Mechanics of Continua and Structures
The trace of a tensor is a scalar that obeys the following rules: For any tensor \(\mbf{T}\) and \(\mbf{S}\) and any vectors \(\mbf{a}\) and \(\mbf{b}\),
\[\begin{align} \text{tr}(\mbf{T} + \mbf{S}) = \text{tr}\mbf{T} +\text{tr}\mbf{S}, \\ \text{tr}(\alpha\mbf{T}) = \alpha \text{tr}\mbf{T}, \\ \text{tr}(\mbf{a}\mbf{b}) = \mbf{a}\cdot\mbf{b}. \end{align}\]In terms of tensor components, using Eq. (2.12.7),
\[\begin{align} \text{tr}\mbf{T} = \text{tr}(\mathit{T_{ij}}\mbf{e_i}\mbf{e_j}) = \mathit{T_{ij}}\text{tr}(\mbf{e_i}\mbf{e_j}) = \mathit{T_{ij}}\mbf{e_i}\mbf{e_j} = \mathit{T_{ij}}\mathit{\delta_{ij}} = \mathit{T_{ii}}. \end{align}\]That is,
\[\begin{align} \text{tr}\mbf{T} = \mathit{T_{11}} + \mathit{T_{22}} + \mathit{T_{33}} = \text{sum of diagonal elements}. \end{align}\]It is, therefore, obvious that
\[\begin{align} \text{tr}\mbf{T}^T = \text{tr}\mbf{T} \end{align}\]