Applied Mechanics Lab

Mechanics of Continua and Structures

Calendar

gmail inbox

\[\newcommand{\u}[1]{\boldsymbol{\mathsf{#1}}} \renewcommand{\b}[1]{\boldsymbol{#1}} \newcommand{\t}[1]{\textsf{#1}} \newcommand{\m}[1]{\mathbb{#1}} \def\RR{\bf R} \def\bold#1{\bf #1} \def\mbf#1{\mathbf #1} \def\uv#1{\hat{\usf {#1}}} \def\dl#1{\underline{\underline{#1}}} \newcommand{\usf}[1]{\boldsymbol{\mathsf{#1}}} \def\bs#1{\usf #1}\]

Engineering Optimization: Notation

Symbol Definition
\(\mathbb{N}\) The set of natural numbers
\((\cdot)\) Denotes an order set
\((x^1,x^2,\ldots, x^n)\) and \((x_1,x_2,\ldots, x_n)\) These symbols denote \(n \times 1\) matrices. They are also referred to as \(n\)-tuples
\(\left(x^i\right)_{i=1}^{n}\) and \(\left(x_i\right)_{i=1}^{n}\) Short hand for \((x^1,x^2,\ldots, x^n)\) and \((x_1,x_2,\ldots, x_n)\), respectively
\((x^{i;*})\) short for \((x^{1;*},x^{2;*}\ldots, x^{n;*})\)
\((x^i)\) and \((x_i)\) short hand for \((x^i)^{n}_{i=1}\) and \((x_i)^{n}_{i=1}\), respectively
\((A_{ij})_{i,~j=1}^{n}\) and \((A_{ij})\) Denote $n \times n$ square matrices. The index $i$ identifies the row number and $j$ denotes the column number.
\(f[\cdot]\) The square parentheses enclose the arguments of the function \(f\)

[edit]