Processing math: 100%
Applied Mechanics Lab

Mechanics of Continua and Structures

Calendar

gmail inbox

Finding Angle and Axis of Rotation given a Rotation Tensor

Determining (θ,e) given rotation tensor R

We proceed first by computing the value of the trace of R, tr(R).

(R),ij=Rij=[aiaj(δijaiaj)cosθ+ϵikjaksinθ]tr(R)=Rii=aiai(δiiaiai)cosθ+ϵijiaksinθ=0=aiai+(3aiai)cosθ=a2+(3a2)cosθtr(R)=1+(31)cosθ=1+2cosθ

Hence, cosθ=(tr(R)12).

We next compute a:

12(RRT)=skew(R)12(RijRji)=ϵikjaksinθ12ϵirj(RijRji)=ϵirjϵikjaksinθ12ϵirj(RijRji)=(δrkδrkjjδrjδjk)aksinθ12ϵirj(RijRji)=(3δrkδrk)aksinθ12ϵirj(RijRji)=2arsinθar=14sinθ(ϵirj)(RijRji)

And its components are

a1=14sinθ[ϵi1j(RijRji)]=14sinθ[ϵ213(R23R32)+ϵ312(R32R23)]=14sinθ[R32R23R23+R32]=24sinθ[R32R23]=12sinθ[R32R23] a2=14sinθ[ϵ123(R13R31)+ϵ321(R31R13)]=12sinθ[R13R31] a3=14sinθ[ϵ132(R12R21)+ϵ231(R21R12)]=12sinθ[R21R12]

Remark : Notice that, as expected, the axis of rotation is not defined when θ=0, i.e, any direction is an axis of rotation in this case.

Example:

Let’s recover θ and a from the last example. We have

[R]=[231323232313132323] tr(R)=3×23=2cosθ=(212)=12θ=cos1(12)=π3

The axis a is

a1=R32R232sinθ=(23+13)2sin(π3)=13a2=R13R312sinθ=13a3=R21R122sinθ=13

[edit]