Applied Mechanics Lab

Mechanics of Continua and Structures

Calendar

gmail inbox

\[\newcommand{\u}[1]{\boldsymbol{\mathsf{#1}}} \renewcommand{\b}[1]{\boldsymbol{#1}} \newcommand{\t}[1]{\textsf{#1}} \newcommand{\m}[1]{\mathbb{#1}} \def\RR{\bf R} \def\bold#1{\bf #1} \def\mbf#1{\mathbf #1} \def\uv#1{\hat{\usf {#1}}} \def\dl#1{\underline{\underline{#1}}} \newcommand{\usf}[1]{\boldsymbol{\mathsf{#1}}} \def\bs#1{\usf #1}\]

A rotation is special type of tensor (linear maps between vector spaces) takes a vector in $\mathbb{E}^n$ and gives a vector in $\mathbb{E}^n$. Specifically, the rotation tensor $\boldsymbol{R}$ satisfies the conditions

  1. $ \boldsymbol{R}^{\rm T}\boldsymbol{R}=\boldsymbol{I} $
  2. $\text{Det}(\boldsymbol{R})=+1$