Mechanics of Continua and Structures
Definition: Let $\boldsymbol{0}\in \mathcal{L}(\mathbb{E}^N,\mathbb{E}^N;\mathbb{R})$ be such that
\(\begin{align} \boldsymbol{0}\boldsymbol{v}=\boldsymbol{0}_{\mathbb{E}}, \end{align}\) for all \(\boldsymbol{v}\in \mathbb{E}^N\). Then $\boldsymbol{0}$ is called the null tensor.
Definition: The operator \(\b{0}\in \mathcal{L}(\mathbb{E}^N,\mathbb{F}^N;\mathbb{R})\) is called the null Tensor iff
\[\begin{align} \b{O}\b{v}=\b{0}_{\mathbb{F}^N}, \end{align}\]where \(\b{v}\) is an arbitrary vector in \(\mathbb{E}^N\) and \(\b{0}_{\mathbb{F}^N}\) is the null vector in \(\mathbb{F}^N\).