Applied Mechanics Lab

Mechanics of Continua and Structures

Calendar

gmail inbox

\[\newcommand{\u}[1]{\boldsymbol{\mathsf{#1}}} \renewcommand{\b}[1]{\boldsymbol{#1}} \newcommand{\t}[1]{\textsf{#1}} \newcommand{\m}[1]{\mathbb{#1}} \def\RR{\bf R} \def\bold#1{\bf #1} \def\mbf#1{\mathbf #1} \def\uv#1{\hat{\usf {#1}}} \def\dl#1{\underline{\underline{#1}}} \newcommand{\usf}[1]{\boldsymbol{\mathsf{#1}}} \def\bs#1{\usf #1}\]

Kinetics: Balance of Angular Momentum

In this section we will be deriving the euler equations. These equations are a consequence of the balance of angular momentum. The balance of angular momentum follows from Newton’s second law of motion. One form of the statement of balance of angular momentum for a rigid solid reads,

\[\begin{equation} \dot{\bs{H}}_t=\bs{M}, \end{equation}\]

where $\bs{H}_t$ is the angular momentum of the solid, and the $\bs{M}$ is the resultant external moment on the solid w.r.t its center of mass. That is, if a set of forces $ \bs{f}_i$ acts on the solid at the points whose position vectors are $\bs{x}_i$, then

\(\begin{align} \bs{M}&=\bs{\pi}_i \times \bs{f}_i, \end{align}\) where $\bs{\pi}_i=\bs{x}_i-\bar{x}$

In a previous section we showed that

\[\begin{align} \dot{\bs{H}}_t=&\left(\lambda_1 \dot{\omega}_1-(\lambda_2-\lambda_3)\omega_2 \omega_3\right)\uv{e}_1+\\ &\left(\lambda_2 \dot{\omega}_2-(\lambda_3-\lambda_1)\omega_1 \omega_3\right)\uv{e}_2+\\ &\left(\lambda_3 \dot{\omega}_3-(\lambda_1-\lambda_2)\omega_1 \omega_2\right)\uv{e}_3\\ \end{align}\]

The balance of angular momentum thus implies that

\[\begin{align} \lambda_1 \dot{\omega}_1-(\lambda_2-\lambda_3)\omega_2 \omega_3&=\bs{M}\cdot \uv{e}_1,\\ \lambda_2 \dot{\omega}_2-(\lambda_3-\lambda_1)\omega_1 \omega_3&=\bs{M}\cdot \uv{e}_2,\\ \lambda_3 \dot{\omega}_3-(\lambda_1-\lambda_2)\omega_1 \omega_2&=\bs{M}\cdot \uv{e}_3,\\ \end{align}\]

[edit]