Mechanics of Continua and Structures
Symbol | Definition |
---|---|
\(\mathbb{N}\) | The set of natural numbers |
\((\cdot)\) | Denotes an order set |
\((x^1,x^2,\ldots, x^n)\) and \((x_1,x_2,\ldots, x_n)\) | These symbols denote \(n \times 1\) matrices. They are also referred to as \(n\)-tuples |
\(\left(x^i\right)_{i=1}^{n}\) and \(\left(x_i\right)_{i=1}^{n}\) | Short hand for \((x^1,x^2,\ldots, x^n)\) and \((x_1,x_2,\ldots, x_n)\), respectively |
\((x^{i;*})\) | short for \((x^{1;*},x^{2;*}\ldots, x^{n;*})\) |
\((x^i)\) and \((x_i)\) | short hand for \((x^i)^{n}_{i=1}\) and \((x_i)^{n}_{i=1}\), respectively |
\((A_{ij})_{i,~j=1}^{n}\) and \((A_{ij})\) | Denote $n \times n$ square matrices. The index $i$ identifies the row number and $j$ denotes the column number. |
\(f[\cdot]\) | The square parentheses enclose the arguments of the function \(f\) |