Mechanics of Continua and Structures
We proceed first by computing the value of the trace of R, tr(R).
(R),ij=Rij=[aiaj−(δij−aiaj)cosθ+ϵikjaksinθ]tr(R)=Rii=aiai−(δii−aiai)cosθ+ϵijiaksinθ⏟=0=aiai+(3−aiai)cosθ=‖a‖2+(3−‖a‖2)cosθtr(R)=1+(3−1)cosθ=1+2cosθHence, cosθ=(tr(R)−12).
We next compute a:
12(R−RT)=skew(R)12(Rij−Rji)=ϵikjaksinθ12ϵirj(Rij−Rji)=ϵirjϵikjaksinθ12ϵirj(Rij−Rji)=(δrkδrkjj−δrjδjk)aksinθ12ϵirj(Rij−Rji)=(3δrk−δrk)aksinθ12ϵirj(Rij−Rji)=2arsinθar=14sinθ(ϵirj)(Rij−Rji)And its components are
a1=14sinθ[ϵi1j(Rij−Rji)]=14sinθ[ϵ213(R23−R32)+ϵ312(R32−R23)]=14sinθ[R32−R23−R23+R32]=24sinθ[R32−R23]=12sinθ[R32−R23] a2=14sinθ[ϵ123(R13−R31)+ϵ321(R31−R13)]=12sinθ[R13−R31] a3=14sinθ[ϵ132(R12−R21)+ϵ231(R21−R12)]=12sinθ[R21−R12]Remark : Notice that, as expected, the axis of rotation is not defined when θ=0, i.e, any direction is an axis of rotation in this case.
Example:
Let’s recover θ and a from the last example. We have
[R]=[23−13232323−13−132323] tr(R)=3×23=2cosθ=(2−12)=12⇒θ=cos−1(12)=π3The axis a is
a1=R32−R232sinθ=(23+13)2sin(π3)=1√3a2=R13−R312sinθ=1√3a3=R21−R122sinθ=1√3