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Stiff biological materials (SBMs), such as nacre and bone, are composites that display remarkable

toughness enhancements over their primary constituents, which are brittle minerals. The enhanced

fracture toughness in those tough SBMs is known to be a direct consequence of their intricate internal

architectures. By studying the connections between a biological material’s microscale structures and

mechanical properties, researchers can learn new mechanical design principles that can be used to

improve the design of engineering composites. With this goal in mind, a special type of SBMs, called

spicules, which are the skeletal elements from the marine sponge Euplectella aspergillum, draws

our attention. Spicules are fiber-like structures that consist of a solid silica cylinder surrounded

by concentric cylindrical silica layers. The curves from flexural tests carried out on spicules

display sawtooth patterns, which are typically a signature of toughening mechanisms through crack

arrest and reinitiation. Intriguingly, the spicules were recently found not to display any significant

toughness enhancement. To resolve this apparent contradiction, I present a model for the spicule’s

flexural tests in which I allow for the slipping of the specimen on the test fixtures. By choosing

experimentally reasonable values for the friction coefficient, I was able to get the model’s predictions

to match experimental measurements. The model predicts that the sawtooth patterns are due to the

slipping instabilities of the spicules on the test fixtures, not from toughening mechanisms. With

the demand of a new explanation for the beneficial properties of the spicules’ internal architectures,

I proposed a hypothesis that the internal architectures enhance the spicules’ anchoring ability by

reducing their effective bending stiffness. I calculated the effective bending stiffness of helical

symmetric, cylindrical orthotropic multilayer composite cylinders using anisotropic elasticity theory

and homogenization theory. This result provides theoretical support to our hypothesis that it is

possible to design a composite beam with desired bending stiffness through lamellar architectures.

In another hypothesis, with the aim to explore whether effective shear stiffness affects the spicules’

anchoring ability, I developed a variationally consistent geometrically nonlinear shear deformable

beam theory. Inspired by spicules, the works in this dissertation provide fundamental understanding

in the mechanics of 1D continua.
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2.4 An illustration of the simply-supported setup. (A) Schematic of the experimental
setup used in our recent study [31] for testing spicules in a simply-supported setup.
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consisted of a wedge attached to a cantilever; to ensure that the cantilever’s right
end remained fixed in space during the experiment, the right end was encastered
into a rigid aluminum frame (not shown in the schematic) that was independent
of all the other testing structures. (B) Schematic of a simply-supported spicule in
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2.5 Geometry in our mechanics model. (A) A schematic of a beam (blue) suspended over
a trench (gray). At 𝑠 = 0 the beam experiences the normal reaction force𝐸𝐼 𝑷̂𝑛 (0)/𝐿2

and the frictional reaction force 𝐸𝐼 𝑷̂𝑡 (0)/𝐿2. The force 𝑭 acts at the spicule
midpoint. The magnitude of the beam’s midpoint’s deflection is |𝑤0 |. The angle
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0.3, 𝐴 = 0.2, 𝜆̂ = 0.02𝜋, and 𝜙 = 0, i.e., in which 𝜇(𝑆) = 0.3
(
1 + 0.2 cos

(
𝑆/0.02

))
.

For this case we computed the equilibrium regions using the procedure detailed in
Algorithm 1. Subfigures (A), (B), and (C) show the equilibrium region in the 𝑤̂0-𝐹̂,
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2.7 Equilibrium and measured force-displacement curves. (A) shows the equilibrium
curves, 𝛾sp-eq, for the cases 𝜇

(
𝑆

)
= 0.6

(
1 + 0.4 cos

(
𝑆/0.02

))
, 𝜇

(
𝑆

)
= 0.6, and

𝜇

(
𝑆

)
= 0.0, using gray lines. The equilibrium curve predicted by the Euler-

Bernoulli theory is also shown for reference, using dashed brown lines. (B) and (C)
again show the equilibrium curve corresponding to 𝜇

(
𝑆

)
= 0.6

(
1 + 0.4 cos

(
𝑆/0.02

))
.

They only consider this equilibrium curve and a cantilever stiffness of 𝑘̂𝑐 = 30 and
show the measured curves for two different 𝑤̂𝑠 (·). (B) considers the 𝑤̂𝑠 (·) given
in (2.38) for 1𝑤𝑠, 2𝑤𝑠, and 3𝑤𝑠 equal to 0.52, 0.65, and 0.69, respectively. In (B),
on the equilibrium curve, we mark the overall-equilibrium configurations at some
three time instances that, respectively, belong to the intervals (0, 𝜏1], (𝜏1, 𝜏2], and
(𝜏2, 𝜏3], which appear in (2.38). The stable overall-equilibrium configurations are
shown as filled circles; the unstable configurations as open circles; and the partially-
stable configurations as semi-filled circles. All overall-equilibrium configurations
corresponding to the same time instance are connected using a dashed gray line. The
three dashed gray lines are the graphs of the function (2.37b) at the three previously
mentioned time instances. The graph of the measured curve in this case consists of
just the three points that are shown as 1𝑆1, 1𝑆2, and 2𝑆3. (C) shows the measured
curve 𝛾𝑚 for the case in which 𝑤̂𝑠 (·) is some continuous, monotonically increasing
function of time. The measured curve in this case is the discontinuous curve that is
shown using thin black lines. The straight line segments that span the discontinuities
of this curve signify the slip instabilities occurring at the trench edges. . . . . . . . 38
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2.9 Comparing measured force-displacement curves from the SS tests belonging to
category C.1 with their theoretical predictions. Each subfigure corresponds to
a different test. The subfigures with a red cross mark at their top left corners
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Chapter 1

Introduction

The mechanics of 3D continua is a huge success in describing the deformation and stress state for

most solid bodies. However, the equations governing the deformation of 3D continua are relatively

difficult to handle even if the object is composed of simple isotropic elastic materials. Researchers

have developed many reduced-dimensional theories to model structures with specific geometric

features. For structures with one dimension being much larger than the other two, the corresponding

one-dimensional theory is called the mechanics of 1D continua. In the mechanics of 1D continua,

when the object is primarily subjected to bending deformation, the theory is usually categorized as

beam theory. When it is primarily subjected to axial loading, the corresponding theory is usually

referred as column theory.

