Mechanics of Continua and Structures
\(\begin{equation} A_{im}x_{m}+b_i+C_{ikq}x_{k}y_{q} \end{equation}\)
The expression above contains three terms. The symbols $i,m,k,q$ denote indices. They typically run from one to number of space dimensions, i.e., two or three.
The complexity of the terms can be indefinitely increased. \(\begin{equation} a_{ij} x_ix_jx_k \end{equation}\)
\(\begin{equation} x_{jj}y_j \quad \text{(Not okay; j repeated thrice)} \end{equation}\)
\(\begin{align} x_iy_i&\Rightarrow x_j y_j\\ \end{align}\)
\[\begin{align} a_ix_jy_j&\Rightarrow a_ix_k y_k, \quad (\text{OK, no conflict with free index}) \\ a_ix_jy_j&\not\Rightarrow a_ix_i y_i \quad (\text{conflict with free index})\\ \end{align}\] \[\begin{align} A_{im}x_{m}+b_i+C_{ikq}x_{k}y_{q} & \Rightarrow A_{im}x_{m}+b_i+C_{ipq}x_{p}y_{q}\quad (\text{OK, no conflict}) \\ A_{im}x_{m}+b_i+C_{ikq}x_{k}y_{q} & \Rightarrow A_{im}x_{m}+b_i+C_{imq}x_{m}y_{q}\quad (\text{OK, no conflict, even though matches dummy index in a different term}) \\ A_{im}x_{m}+b_i+C_{ikq}x_{k}y_{q} & \not\Rightarrow A_{im}x_{m}+b_i+C_{iiq}x_{i}y_{q}\quad (\text{conflict with free index}) \\ A_{im}x_{m}+b_i+C_{ikq}x_{k}y_{q} & \not\Rightarrow A_{im}x_{m}+b_i+C_{iqq}x_{q}y_{q}\quad (\text{conflict with dummy index}) \\ A_{im}x_{m}+b_i+C_{ikq}x_{k}y_{q} &\not \Rightarrow A_{ii}x_{i}+b_i+C_{ikq}x_{k}y_{q}\quad (\text{conflict with free index}) \\ \end{align}\]$\Rightarrow$
\[\begin{equation} \underbrace { A_{im}x_m } _{ \{i\}\\ \{m\} } +\underbrace{ b_i} _{ \{i\}\\ \emptyset }+\underbrace{C_{ikq} x_{k} y_{q}}_{ \{i\}\\ \{k \rightarrow m,q\} } \end{equation}\] \[\begin{equation} \underbrace { A_{im}x_m } _{ \{i\}\\ \{m\} } +\underbrace{ b_i} _{ \{i\}\\ \emptyset }+\underbrace{C_{imq} x_{m} y_{q}}_{ \{i\}\\ \{m,q\} } \end{equation}\]$\Rightarrow$
\[\begin{equation} \underbrace { A_{im}x_m } _{ \{i\}\\ \{m\} } +\underbrace{ b_i} _{ \{i\}\\ \emptyset }+\underbrace{C_{imq} x_{m} y_{q}}_{ \{i\}\\ \{m \rightarrow i,q\} } \end{equation}\]$\Rightarrow$
\(\begin{equation} \underbrace { A_{im}x_m }_{ \{i\}\\ \{m\} } +\underbrace{ b_i} _{ \{i\}\\ \emptyset }+\underbrace{C_{iiq} x_{i} y_{q}}_{ \{i\}\\ \{i,q\} } \end{equation}\) (Not okay - conflict with free index)
Notice that in each expression, all terms have the same set of free indices. That is, take a look at the expression,
\[\begin{equation} \underbrace { A_{im}x_{m} } _{ \text{Free}=\{i\}\\ \text{Dummy}=\{m\} } +\underbrace{ b_i} _{ \text{Free}=\{i\}\\ \text{Dummy}=\emptyset }+\underbrace{C_{ikq} x_{k} y_{q}}_{ \text{Free}=\{i\}\\ \text{Dummy}=\{k,q\} } \end{equation}\]This is a consequence of the following rule:
\(\begin{align} a_i +b_i\quad (\text{OK})\\ a_j +b_j\quad (\text{OK})\\ a_i +b_j\quad (\text{Not OK})\\ M_i =C_{mi}b_m\quad (\text{OK})\\ M_i =C_{mj}b_m\quad (\text{Not OK})\\ \end{align}\)
(the power of computers) - Viola Mathematica
Definition
$\boldsymbol{a}, \boldsymbol{b} \mapsto \text{Dot}(\boldsymbol{a},\boldsymbol{b}) \in \mathbb{R}$, where $\mathbb{R}$ is the set of real numbers, and $\text{Dot}(\boldsymbol{a},\boldsymbol{b}) = \text{Dot}(\boldsymbol{b},\boldsymbol{a})$.
