Applied Mechanics Lab

Mechanics of Continua and Structures

Calendar

gmail inbox

\[\newcommand{\u}[1]{\boldsymbol{\mathsf{#1}}} \renewcommand{\b}[1]{\boldsymbol{#1}} \newcommand{\t}[1]{\textsf{#1}} \newcommand{\m}[1]{\mathbb{#1}} \def\RR{\bf R} \def\bold#1{\bf #1} \def\mbf#1{\mathbf #1} \def\uv#1{\hat{\usf {#1}}} \def\dl#1{\underline{\underline{#1}}} \newcommand{\usf}[1]{\boldsymbol{\mathsf{#1}}} \def\bs#1{\usf #1}\]

Maps between Euclidean spaces

Definition The map \(T:\mathbb{E}^{N} \to \mathbb{F}^{N}\) assigns to each vector \(\boldsymbol{v}\) in \(\mathbb{E}^{N}\) the unique vector \(T(\boldsymbol{v})\) in $\mathbb{F}^{N}$. It is called a map between Euclidean spaces.

Examples of maps between Euclidean spaces

Let $(\boldsymbol{e}_i)$ be an orthonormal basis of $\mathbb{E}^N$, and $(\boldsymbol{f}_i)$ be an orthornormal basis for $\mathbb{F}^N$.

Let $\boldsymbol{v} \in \mathbb{E}^N$.