There are a plethora of beam theories available in literature [1]. The most elementary theory

among them is Euler-Bernoulli beam theory, which is widely employed in civil engineering. It is

known that the shear effect usually play an important role in composite beams since the material

interfaces are typically weak in shear. Hence, shear deformable beam theories such as Timoshenko

beam theory [2, 3] and some high-order shear deformable beam theories [4, 5] are established

to model short beams and composite beams. For the study of the deformation of highly flexible

structures, the most elementary theory is Euler’s Elastica theory [6, 7], which is an extension of

Euler-Bernoulli beam theory in the finite deformation regime. A more general finite deformation

plane beam theory in which bending, transverse shearing and axial stretching are taken account

was first presented by Reissner [8]. Later, Simo [9] extended Reissner’s plane beam theory into a

1
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three-dimensional dynamic theory, also known as geometrically-exact rod model.

As for columns, if the structure is relatively slender, it may deflect laterally and fail by bending

rather than failing by direct compression of the material. The well-known Euler buckling theory [10]

can be applied to determine the critical load for elastic buckling. If a column is of intermediate

length, the stress in the column will reach the proportional limit before buckling begins. One will

need a theory of inelastic buckling, such as tangent-modulus theory [11], the reduced-modulus

theory [12], and the Shanley theory [13] to calculate the critical load.

The mechanics of 1D continua plays an important role in the modeling and analysis of many bio-

inspired systems, such as plant stems [14], bones and spines [15], and marine sponge skeletons [16].

In this dissertation, I will discuss some biological systems in which I propose hypotheses and develop

new theoretical models to explain the structure-function connections. Through the development of

new models, we aim to better understand the evolution of biological systems and apply that knowledge

to build stronger structures.

1.1 Structural biological materials serve as templates for bio-inspiration

Structural biological materials (SBMs), such as mother of pearl (nacre) [17], spicules [18], and

bones [15] are of growing interest in material and mechanics communities. They are composites

that mainly consist of a stiff mineral phase which is often in the form of platelets [19, 20, 21] or

fibers [16, 22, 23], and contributes to 95% of the materials’ volumes. The platelets and fibers are

glued to the mineral phase by a compliant organic phase (see Figure 1.1). These natural composites

are distinguished from their synthetic counterparts by the fact that their effective properties at the

macro scale, such as strength and fracture toughness, are quite high despite the corresponding

properties of their constituent phases being poor. With remarkable mechanical performances,

structural biomaterials can serve as fascinating model material systems for the discovery of new

mechanics of materials principles.

Among all structural biomaterials, we focus on the anchor spicules of the marine sponge

Euplectella aspergillum (Ea.) (see Figure 1.1 (C)). While the Ea. anchor spicules are com-

posed primarily of glass, they are surprisingly flexible and can even be tied in knots before
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breaking. The spicules have been the subject of several previous structure-function investiga-

tions [24, 18, 25, 26, 27, 28, 29, 30, 31]. However, the functional implications of their internal

architectures are still not fully understood.

Euplectella aspergillum is a species of “glass sponge” (class Hexactinellida) that lives in the

deep waters of the Pacific Ocean [32, 33, 25]. Like most other sponges, they feed by filtering sea

water to capture plankton. The anchor spicules of Ea. sponges are fiber-like glass skeletal elements.

They are approximately 50 𝜇m in diameter and up to 10 cm in length. They also have a lamellar

architecture that resembles those in nacre and bone. The architecture consists of alternating layers

of glass and organic phases laid out in a concentric manner, as shown in Figure 1.1(D). Specifically,

when viewed in cross-section, an anchor spicule consists of a ≈10 𝜇m silica core that is surrounded

by a coaxial assembly of ≈25 cylindrical silica layers [18, 33, 25]. From the core to the periphery,

the thicknesses of the silica layers are decreasing. A 5-10 nm thin proteinaceous interlayer is present

in between adjacent silica layers [25]. Similar cylindrical lamellar architectures are also found in

spicules of a number of related sponge species [34, 35, 32].

1.1.1 Does lamellar architecture in Ea. spicules contribute to toughness enhance-

ment?

It is natural to hypothesize that, analogous to other SBMs, the spicules’ architecture is closely related

to their high toughness. However, the presupposition that the anchor spicules have high toughness

may not be correct. To find out how much does a spicule’s architecture enhance its toughness,

Monn et al. have performed flexural tests on the anchor spicules to measure their crack growth

resistance [30, 38]. They compared these toughness properties to the properties of spicules from

a related sponge (Tethya aurantia) that has a similar chemical composition but lacks the lamellar

architecture. Through this comparison they have found that:

1. The cylindrical lamellar architecture has little effect on the Ea. spicule’s fracture initiation

toughness.

2. The average crack growth resistance of the Ea. spicules was roughly 73 times larger than the

average crack growth resistance of the monolithic spicules.
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Figure 1.1: Lamellar architectures in biological materials. (A) The shell of Haliotis rufescens—the red abalone (image
courtesy of John Varner). (B) The nacre from H. rufescens consists of aragonite tablets assembled in a brick-and-mortar
manner, where thin protein layers (not identifiable in the image) in between the tablets function as the mortar (modified
with permission from [36]; copyright 2012 the Royal Society of Chemistry). (C) The entire skeletal structure of a marine
sponge Euplectella aspergillum is shown (modified from [18]; copyright 2015 National Academy of Sciences). The white
arrow identifies the spicules, which are around 50 𝜇m in diameter and can be several centimeters long. In some of our
recent studies, we performed three-point bending tests on these spicules [29, 30]. (D) A scanning electron microscope
(SEM) image of an E. aspergillum spicule’s cross section shows lamellar architecture consisting of a cylindrical silica
core surrounded by concentric silica layers (modified from [18]; copyright 2015 National Academy of Sciences). Each of
these concentric silica layers are separated from their adjacent layers or the silica core by a compliant organic layer whose
thickness is roughly in the 5–10 nm range (not identifiable in the SEM image) [25].
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Figure 1.2: Sawtooth pattern in the flexural test curve of nacre-mimicking specimen. (A) nacre-mimicking specimen
with layered architecture that consisted of a stack of silicon carbide layers coated with graphite. This nacre-mimicking
specimen displayed fracture toughness enhancement, i.e. the fracture toughness of the nacre-mimicking specimen was
higher than that of a homogenous silicon carbide specimen [37]. (B) A representative force-displacement curve from
three-point bending tests of the specimen in (A). Both (A) and (B) are adapted from Clegg et al. [37].



