where 1/R = (1/R1 + 1/R2), R1 and R2 are, respectively,

the radii of mean curvatures of the contacting solids’ surfaces at the points where they

first make contact, 1/E∗ = (1− ν21)/E1 + (1− ν22)/E2, and Ei and νi (i = 1, 2) are the
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Young’s moduli and Poisson’s ratios of the contacting solids. Using this estimate we

get the radius of the initial contact patch in the AFM experiments reported in [25] to

be about 5 µm. Whereas the AFM tip in [25] is reported to have a Root Mean Square

(RMS) roughness of about 6 nm and the molds on which the PDMS substrates were

cast are reported to have RMS roughnesses ranging from 0.65 to 1.52 nm. Second, in

any contact cycle there is always only a single pair of the classical pull-in and pull-off

instabilities, and the size of the hysteresis loop it generates is independent of |hmin|
(figure 1 (a)). Whereas the surface imperfection level instabilities can be numerous,

and as we first described using the pitted-wedge tip simulation, the number of such

instabilities depend on |hmin|. This, in fact, is the precise mechanism through which the

surface imperfection level instabilities give rise to the depth-dependence aspect of DDH

in the SIMI mechanism. The total energy loss in a contact cycle is the cumulative energy

lost during all the contact instabilities, both at the large- (classical pull-in and pull-off)

and small-scale (surface imperfection level). The size of the DDH loop represents the net

energy loss in a contact cycle, therefore, when the surface imperfection level instabilities

are active the DDH loop’s size will naturally grow with |hmin|.
The simulations also reveal that the surface imperfection instabilities—and

consequently the DDH they give rise to—are primarily governed by surface adhesion

and roughness. For example, despite the surface steps the surface imperfection level

instabilities, and consequently their corresponding hysteresis loops, vanish when there

is no adhesion between the tip and the substrate, i.e., when w = 0 (figure 4 (a),

dashed curve). We modulated w by adjusting the LJ potential parameter ε. At large

adhesion, e.g., w = 618 mJ/m2 (figure 4 (a), thin solid curve), the loops corresponding

to the different surface imperfections merge to form one large hysteresis loop whose size

depends on |hmin| (see figure 4 (b)). This loop has a tapered shape that resembles the

DDH loops seen in experiments (cf. figure 1 (b) and figure 4 (b)). In fact, the P -h curves

from these simulations also capture the experimentally observed DDH features eo.i-iv.

Despite the individual hysteresis loops no longer being clearly discernible, the surface

imperfection level instabilities, with which we identified each of the individual loops in

the small adhesion, w = 35 mJ/m2 simulation (figure 4 (a), thick solid curve), however,

are still very much active. For example, the tip-substrate configurations before and after

the occurrence of a contact recession instability in the w = 618 mJ/m2 simulation are

shown in figures 4 (c) and (d), respectively. This instability occurs during the unloading

phase and across the lower most step’s right edge. The abrupt contact force increase

corresponding to this instability is marked in figure 4 (a) using labels (c) and (d).

However, adhesion alone is insufficient for the creation of DDH. For example,

figure 5 (a) shows the P -h curves from two large adhesion, w = 618 mJ/m2, simulations,

in which |hmin| = 2 and 5 Å, respectively. As can be seen, these P -h curves do not

display any DDH. The reason for this is that the tip employed in these simulations is

the atomically smooth, parabolic tip shown in figure 2 (c). Therefore, both adhesion and

roughness are critically necessary for the creation of DDH through the SIMI mechanism.
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Figure 5. (color online) (a) The P -h curves from simulations employing the parabolic

tip and displaying only depth-independent hysteresis. Inset: Small disconnected loops

due to the abrupt bond formation and breakage between the tip and the substrate

atoms. (b) The P -h curves from simulations employing stepped tips of different step

lengths and heights.

In our simulations we found the DDH energy loss, for a given |hmin|, to always

increase with w, see, e.g., figure 4 (a). This observation is consistent with the theory

presented in [25, 31]. We do not quantitatively compare our simulation results with

the theory presented in [25, 31], since that theory applies to axisymmetric contact in

which the substrate in an isotropic half-space, whereas the contact in our simulations is

quasi two-dimensional and the substrate in them is neither isotropic nor a half-space.

Furthermore, in the theory presented in [25, 31] the contact region is assumed to be

always simply-connected, whereas in all our simulations involving model imperfections

the contact region is multiply-connected (see figures 3 (b)–(e) and figures 4 (c)–(d)).

The dependence of DDH on roughness is much more interesting. The P -h curve

(thin curve) shown in figure 5 (a) for the parabolic tip can directly be compared with

the P -h curve (thin curve) shown in figure 4 (b) for the stepped tip, since both of them

correspond to |hmin| = 5.5 Å and w = 618 mJ/m2. From the comparison we can see that

adding surface imperfections increases the energy loss in a contact cycle. As already
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explained, the additional energy loss is due to the new surface instabilities created by

the added imperfections. Figure 5 (b) shows additional P -h curves from the stepped tip

simulations in all of which |hmin| = 5.5 Å and w = 618 mJ/m2. However, A and λ vary

between the simulations. From those curves we can see that the hysteretic energy loss

increases from 56.88 to 198 eV/ Å on increasing λ from 4.4 to 8.7 nm, and decreases

from 198 to 33.84 eV/ Å on increasing A from 1.36 to 2.72 Å. In our simulations, we use

the parameter A2/λ as a measure of surface roughness (see the online supplementary

data for the discussion). Thus, the curves shown in figure 5 (b) demonstrate that the

hysteretic energy loss eventually decreases on increasing roughness. Therefore, it is

found from figures 5 (a) and (b) that the DDH energy loss initially increases and then

later decreases with roughness. This observation is consistent with the experimental

findings reported in [1, 25]. In contrast, the theory presented in [25, 31] predicts that

the hysteretic energy loss will always increase with roughness. As stated in [25, 31],

the prediction of energy loss always increasing with roughness is a consequence of the

assumption in [25,31] that the contact region is always simply-connected. Therefore, the

theory presented in [31] is a good model for DDH only when the roughness is sufficiently

small, so that it is reasonable to assume a simply-connected contact region, and it does

not apply when the roughness is large so that the contact region is more likely to be

multiply-connected, as is the case in our simulations. Hence, we believe that there is a

need for a more comprehensive theory of DDH, one that describes DDH both at small

and large roughnesses.

The inelastic deformations such as viscoelasticity [27, 28] and plasticity [29, 30]

can give rise to DDH. However, the DDH we report in our simulations is not due to

any of such mechanisms. Viscoelasticity can be readily ruled out as contributing to

DDH in our simulations since we perform the simulations in a quasi-static manner.

The fact that the DDH in our simulations is not due to plasticity can most clearly

be seen from the P -h curves. All the P -h curves we report (figures. 3–5) are from

two consecutive load-unload cycles. As can be seen in the figures, the P -h curve from

the second cycle closely follows the one from the first. This would not be possible

if there was plasticity in the simulations. There are, however, some small differences

between the P -h curves from the first and the second cycle. These differences are due

to the reconstruction of the substrate’s surface atoms during the contact simulation.

This is because, we found that the small differences become almost imperceptible if

we relax the substrate, by annealing it using molecular dynamics simulations and then

quenching it using conjugate gradient energy minimization, before beginning the contact

simulations (see the online supplementary data, figure 2). We also checked for plasticity

by monitoring the strain and the co-ordination number of the atoms in the substrate

during the simulations. Such checks also helped us to rule out additional inelastic

mechanisms, such as phase transformations, and also simulation artifacts, such as surface

amorphization, and interpenetration of the tip and substrate atoms.
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4. Concluding remarks

We conclude by noting that the mechanism for DDH proposed by Israelachvil et al. [26],

termed mechanical hysteresis, is similar to the SIMI mechanism presented in [25,31] and

this work. The similarity lies in the fact that in both mechanisms DDH is the cumulative

effect of many individual hysteretic events. In the mechanical hysteresis mechanism the

individual hysteretic events are the unstable bond formation and breakage between the

atoms of the tip and the substrate. In the SIMI mechanism the individual hysteretic

events are the unstable contact growth and recession across the surface imperfections,

which occur at the length scale of surface roughness. The instabilities in the SIMI

mechanism operate at a much larger length scale compared those in the mechanical

hysteresis mechanism, and consequently the DDH energy loss in the SIMI mechanism

is much larger. Some of our simulations, such as the ones involving the parabolic tip

(figure 5 (a)), also capture the mechanical hysteresis mechanism. A closer examination

of the P -h curves from the parabolic tip simulations show that the seemingly single

valued P -h curve, in the region h < 0, actually consists of many small, disconnected,

hysteresis loops. On visualizing the simulations we found the small disconnected loops

to be due to abrupt bond formation and breakage between the tip and the substrate

atoms, i.e., due to the mechanical hysteresis mechanism. However, the energy loss of

the disconnected loops is only about 0.029 eV/ Å, which is only 0.0146% of that results

from the SIMI mechanism. Therefore, the energy loss due to the mechanical hysteresis

mechanism in our simulations is negligible compared to the energy loss due to the SIMI

mechanism.
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