Applied Mechanics Lab

Mechanics of Continua and Structures

Calendar

gmail inbox

\[\newcommand{\u}[1]{\boldsymbol{\mathsf{#1}}} \renewcommand{\b}[1]{\boldsymbol{#1}} \newcommand{\t}[1]{\textsf{#1}} \newcommand{\m}[1]{\mathbb{#1}} \def\RR{\bf R} \def\bold#1{\bf #1} \def\mbf#1{\mathbf #1} \def\uv#1{\hat{\usf {#1}}} \def\dl#1{\underline{\underline{#1}}} \newcommand{\usf}[1]{\boldsymbol{\mathsf{#1}}} \def\bs#1{\usf #1}\]

Kinetics: Linear momentum

The liner momentum of the solid is defined as

\[\begin{align} \bs{G}_t&=\int_{\Omega_t}\bs{v}_t(\bs{x})\rho_t(\bs{x})\, d\Omega_t \end{align}\]

It can be shown that

\[\begin{align} \bs{G}_t&=M \bs{v}_t^{\textsf{c.o.m}}, \end{align}\]

where

\(\begin{align} \bs{v}_t^{\textsf{c.o.m}}=\bs{v}_t(\bs{x}_t^{\textsf{c.o.m}}) \end{align}\) and $\bs{v}_t$ is the spatial velocity field.

Proof: Starting from $$ \begin{align} \bs{\varphi}_t(\bs{X})&=\bs{R}_t\bs{X}+\bs{t}_t\\ \end{align} $$ We previously showed that the velocity field of the rigid body can be computed as, $$ \begin{align*} \bs{v}_t(\bs{x})&=\bs{\Omega}_t\bs{x}+\bs{c}_t\\ \label{eq:vel} \tag{SpatialVel} \end{align*} $$ where $$ \begin{align*} \bs{\Omega}_t&=\dot{\bs{R}_t}\bs{R}_t^{\textsf{T}}\\ \bs{c}_t&=-\dot{\bs{R}_t}\bs{R}_t^{\textsf{T}}\bs{t}_t+\dot{\bs{t}_t} \end{align*} $$ Integrating both sides of equation $\eqref{eq:vel}$, we get that $$ \begin{align} \int_{\Omega_t}\bs{v}_t(\bs{x})\rho_t(\bs{x})\, d\Omega_t &=\int_{\Omega_t}(\bs{\Omega}_t\bs{x}+\bs{c}_t)\rho_t(\bs{x})\, d\Omega_t\\ &=\int_{\Omega_t}\bs{\Omega}_t\bs{x}\rho_t(\bs{x})\, d\Omega_t+\int_{\Omega_t}\bs{c}_t\rho_t(\bs{x})\, d\Omega_t\\ &=\bs{\Omega}_t\int_{\Omega_t}\bs{x}\rho_t(\bs{x})\, d\Omega_t+\bs{c}_t\int_{\Omega_t}\rho_t(\bs{x})\, d\Omega_t\\ &=\bs{\Omega}_t M \bs{x}_t^{\textsf{c.o.m}}+\bs{c}_t M\\ &=M\left(\bs{\Omega}_t \bs{x}_t^{\textsf{c.o.m}}+\bs{c}_t \right)\\ &=M\bs{v}_t(\bs{x}_t^{\textsf{c.o.m}})\\ \end{align} $$

[edit]