5

3. The toughness enhancement provided by the spicule’s lamellar architecture was much smaller

than toughness enhancements observed in other structural biological materials like nacre and

bone.

It is commonly accepted that a signature of the toughness enhancement mechanism in the SBMs

with lamellar architectures is the sawtooth pattern in the flexural test curve (see Figure 1.2). The

above results by Monn et al. imply that the Ea. spicules’ lamellar architecture does not significantly

contribute to their toughness enhancement. However, this conclusion appears to contradict the

observations made in Monn and Kesari [29, 31], in which they observed sawtooth patterns in the

force-displacement curves from flexural tests on Ea. spicules. For the detailed discussion of the

observation and interpretation of sawtooth patterns, please see Kochiyama et al. [31].

In Chapter 2 of this dissertation, I aim to answer the question: what is the physical mechanism

behind the sawtooth patterns in the force-displacement curves from flexural tests on Ea. spicules? I

put forward the hypothesis that the sawtooth pattern was due to the spicules’ slipping at the tests’

supports. To illustrate my hypothesis, I present a model for the spicules’ flexural tests in which I allow

for the possibility for the specimen to slip at the tests’ supports. I model the specimen using Euler’s

Elastica theory and the contact between the specimen and the tests’ supports using the Coulomb’s

friction law. By choosing experimentally reasonable values for the friction coefficient, I was able

to get the model’s predictions to match experimental measurements remarkably well. Additionally,

on incorporating the spicules’ surface roughness into the model, which I did by varying the friction

coefficient along the spicules’ length, its predictions can also be made to match the measured

sawtooth patterns. We find that the sawtooth pattern in the model are due to slip type instabilities,

which further reinforces our hypothesis that sawtooth patterns in flexural force curves of structural

biological materials are not signatures of toughness enhancement.

1.1.2 New hypothesis about the beneficial properties of the lamellar architectures in

Ea. anchor spicules

Now that it has been shown that the Ea. spicules’ lamellar architecture does not significantly

contribute to their toughness enhancement, we demand a new hypothesis to explain the beneficial
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Figure 1.3: (A) An Euplectella aspergillum sponge with mud on its root (image courtesy of Swee Cheng Lim). (B) An
Ea. anchor spicule bent into a loop. The radius of curvature at the symmetric point of the loop is 𝑅 while the curvature at
that point is 𝜅. (C) A schematic of a beam bent into a loop by force 𝑃 applied on the two ends. As per Euler-Bernoulli
beam theory, the critical point (marked in red) on the beam undergoes bending moment 𝑀 = 𝐸𝐼𝜅 where 𝐸 is the Young’s
modulus and 𝐼 is the second moment of area of the beam’s cross section. From the rigid body diagram, we also have
𝑀 = 𝑃𝑑 where 𝑑 is the size of the loop.

properties of the lamellar architecture. Recall that the primary mechanical function of the spicules

is to secure the sponge into the soft sediments of the sea floor [39]. Since some spicules will tangle

with small rocks in the mud and form knots (see Figure 1.3), which helps the sponge anchor tightly

to the sea floor, the spicule’s anchoring capacity is mainly determined by the maximum end force 𝑃

it can transmit without breaking. If the deformation of the spicules is governed mainly by bending,

assuming that the normal stress is distributed in a linear way over the cross section of the spicules,

the maximum tensile stress will appear at the top edge of the symmetric point of the loop. We refer

to the symmetric point of the loop as the critical point (marked by red dot in Figure 1.3 (C)). An

estimation of the maximum tensile stress at the the critical point is

𝜎𝑚 =
𝑀

𝐼
𝑟, (1.1)

where 𝑀 is bending moment at the critical point, 𝐼 is the second moment of area of the beam’s cross

section, and 𝑟 is the radius of beam’s cross section. From rigid body diagram, we have,

𝑀 = 𝑃𝑑, (1.2)
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Figure 1.4: (A) Schematics of beams with different bending stiffness forming loops with different size (B) The relation
between the normalized loop size and the normalized bending stiffness for the problem given in (A) using Euler’s Elastica
theory.

where 𝑑 is the projection of the distance between the critical point and the tail of the loop in the

direction perpendicular to the end force 𝑃. For simplicity, we refer to the size of the loop as 𝑑.

Inserting (1.2) to (1.2), we arrive at

𝜎𝑚 =
𝑃𝑑

𝐼
𝑟. (1.3)

Considering the spicules is composed of brittle ceramic material, we assume the spicule fails when

the maximum tensile stress exceeds a critical failure value 𝜎 𝑓 . We denote the maximum end force

just before the spicule fails as 𝑃 𝑓 , which is a measure of the spicule’s anchoring ability. By taking

𝜎𝑚 to be the failure curvature 𝜎 𝑓 , we have

𝑃 𝑓 =
𝜎 𝑓 𝐼

𝑑 𝑟
. (1.4)

Using Euler’s Elastica theory, when a beam is bent into a loop, the loop size 𝑑 will decrease if

the bending stiffness is reduced while all other parameters are fixed (see Figure 1.4). From (1.4), we

identify the dependence of the beam’s maximum end force on the loop size 𝑑. Taking all of the above

information together, it can be deduced that the spicule’s anchoring ability is negatively correlated

with the effective bending stiffness, 𝐸𝐼, of the spicule. However, how to make connections between

the spicule’s lamellar architecture and its effective bending stiffness?

In Chapter 3, we present our exploration on how lamellar architectures enhance the spicules’

anchoring ability by reducing their effective bending stiffness. This is based on our observation that
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Figure 1.5: Helical structure developed under tensile stress in Ea. anchor spicules.

the spicules are essentially multilayered composite cylinders with cylindrical orthotropy. Through

tensile tests on the Ea. anchor spicules, we surprisingly observed helical structures in the spicules

(see Figure 1.5). The observation implies that the Ea. spicules are essentially anisotropic and

heterogeneous. Moreover, the helical symmetric layers of the spicules are cylindrical orthotropic.

The effective bending stiffness of such structures can be obtained through the anisotropic elasticity

theory and homogenization theory. Based on the formulae obtained by Jolicoeur and Cardou [40],

we derived analytical expressions for the asymptotic bending stiffness of multilayered composite

cylinders with cylindrical orthotropy. For the particular case that a hollow cylinder cut into multiple

concentric tubes and assuming no friction between adjacent layers, it is found the effective bending

stiffness of the multilayered hollow cylinder is reduced. This result provides theoretical support to

our hypothesis that the spicules’ lamellar architectures help to enhance their anchoring ability by

reducing their effective bending stiffness.

1.1.3 Exploring the shear effect of the lamellar architectures in Ea. anchor spicules

When a spicule forms a loop, we expect not only bending deformation but also shearing deformation

along the spicule. The proteinaceous interlayers between adjacent concentric silica layers are known

to be highly compliant. When the spicules are under shear traction, shear strain localization is

expected to form in the organic phase, which results in smaller apparent shear stiffness than a

monolithic counterpart without any organic phase. Therefore, it is reasonable to assume that the Ea.

spicules with layered architecture appear to be softer in shear deformation than monolithic spicules.

In Chapter 4, I try to explore whether the lamellar architecture in Ea. anchor spicules affects the
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Figure 1.6: Skeletal anatomy of Tethya aurantia (Ta.) sponge and strongyloxea spicules. (A) Tethya aurantia sponge, also
known as the orange puffball sponge (image courtesy Karakal). (B) The skeletal morphology of a similar specie called
Tethya minuta (modified with permission from [41]). The radially arranged bundle structures are marked in yellow. (C)
A 3D-visualization of a part of the cortical region of T. minuta (modified with permission from [41]). The bundles which
containing a bunch of spicules are marked by yellow boxes. (D) A micrograph of several strongyloxea spicules. (E) An
SEM image of a single spicule.

spicules’ anchor ability through shear effect. I addressed this problem by developing a variationally

consistent geometrically nonlinear shear deformable beam theory. I solved for the deformed config-

urations and calculated the maximum moment of beams with different effective shearing stiffness

when the beams form loops. Unfortunately, I was not able to draw any constructive conclusion

from these results. Although the results from my exploration could not prove my hypothesis, the

development of the geometrically nonlinear shear deformable beam theory itself is of significant

importance. The beam theory derivation follows the general three-dimensional continuum theory

and Hellinger-Reissner variational principle. On top of this beam theory, we have provided a proof

of existence of the solutions and a scheme for computing numerical solutions.

1.2 Theoretical analysis of Clausen column’s buckling behavior in-

spired by tapered spicules in Tethya aurantia

During the investigation of the structure-property connections of the Ea. spicules, we identified a

different type of spicules, which has similar chemical composition but lacks the lamellar architecture,

as a reference group. The reference spicules are skeletal components of marine sponge Tethya

aurantia (Ta., see Figure 1.6 (A)). The Ta. sponge’s body consists of a dense, spherical core

(choanosome) surrounded by a thick, fibrous shell (cortex) [42] (see Figure 1.6 (B) and (C)). The
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choanosome and cortex are critical for metabolic processes in Ta. However, they are too soft to

provide necessary mechanical integrity to the sponge. It is found that several types of spicules are

produced to stiffen the choanosome and cortex. The specific type of Ta. spicules that draws our

attention is known as strongyloxea spicules, which are around 2 mm long and 35 𝜇m in diameter

(see Figure 1.6 (D)). The Ta. spicules are tapered along their length (see Figure 1.6 (E)). And the

tapered shape is remarkably uniform across different Ta. spicules.

According to the theory of Euler buckling, the buckling resistance of a slender structure can be

increased by tapering it [43]. Therefore, Monn and Kesari proposed the hypothesis that the tapered

shape of Ta. spicules will enhance their buckling resistance to better support the sponge. They

verified their hypothesis through the resemblance of the spicules’ shape to the Clausen column,

which is the optimal axisymmetric column with maximum buckling strength for given length and

volume. A more detailed narrative of Monn and Kesari’s hypothesis and results can be found in

Section 5.1.1.

Since the tapered shape of Ta. spicules formed in sponge always deviate from the mathematically

precise Clausen profile, it is important that the small deviation does not cause significant reduction

to the buckling strength of the Ta. spicules. Therefore, in Chapter 5, I studied the Clausen column’s

sensitivity to shape variations. To get a theoretical formula of the column’s sensitivity, I assume that

the shape perturbations are axisymmetric and asymptotically small. I also performed Rayleigh-Ritz

based numerical experiments to validate the theoretical formula. The result shows that Clausen

column is not only the strongest column against buckling, but also the most tolerant column to shape

variations. Both features of the Clausen profile make the structure-property connection between the

spicules’ shape and its ability to guard buckling instability more substantial .

Finally, in Chapter 6 we conclude the dissertation with a discussion of the main findings of my

works and a outlook of related future directions.

The main objectives of this dissertation are to develop analytical models for 1D continua to

explore our hypotheses when trying to understand the structure-function connections in biological

systems. The research carried out in this dissertation aims to provide fundamental understanding of

the mechanics of 1D continua, including the coupling of bending and slipping instabilities, bending

stiffness homogenization, shear effects in geometrically nonlinear beam, and geometric effects on
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buckling instability. Although we put all of our results in the background of structural biological

materials, the results of this dissertation have direct applications in various fields including micro-

electromechanical system (MEMS) devices, soft electronics, and bionic robot, etc.
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Chapter 2

Sawtooth patterns in flexural force

curves of structural biological materials

are not signatures of toughness

enhancement

Note: A version of this chapter is published in Journal of the Mechanical Behavior of Biomedical

Materials. Data and figures have been used with all co-authors’ consent.

W. Fang, S. Kochiyama, and H. Kesari. Sawtooth patterns in flexural force curves of structural

biological materials are not signatures of toughness enhancement: Part II. Journal of the Mechanical

Behavior of Biomedical Materials, 124:104787, 2021.

2.1 Introduction

Stiff biological materials (SBMs), such as nacre and bone, are natural layered composites that

are known for having remarkable fracture toughness that can be orders of magnitude higher than

that of the brittle ceramics that dominates their composition [17, 19, 44, 45, 46, 15]. The key to

such enhancement in fracture toughness lies in their lamellar architectures, which are the intricate

13
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Figure 2.1: (A) (i) Typical schematic of a three-point bending test in its reference configuration and (ii) the deformed
beam with midpoint displacement 𝑤0 under the action of some midpoint force 𝐹. The support span is 𝐿, and 𝐷, 𝐸 ,
and 𝐼 = 𝜋𝐷4/64 are the diameter, Young’s modulus, and the bending moment of inertia of the beam, respectively.
(B) Thirty eight scaled force-displacement curves from three-point bending tests carried out on E. aspergillum spicules
and previously presented in [29, 31]. The spicules respond linearly until a certain point, and then, in most cases, start
displaying the sawtooth pattern.

arrangements of ceramic and organic phases at the sub-micron scales (see Figure 1.1(A)&(B)). One

way in which the lamellar architecture contributes to the toughness enhancement is by supporting

the operation of the Cook-Gordon mechanism [47] (crack-arrest-and-reinitiation mechanism). In

this mechanism, when a crack initiates in and propagates through the ceramic phase, the organic

phase, which separates one region of the ceramic phase from another, can effectively act as a “trap”

and arrest the crack [48, 47]. In flexural tests, the operation of the Cook-Gordon mechanism reflects

as a drop in the measured force as the crack advances, and then as the end of that force drop

as the crack gets arrested [37]. As such, when the Cook-Gordon mechanism operates in layered

materials, the measured force-displacement curve can have the appearance of a sawtooth pattern

(see Figure 2.1(B)).

Monn et al. recently showed that the presence of lamellar architectures by itself does not

necessarily guarantee the operation of the Cook-Gordon mechanism [30]. They performed notched

three-point bending tests on the spicules and directly measured their fracture toughness in terms of

the initiation fracture toughness and the average crack growth resistance, and found that the fracture

toughness enhancement in them was negligible [30]. This implied that the Cook-Gordon mechanism

either operated to a negligible level or was absent in the spicules.

However, the implication that the Cook-Gordon mechanism operates to an insignificant level

during the failure of Ea. spicules in flexural tests appears to contradict the observations made in
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Figure 2.2: Fixed-fixed setup and spicule slippage in simply-supported setup. (A) (i) shows the reference configuration
of a spicule set up for a flexural test in a fixed-fixed setup; the spicule ends are glued onto the test’s supports (adhesive
shown in green). The yellow circles mark two spicule material particles that sit at the test’s supports in this configuration.
(A) (ii) shows the spicule in its deformed configuration as it is being tested with its ends glued to the test’s supports.
The material particles that were at the test’s supports in the reference configuration (yellow circles) are still at the test’s
supports. (B) (i) shows a spicule in its reference configuration in the simply-supported setup. The yellow circles mark
two spicule material particles that sit at the test’s supports in this configuration. (B) (ii) .1 shows a deformed spicule
configuration in which the spicule has not undergone any slipping at the supports; the material particles that were at the
test’s supports in the reference configuration (yellow circles) are still at the test’s supports in this configuration as well.
This is the assumption made in standard beam theories, such as the Euler-Bernoulli beam theory, when they are used to
model three point bending tests. (Caption continued on next page)
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Figure 2.2: (continued from previous page) (B) (ii) .2 shows a deformed configuration of the spicule in which the spicule
has undergone slippage at the test’s supports. The material particles denoted by the yellow circles are no longer at the
test’s supports, but have slipped down into the trench. The parameter 𝑆 denotes the spicule’s total length, which is the
length of the section of the spicule specimen lying between the test’s supports. (B) (iii) shows the measured force 𝐹
(left axis) (for details of force, 𝐹, see §2.3) and the change in the total length, Δ𝑆 (right axis), from a representative three
point bending test carried out in the simply supported setup as a function of stage displacement, 𝑤𝑠 , in blue and green,
respectively. The vertical dashed lines indicate the instances at which the drops in the force take place. As can be noted
from the graphs, the jumps in the spicule’s total length take place at those very same instances (modified from [31]).

Monn and Kesari [34, 35, 29]. To be specific, in [29] Monn and Kesari carried out three-point

bending tests on Ea. spicules. They observed sawtooth patterns in the force-displacement curves

from their tests, in which the spicules were being loaded all the way until failure (see Figure 2.1). As

intimated previously, sawtooth-patterns in layered materials are usually a signature of the operation

of the Cook-Gordon mechanism [37]. Therefore, if the Cook-Gordon mechanism is indeed irrelevant

during the spicule’s failure as argued in Monn et al., there must be alternative explanations for the

appearance of the sawtooth patterns observed in the force-displacements curves of Monn and Kesari.

The paper by Kochiyama et al. [31] attempts to resolve the apparent contradiction by hypothe-

sizing that the sawtooth patterns, at least in the case of Ea. spicules, are solely the consequence of

the spicules slipping (see Figure 2.2(B)) at the test’s supports, rather than of the operation of the

Cook-Gordon mechanism. I summarize the arguments from the paper by Kochiyama et al. [31] in

the following few paragraphs.

In [31], we reported force-displacement measurements from three-point bending tests that were

carried out on Ea. spicules in the simply-supported (SS) setup (see Figure 2.1). Micrographs of the

spicules were taken in-situ via a microscope during the tests. By conducting image analysis on those

micrographs, it was demonstrated that in the tests in which the force-displacement curve displayed

a sawtooth pattern, there were sudden jumps in the total length of the spicule section lying between

the test’s supports. This total length is shown marked as 𝑆 in Figure 2.2(B) (ii) .2. The jumps appear,

e.g., as the discontinuities in the green curve shown in Figure 2.2(B) (iii). It was further shown that

the jumps and the force-drop events (which appear, e.g., as the discontinuities in the blue curve in

Figure 2.2(B) (iii)) took place at the exact same time instances. These observations imply one of

the following three scenarios: (i) the force-drop events are solely due to the layer-fracture events

associated with the Cook-Gordon mechanism, (ii) they are due to a combination of layer-fracture

events and slip-events, or (iii) they are entirely due to the slip-events.
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To determine which of the three scenarios is likely true, three-point bending tests were carried out

on the spicules again in the fixed-fixed (FF) setup (see Figure 2.2(A)). In the FF setup, the spicule’s

ends are glued to the test’s supports, which prevents the occurrence of any slip-events at the test’s

supports. None of the force-displacement curves from the FF tests displayed a sawtooth pattern.

Although this observation points to scenario (iii) as being true, it is with the implicit assumption

that the operation of the Cook-Gordon mechanism would be unaffected regardless of whether or not

the spicule ends are free to slide and rotate. Since such an assumption is not explicitly validated,

additional experiments were performed to gauge the likelihood of each of the three scenarios in an

alternative manner. To be specific, the three-point bending tests were carried out on the spicules

again in the SS setup, but the spicules were only loaded until a few force drops that are characteristic

of the sawtooth-pattern were observed instead of until complete failure. The specimens were then

unloaded until they regained their straight shape and the force on them almost vanished. Finally, the

spicules were loaded for the second time (re-loaded) until a few force drops were again observed.

If the sawtooth pattern observed during the loading phase was due to the Cook-Gordon mechanism,

then the spicule’s stiffness (slope of the initial linear portion of the force-displacement curve before

the appearance of the force drops) from the re-loading (second loading) phase should be different

from that in the loading (first loading) phase. However, the spicules’ stiffnesses in the loading and the

re-loading phases were found to be almost the same. This observation implies that the force-drops

in the loading phases are not due to the Cook-Gordon mechanism, which leads us to conclude that

scenario (iii) is the one that is true.

In this chapter, with the goal of further investigating our hypothesis, we develop and study a

mechanics model for the spicule’s SS bending tests. A distinguishing feature of our model is that the

test specimen is allowed to slide at the test’s supports. In contrast, in the standard Euler-Bernoulli

(EB) model of the three point bending test, the specimen is not allowed to slide at the test’s supports.

Considering the geometry in the SS experiments (e.g., see Figure 2.1), in our model, the

spicule’s displacements are taken to be two dimensional in nature. The spicules are modeled as 1D

continua considering their high aspect ratios (length:diameter) of ≈ 25, and their bending behavior

is modeled using Euler’s elastica theory since they undergo large displacements in the experiments.

Any stretching behavior along their axes are ignored. The contact at the test’s supports is modeled
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using the Coulomb friction model. Scanning electron microscopy (SEM) revealed that the spicules’

surfaces could have both smooth and rough regions. By roughness, we are referring to the different

types of imperfections, including debris, scrapes and outer layer damage, that were observed on the

spicules’ surfaces (Figure 2.3). We incorporate the spicules’ surface roughness in our model by

assuming that the coefficient of friction between the spicule and the test’s supports varies depending

on which particular spicule cross-section is in contact with the supports. Specifically, in the model

it is assumed that the coefficient of friction varies along the spicule’s length as

𝜇0

(
1 + 𝐴 cos

(
2𝜋𝑠
𝜆
− 𝜙

))
, (2.1)

where 𝑠 is the arc-length coordinate along the spicule’s axis (see Figure 2.2(B) (ii) .2), and we refer

to the parameters 𝜇0, 𝐴, 𝜆, and 𝜙 as the average value of coefficient of friction, the amplitude,

the wavelength, and the phase, respectively. In our problem, the static and kinetic coefficients of

friction are taken to have the same value. In §2.4.1, we present the governing equations of our

model. In §2.4.2, we semi-analytically solve the governing equations to derive what we call our

model’s equilibrium force-displacement curve. Each point on that curve corresponds to a static

equilibrium configuration. Our model predicts that any measured force-displacement point will lie

on the equilibrium curve. However, due to the finite stiffness of the loading apparatus, not all the

points on the equilibrium curve will be measured in an experiment. Taking into account the stability

of the equilibrium points in §2.4.3, we provide an algorithm for numerically determining our model’s

prediction for the force-displacement curve that will be measured in an SS experiment.

In §2.5, we compare the force-displacement curves predicted by our models with the ones that

were experimentally measured in [29, 31]. We find that not only do the predicted force-displacement

curves capture the sawtooth pattern, but they can also be made to quantitatively match the measured

force-displacement remarkably well by appropriately choosing the value of 𝜇0, 𝐴, 𝜆, and 𝜙. The

sawtooth pattern in our model is a direct consequence of the slip events at the supports. We find

that the values of 𝜇0, which were chosen to match our model’s prediction with the experimental

measurements as closely as possible, is quite consistent with the values reported in literature for the

coefficient of friction between glass and steel (note that the contact in the spicule SS experiments is

between silica (spicule) and stainless steel (test’s supports)).
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Figure 2.3: Representative SEM images of a few randomly selected E. aspergillum spicules that were taken after the
spicules had been flexurally tested in a simply-supported setup. Each spicule is identified by the label given to the flexural
test in which it was used (see Tables S1–S2 of [31] for detailed information pertaining to a given test). (A) and (B) are
two different images of the spicule from the test SS4. (C)–(F) are images of the spicules from the tests SS7, SS24, SS32,
and SS34, respectively. The imaged region in each spicule was chosen randomly. These images demonstrate how the
spicules can have rough surfaces, as shown in (A)–(D), or relatively smooth surfaces, as shown in (E)–(F).



20

Since the sawtooth pattern in our model is a direct consequence of slip events, the good match

between our model’s predictions and the experimental measurements supports our hypothesis that

the sawtooth patterns in the experiments of Monn and Kesari are solely a consequence of the slip

instabilities that take place at the trench’s edges. However, the modeling results we put forward in

this chapter do not conclusively prove our hypothesis. This is because we were unable to check the

reasonableness of the values we chose for the parameters 𝐴 and 𝜆 while we were comparing our

model to the experiments. We discuss this limitation of our current work in the concluding section

of this chapter, §2.6. We also discuss a potential future direction for addressing this limitation in §6.

We begin by discussing some mathematical notions that are needed for the development of our

model. Following that we recapitulate the experimental setup of the SS bending tests in §2.3 before

presenting our model in §2.4.

2.2 Mathematical preliminaries

The mathematical notions that we use in this chapter are discussed in Section 2.1 of [31]. However,

for the readers’ convenience, I briefly review some of those notions in this section.

We assume that our experiments take place in the three dimensional physical point space E, and

take E to be a three dimensional, oriented, Hilbert space, such that E is E’s principle homogenous

space. We introduce vectors ℯ̂1, ℯ̂2,and ℯ̂3, as shown in Figure 2.4(A), to form a basis for E. We

denote the dot product between any two vectors 𝒖 and 𝒗 as 𝒖 · 𝒗, where by definition 𝒖 · 𝒗 ∈ R, and R

is the set of all real numbers. The vectors ℯ̂1, ℯ̂2, and ℯ̂3 are orthonormal. This can be expressed

by stating that ℯ̂𝑖 · ℯ̂ 𝑗 = 𝛿𝑖 𝑗 , where 𝑖, 𝑗 ∈ (1, 2, 3), and the Kronecker delta symbol 𝛿𝑖 𝑗 is defined as

having a value of unity if 𝑖 = 𝑗 and zero otherwise.

Following [49], we consider vectors to carry units with them if they belong to a physical vector

space. For instance, we take that ℯ̂𝑖 , 𝑖 ∈ (1, 2, 3), carry the units of 𝜇m (micrometers). The

magnitude/norm of the vector 𝒖 is denoted as ∥𝒖∥ = (𝒖 · 𝒖)1/2. The norm ∥𝒖∥ is non-dimensional,

or to be more precise, ∥𝒖∥ ∈ R≥0, where R≥0 is the set of non-negative real numbers.

Following [49] and [50], we model force as a linear map from E into the one dimensional
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Figure 2.4: An illustration of the simply-supported setup. (A) Schematic of the experimental setup used in our recent
study [31] for testing spicules in a simply-supported setup. The mechanical testing stage consisted of a stainless steel plate
with a 𝐿 𝜇m wide trench, where the trench edges served as the test’s supports. The loading device consisted of a wedge
attached to a cantilever; to ensure that the cantilever’s right end remained fixed in space during the experiment, the right
end was encastered into a rigid aluminum frame (not shown in the schematic) that was independent of all the other testing
structures. (B) Schematic of a simply-supported spicule in our experiment, which is being deformed under some applied
load. The loading of the spicules was achieved by displacing the mechanical testing stage by 𝑤𝑠 𝜇m (𝒘𝑠 = −𝑤𝑠ℯ̂2)
as shown, where the mechanical testing stage was mounted onto a three-axis motorized translation stage (not shown in
the schematic) to enable precise control of its motion. As a result, the midpoint of the spicule is deflected by 𝑤0 𝜇m
(𝒘0 = 𝑤0ℯ̂2) and the free end of the cantilever is deflected by 𝑤𝑐 𝜇m (𝒘𝑐 = −𝑤𝑐ℯ̂2). For more details on the experiments
see §2.3.

vector space whose elements carry units of energy. Let the forces 𝖋̂𝑖 , 𝑖 ∈ (1, 2, 3), be defined such

that 𝖋̂𝑖
(
ℯ̂ 𝑗

)
= 𝛿𝑖 𝑗 nJ

(
10−9 Joules

)
, where 𝖋̂𝑖 is a milli-newton of force acting in the ℯ̂𝑖 direction.

The set of all forces can be made into a vector space F by defining the addition between two forces 𝔲

and 𝔳 to be the force 𝔴 such that 𝔴(𝒙) = 𝔲(𝒙) + 𝔳(𝒙) for all 𝒙 ∈ E. Let 𝔉 be the linear map from E

to F such that 𝔉 (ℯ̂𝑖) = 𝖋̂𝑖 . Then, defining the dot product between forces 𝔲 and 𝔳 to be the dot

product in E between the vectors 𝔉−1(𝔲) and 𝔉−1(𝔳), where 𝔉−1 is the inverse of 𝔉, the space F

can be made into a Hilbert space. It can be shown that
(
𝖋̂𝑖
)
𝑖∈ (1,2,3)

provides an orthonormal basis

for F.

2.3 A brief review of the simply supported, three-point bending exper-

iments

In this section we briefly recall the set-up of the simply-supported (SS) experiments mentioned

in §2.1. A trench of width 𝐿 𝜇m was cut into a stainless steel mechanical testing stage (MTS) (see

Figure 2.4(A)). The non-dimensional trench width 𝐿 was 1278 ± 3 (mean ± standard deviation)

in the experiments. Spicules were placed across the trench with their lengths parallel to the ℯ̂1

direction so that initially, the spicule’s cross-sections were normal to ℯ̂1. The trench’s edges, which
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run parallel to the ℯ̂3 direction, served as the test’s supports. A cantilever with a wedge attached to it

was positioned over the spicule. The wedge’s triangular faces were normal to the ℯ̂3 direction with

the triangle’s base normal to the −ℯ̂2 direction and facing away from the spicule, and the triangle’s

apex facing the spicule. At the beginning of the experiment, the wedge’s apex (shown marked in

Figure 2.4(A)) was just above the spicule’s midpoint, i.e., over the spicule cross-section that lay

midway across the trench. The cantilever and the wedge were made of either steel or aluminum.

