Mechanics of Continua and Structures
\begin{equation} R_{i}y_i= \sum_{i=1}^{n} x_iy_i =x_1y_1+x_2y_2+x_3y_3 \end{equation} \begin{equation} x_jy_j \end{equation} \begin{equation} xkyj \end{equation}
\begin{equation} m_iv^2 = \sum_{i=1}^{n} m_iv^i = m_1v^1 + m_2v^2 + m_3v^3 \end{equation}
\begin{equation} a_{ij}x_iy_j \Rightarrow a_{i1}x_iy_i + a_{i2}x_iy_2 + a_{i3}x_iy_3
= a_{11}x_1y_1 +a_{21}x_2y_1 + a_{31}x_3y_1 +
a_{12}x_1y_2 + a_{22}x_2y_2 + a_{32}x_3y_2 +
a_{13}x_1y_3 + a_{23}x_2y_3 + a_{33}x_3y_3
\end{equation}
\begin{equation}x_ia_jx_ja_i = \sum_{i=1}^{3} \sum_{j=1}^{3} (x_ia_jx_ja_i)
\end{equation}
= \begin{equation} \sum_{i=1}^{3}x_ia_i(\sum_{j=1}^{3} x_ja_j)
\end{equation}
= \begin{equation} \sum_{i=1}^{3}x_ia_j
\end{equation}
= \begin{equation} (\sum_{i=1}^{3}x_ia_i)(\sum_{j=1}^{3}x_ja_j)
\end{equation}
= \begin{equation}
(x_1a_1 + x_2a_2 + x_3a_3)(x_1a_1 + x_2a_2 + x_3a_3)
\end{equation}
=\begin{equation}
(a_1)^2 (x_1)^2 + 2a_1a_2x_1x_2 + 2a_1a_3x_1x_3 + (a_2)^2(x_2)^2 +2 a_2a_3 x_2x_3 + (a_3)^2(x_3)^2
\end{equation}