\[\begin{align} \hat{\boldsymbol{\mathsf{E}}}_1\cdot\hat{\boldsymbol{\mathsf{E}}}_1&=1,\\ \hat{\boldsymbol{\mathsf{E}}}_2\cdot\hat{\boldsymbol{\mathsf{E}}}_2&=1,\\ \hat{\boldsymbol{\mathsf{E}}}_3\cdot\hat{\boldsymbol{\mathsf{E}}}_3&=1,\\ \hat{\boldsymbol{\mathsf{E}}}_1\cdot\hat{\boldsymbol{\mathsf{E}}}_2 &= 0 & \hat{\boldsymbol{\mathsf{E}}}_2\cdot\hat{\boldsymbol{\mathsf{E}}}_1 &= 0, \\ \hat{\boldsymbol{\mathsf{E}}}_2\cdot\hat{\boldsymbol{\mathsf{E}}}_3 &= 0 & \hat{\boldsymbol{\mathsf{E}}}_3\cdot\hat{\boldsymbol{\mathsf{E}}}_2 &= 0, \\ \hat{\boldsymbol{\mathsf{E}}}_3\cdot\hat{\boldsymbol{\mathsf{E}}}_1 &= 0 & \hat{\boldsymbol{\mathsf{E}}}_1\cdot\hat{\boldsymbol{\mathsf{E}}}_3 &= 0. \\ \end{align}\]That is, in summary, for an orthonromal basis we have \(\hat{\boldsymbol{\mathsf{E}}}_i \cdot \hat{\boldsymbol{\mathsf{E}}}_j=\delta_{ij}.\)
For two arbitrary vectors $\boldsymbol{\mathsf{a}}$ and $\boldsymbol{\mathsf{b}}$, such that $[\boldsymbol{\mathsf{a}}]_i=a_i$ and $[\boldsymbol{\mathsf{b}}]_i=b_i$, we have that
\[\begin{align} (a_i \hat{\boldsymbol{\mathsf{E}}}_i) \cdot (b_j \hat{\boldsymbol{\mathsf{E}}}_j) = & a_1 b_1 \hat{\boldsymbol{\mathsf{E}}}_1 \cdot \hat{\boldsymbol{\mathsf{E}}}_1+ a_1 b_2 \hat{\boldsymbol{\mathsf{E}}}_1 \cdot \hat{\boldsymbol{\mathsf{E}}}_2+ a_1 b_3 \hat{\boldsymbol{\mathsf{E}}}_1 \cdot \hat{\boldsymbol{\mathsf{E}}}_3+\\ & a_2 b_1 \hat{\boldsymbol{\mathsf{E}}}_2 \cdot \hat{\boldsymbol{\mathsf{E}}}_1+ a_2 b_2 \hat{\boldsymbol{\mathsf{E}}}_2 \cdot \hat{\boldsymbol{\mathsf{E}}}_2+ a_2 b_3 \hat{\boldsymbol{\mathsf{E}}}_2 \cdot \hat{\boldsymbol{\mathsf{E}}}_3+ \\ & a_3 b_1 \hat{\boldsymbol{\mathsf{E}}}_3 \cdot \hat{\boldsymbol{\mathsf{E}}}_1+ a_3 b_2 \hat{\boldsymbol{\mathsf{E}}}_3 \cdot \hat{\boldsymbol{\mathsf{E}}}_2+ a_3 b_3 \hat{\boldsymbol{\mathsf{E}}}_3 \cdot \hat{\boldsymbol{\mathsf{E}}}_3 \\ =& a_1 b_1 + a_2 b_2 + a_3 b_3 \\ =&a_i b_i \end{align}\]Kronecker delta, denoted by $\delta_{ij}$, is defined as:
\[\begin{equation} \delta_{ij} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases} \end{equation}\]That is,
$\delta_{11}=1$ $\delta_{12}=0$ $\delta_{13}=0$ $\delta_{21}=0$ $\delta_{22}=1$ $\delta_{23}=0$ $\delta_{31}=0$ $\delta_{32}=0$ $\delta_{33}=1$
For example, $\delta_{12}=0$ and $\delta_{33}=1$.
Identity Matrix
\(\mathbb{\mathsf{I}} = \left(\delta_{ij}\right)= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}\\ \text{Read paranthesis as ``matrix representation of the Kronecker-delta symbol``}\) \(\left[\delta_{ij}\right]= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}\)
Properties of the Kronecker Delta
So, \(\delta_{im}a_m = a_i\),\((\delta_{1m}a_m, \delta_{2m}a_m , \delta_{3m}a_m) = (a_1, a_2, a_3)\),\(\delta_{1m}a_m = a_i\).
\[\begin{align} \delta_{1m}T_{mj} & = \delta_{11}T_{1j}+ \delta_{12}T_{2j}+\delta_{13}T_{3j} =T_{1j} \\ \delta_{2m}T_{mj} & = \delta_{21}T_{1j}+ \delta_{22}T_{2j}+\delta_{23}T_{3j} =T_{2j} \\ \delta_{3m}T_{mj} & = \delta_{31}T_{1j}+ \delta_{32}T_{2j}+\delta_{33}T_{3j} =T_{3j} \end{align}\]\(\begin{bmatrix} \delta_{1m}T_{mj} = T_{1j} \\ \delta_{2m}T_{mj} = T_{2j} \\ \delta_{3m}T_{mj} = T_{3j} \end{bmatrix}\) $\Rightarrow$ $\delta_{1m}T_{mj} = T_{1j}, \delta_{2m}T_{mj} = T_{2j}, \delta_{3m}T_{mj}=T_{3j}$. \(\delta_{im}T_{mj} = T_{ij}\)
We can generalize the last two results. If, in a term, the Kronecker delta and another symbol share an index, the index in that symbol can be replaced by the Kronecker delta’s other index in its symbol. For example: