Mechanics of Continua and Structures
We previously showed that \(\begin{align*} \bs{v}_t(\bs{x})&=\bs{\Omega}(t)\bs{x}+\bs{c}(t)\\ \label{eq:SpatialVel} \tag{SpatialVel} \end{align*}\)
where
\[\begin{align} \bs{\Omega}_t&=\dot{\bs{R}}_t\bs{R}_t^{\text{T}}\\ \bs{c}_t&=-\dot{\bs{R}}_t\bs{R}_t^{\text{T}}\bs{t}_t+\dot{\bs{t}}_t\\ \bs{\varphi}_{t}(\bs{X})&=\bs{R}_t\bs{X}+\bs{t}_t \end{align}\]We also previously showed (see: Angular Velocity Tensor) that $\bs{\Omega}_t$ is a skew-symmetric tensor. According to our knowledge of axial vectors, we know that corresponding to every skew-symmetric tensor there exits a vector called its axial vector. We termed the axial vector corresponding to $\bs{\Omega}_t$ the ‘angular velocity vector,’ $\bs{\omega}_t$. Using $\bs{\omega}_t$, $\eqref{eq:SpatialVel}$ can be written as
\[\begin{align} \bs{v}_t(\bs{x})&=\bs{\omega}_t \times \bs{x}+\bs{c}_t \end{align}\]It can be shown that
\(\begin{align} \bs{v}_t(\bs{x})&=\bs{\omega}_t \times \left(\bs{x} -\bar{\bs{x}}_t\right)+\bar{\bs{v}}_t \end{align}\) where $\bar{\bs{v}}_t$ is the velocity of the center of mass, i.e.,
\[\begin{align} \bar{\bs{v}}_t&=\bs{v}_t(\bar{\bs{x}}_t) \end{align}\]In terms of the relative position vector $\bs{\pi}_t(\bs{x})=\bs{x}-\bar{\bs{x}}_t$, the spatial velocity field can be written as, \(\begin{align} \bs{v}_t(\bs{x})&=\bs{\omega}_t \times \bs{\pi}_t+\bar{\bs{v}}_t \end{align}\)
Result 1
Recall that $[\bs{a}\otimes \bs{b}]_{ij}=a_i b_j$, the trace of $\bs{a}\otimes \bs{b}$ is \(\begin{align} \mathsf{Tr}\left(\bs{a}\otimes \bs{b}\right)&=a_i b_i, \\ &=\bs{a}\cdot\bs{b} \end{align}\)
Specifically,
\[\begin{align} \mathsf{Tr}\left(\bs{\pi}_t\otimes \bs{\pi}_t\right)&=\bs{\pi}_t\cdot\bs{\pi}_t \end{align}\]Result 2
\[\begin{align} \mathsf{Tr}\left(\int_{\Omega_t}\bs{A}(\bs{x})\, d\Omega_t\right)&= \int_{\Omega_t}\mathsf{Tr}\left(\bs{A}(\bs{x})\right)\, d\Omega_t \end{align}\]We defined the intertia tensor in terms of the euler tensor as,
\[\begin{align} \bs{J}_t &= \mathsf{Tr}\left(\bs{E}_t\right)\bs{I}-\bs{E}_t \\ &=\mathsf{Tr}\left(\bs{E}_t\right)\bs{I}-\int_{\Omega_t}\bs{\pi}_t\otimes \bs{\pi}_t\rho_t\, d\Omega_t\\ &=\mathsf{Tr}\left(\int_{\Omega_t}\bs{\pi}\otimes \bs{\pi}\rho_t\, d\Omega_t\right) \bs{I}-\int_{\Omega_t}\bs{\pi}_t\otimes \bs{\pi}_t\rho_t\, d\Omega_t\\ &=\int_{\Omega_t}\mathsf{Tr}\left(\bs{\pi}\otimes \bs{\pi}\right)\rho_t\, d\Omega_t \bs{I}-\int_{\Omega_t}\bs{\pi}_t\otimes \bs{\pi}_t\rho_t\, d\Omega_t\\ &=\int_{\Omega_t}\left(\bs{\pi}\cdot \bs{\pi}\right)\bs{I}\rho_t\, d\Omega_t -\int_{\Omega_t}\bs{\pi}_t\otimes \bs{\pi}_t\rho_t\, d\Omega_t\\ &=\int_{\Omega_t}\left(\left(\bs{\pi}\cdot \bs{\pi}\right)\bs{I}-\bs{\pi}_t\otimes \bs{\pi}_t\right)\rho_t\, d\Omega_t\\ \end{align}\]The angular momentum of a solid is defined as
\[\begin{align} \bs{H}_t&=\int_{\Omega_t}(\bs{x}-\bar{\bs{x}}_t) \times \bs{v}_t(\bs{x})\rho_t(\bs{x})\, d\Omega_t \end{align}\] \[\begin{align*} \bs{H}_t&=\int_{\Omega_t}\bs{\pi}_t(\bs{x})\times \bs{v}_t(\bs{x})\rho_t(\bs{x})\, d\Omega_t\\ &=\int_{\Omega_t}\bs{\pi}_t\times \left(\bar{\bs{v}}_t+\bs{\omega}_t \times \bs{\pi}_t\right)\rho_t\, d\Omega_t,\\ &=\int_{\Omega_t}\bs{\pi}_t\times \bar{\bs{v}}_t\rho_t\, d\Omega_t+\int_{\Omega_t}\bs{\pi}_t\times\bs{\omega}_t \times \bs{\pi}_t \rho_t\, d\Omega_t,\\ &=\left(\int_{\Omega_t}\bs{\pi}_t\rho_t\, d\Omega_t \right)\times \bar{\bs{v}}_t+\int_{\Omega_t}\bs{\pi}_t\times\bs{\omega}_t \times \bs{\pi}_t \rho_t\, d\Omega_t,\\ &=\int_{\Omega_t}\bs{\pi}_t\times\bs{\omega}_t \times \bs{\pi}_t \rho_t\, d\Omega_t,\\ &=\int_{\Omega_t}\left(\left(\bs{\pi}_t\cdot\bs{\pi}_t\right) \bs{\omega}_t - \left(\bs{\pi}_t\cdot\bs{\omega}_t\right)\bs{\pi}_t \right)\rho_t\, d\Omega_t,\\ &=\left(\int_{\Omega_t}\left(\left(\bs{\pi}_t\cdot\bs{\pi}_t\right) \bs{I} - \bs{\pi}_t\otimes \bs{\pi}_t \right)\rho_t\, d\Omega_t\right) \bs{\omega}_t,\\ &=\bs{J}_t\bs{\omega}_t \end{align*}\]The angular momemtum about a point $\mathcal{A}$ is defined as,
\[\begin{align} \bs{H}_t^{\mathcal{A}}&=\int_{\Omega_t}(\bs{x}-\bs{x}^{\mathcal{A}})\times \rho_t(\bs{x})\bs{v}_t(\bs{x})\, d\Omega_t \end{align}\]How is $\bs{H}_t^{\mathcal{A}}$ related to $\bs{H}$?
\(\begin{align} \bs{H}_t^{\mathcal{A}}&=\int_{\Omega_t}(\bs{x}-\bs{x}^{\mathcal{A}})\times \rho_t(\bs{x})\bs{v}_t(\bs{x})\, d\Omega_t\\ &=\int_{\Omega_t}(\bs{x}-\bar{\bs{x}}+\bar{\bs{x}}-\bs{x}^{\mathcal{A}})\times \rho_t(\bs{x})\bs{v}_t(\bs{x})\, d\Omega_t\\ &=\int_{\Omega_t}(\bs{x}-\bar{\bs{x}})\times \rho_t(\bs{x})\bs{v}_t(\bs{x})\, d\Omega_t+\int_{\Omega_t}(\bar{\bs{x}}-\bs{x}^{\mathcal{A}})\times \rho_t(\bs{x})\bs{v}_t(\bs{x})\, d\Omega_t\\ &=\bs{H}+(\bar{\bs{x}}-\bs{x}^{\mathcal{A}})\times\int_{\Omega_t} \rho_t(\bs{x})\bs{v}_t(\bs{x})\, d\Omega_t\\ \end{align},\) Noting that $\int_{\Omega_t} \rho_t(\bs{x})\bs{v}_t(\bs{x})\, d\Omega_t$ is the linear momentum of the solid $\bs{G}_t$, we get
\[\begin{align} \bs{H}_t^{\mathcal{A}}&=\bs{H}+(\bar{\bs{x}}-\bs{x}^{\mathcal{A}})\times \bs{G}_t\\ \end{align}\]For the special case of $\mathcal{A}=\mathcal{O}$ (the origin), we have that,
\[\begin{align} \bs{H}_t^{\mathcal{O}}&=\bs{H}+\bar{\bs{x}}\times \bs{G}_t\\ \end{align}\]From the last two equations, we get that,
\[\begin{align} \bs{H}_t^{\mathcal{A}}-\bs{H}_t^{\mathcal{O}}&=-\bs{x}^{\mathcal{A}}\times \bs{G}_t\\ \bs{H}_t^{\mathcal{A}}+\bs{x}^{\mathcal{A}}\times \bs{G}_t&= \bs{H}_t^{\mathcal{O}}\\ \end{align}\]