Mechanics of Continua and Structures
Let \(\mathcal{B}\) be manifold. We will refer to \(\mathcal{B}\) as the material manifold.
\(\u{\mathcal{B}}_{\rm R}=\left\{\u{\kappa}_{\rm R}(\mathcal{X})\in \mathbb{E}_{\rm R}\,\big|\,\mathcal{X}\in \mathcal{B}\right\} \subset \mathbb{E}_{\rm R}\) (Reference body in \(\mathbb{E}_{\rm R}\), reference Euclidean vector space),
\(\u{\mathcal{B}}_{\rm R}=\u{\kappa}_{\rm R}(\mathcal{B})\) (Reference body in \(\mathbb{E}_{\rm R}\)),
\(\mathcal{B}_{\rm R}=\set{\kappa_{\rm R}(\mathcal{X})\in \mathcal{E}_{\rm R}}{\mathcal{X}\in \mathcal{B}} \subset \mathcal{E}_{\rm R}\) (Reference body in \(\mathcal{E}_{\rm R}\), reference Euclidean point space),
\(\mathcal{B}_{\rm R}=\kappa_{\rm R}(\mathcal{B})\) (Reference body in \(\mathcal{E}_{\rm R}\)),
Remarks:
\(\u{\mathcal{B}}_{\tau}=\set{\u{\kappa}_{\tau}(\mathcal{X})\in \m{E}}{\mathcal{X}\in \mathcal{B}} \subset \mathbb{E}\) (Current body or deformed body in \(\mathbb{E}\), Euclidean vector space). We will also be denoting \(\mathcal{B}_{\tau}\).
\(\u{\mathcal{B}}_{\tau}=\u{\kappa}_{\tau}(\mathcal{B})\) (Current body in \(\mathbb{E}\)),
\(\mathcal{B}_{\tau}=\set{\kappa_{\tau}(\mathcal{X})\in \mathcal{E}}{\mathcal{X}\in \mathcal{B}} \subset \mathcal{E}\) (Current body in \(\mathcal{E}_{\rm R}\), Euclidean point space),
\(\mathcal{B}_{\tau}=\kappa_{\tau}(\mathcal{B})\) (Current body in \(\mathcal{E}\)),