The loading phase of the tests were conducted by moving the MTS in the −ℯ̂2 direction at a rate

of 1 𝜇m/sec. The MTS was driven by a DC servo motor, whose motion was controlled through a

PID algorithm. The stage was moved in 2 𝜇m increments. During the increment, the stage’s velocity

was maintained between 50 and 200 𝜇m/sec. Thus, each stage increment took anywhere between

10 and 40 ms. After each increment, the stage was held motionless so that there was a 2100 ms

time interval between the starting points of any two consecutive increments. Each data point that we

report was calculated using the average value of the sensor readings collected over the last 100 ms

of each of those time intervals.

We denote an arbitrary time instance during the experiment as 𝜏 ms, where 𝜏 ∈ [0, 𝜏∗]. The

time 𝜏 = 0 corresponds to the instance at which the spicule first makes contact with the wedge’s

apex, and the time 𝜏 = 𝜏∗ > 0 corresponds to the instance when the spicule fails. We express the

MTS’s displacement as −𝑤𝑠 (𝜏)ℯ̂2. Here, 𝑤𝑠 (𝜏) ∈ R is a known non-dimensional quantity since the

stage’s displacement was an input in our experiment.

As the stage moved upwards (−ℯ̂2 direction) the spicule made contact with the wedge’s apex

and got deflected into the trench, while the cantilever got deflected away from the trench. We

express the cantilever’s wedge’s motion as −𝑤𝑐 (𝜏)ℯ̂2 (compare Figures 2.4(A) and (B)). Here,

𝑤𝑐 (𝜏) is the non-dimensional cantilever displacement, which is defined as the dot product between

−ℯ̂2 and the wedge’s displacement vector at the time instance 𝜏. We denote the spicule’s midpoint

deflection, or simply displacement, as 𝑤0(𝜏)ℯ̂2, where 𝑤0(𝜏) ∈ R is the dot product between ℯ̂2 and

the displacement vector of the centroid of the spicule’s cross-section that is directly underneath the

wedge’s apex. It can be shown that the quantities 𝑤𝑠 (𝜏), 𝑤𝑐 (𝜏), and 𝑤0(𝜏) are related as

𝑤𝑠 (𝜏) = 𝑤𝑐 (𝜏) + 𝑤0(𝜏). (2.2)
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In terms of

𝑤̂𝑠 (𝜏) :=
𝑤𝑠 (𝜏)
𝐿

, (2.3a) 𝑤̂𝑐 (𝜏) :=
𝑤𝑐 (𝜏)
𝐿

, (2.3b)

𝑤̂0(𝜏) :=
𝑤0(𝜏)
𝐿

, (2.3c)

equation (2.2) reads

𝑤̂𝑠 (𝜏) = 𝑤̂𝑐 (𝜏) + 𝑤̂0(𝜏). (2.4)

Let 𝑭(𝜏) be the force acting on the spicule’s midpoint. We assume that the wedge’s apex only

applies force in the ±ℯ̂2 directions. This allows us to express

𝑭(𝜏) = 𝐹 (𝜏)𝖋̂2, (2.5)

where 𝐹 (𝜏) ∈ R is a non-dimensional quantity. We model the cantilever as a linear spring that is

oriented in the ℯ̂2 direction and having a stiffness of 𝓀c = 𝑘c mN/𝜇m. From this model, it follows

that

𝐹 (𝜏) = 𝑘𝑐𝑤𝑐 (𝜏). (2.6a)

We measured 𝑘c independently, using a procedure unrelated to the SS experiments, and found it to

vary from 86.4 to 90.1 (see Tables S1–S2 of [31]). The constitutive law expressed by (2.6a) can

alternately be written as

𝐹̂ (𝜏) = 𝑘̂𝑐𝑤̂𝑐 (𝜏), (2.6b)

where 𝐹̂ (𝜏) :=
𝐹 (𝜏)𝐿2

𝐸𝐼
, (2.7a) 𝑘̂𝑐 :=

𝑘𝑐𝐿
3

𝐸𝐼
, (2.7b)
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B

A

Figure 2.5: Geometry in our mechanics model. (A) A schematic of a beam (blue) suspended over a trench (gray).
At 𝑠 = 0 the beam experiences the normal reaction force 𝐸𝐼 𝑷̂𝑛 (0)/𝐿2 and the frictional reaction force 𝐸𝐼 𝑷̂𝑡 (0)/𝐿2. The
force 𝑭 acts at the spicule midpoint. The magnitude of the beam’s midpoint’s deflection is |𝑤0 |. The angle between ℯ̂1
and ℯ̂𝑡 (𝑠) is 𝜃 (𝑠), and 𝜃0 := 𝜃 (0). (B) A free body diagram of the left half of the beam (blue). The beam is subject to
the forces 𝐸𝐼𝑃̂1/𝐿2 𝖋̂1, and 𝐸𝐼𝑃̂2/𝐿2 𝖋̂2 at 𝑠 = 0, and the forces −𝐸𝐼𝑃̂1/𝐿2 𝖋̂1, and 𝐹/2𝖋̂2 at 𝑠 = 1/2. At 𝑠 = 1/2 the beam
is also subject to a moment 𝑴.

𝐸 mN/𝜇m2 is the spicule specimen’s Young’s modulus, and 𝐼 𝜇𝑚4 is the spicule specimen’s bending

moment of inertia.

In each experiment, we measured the function R≥0 ∋ 𝜏 ↦→ 𝑤𝑐 (𝜏) ∈ R. Since we knew 𝑘𝑐, on

account of (2.3b) and (2.6b), this was tantamount to measuring the function 𝜏 ↦→ 𝐹̂ (𝜏). Additionally,

since we know 𝑤𝑠 (·), using the measured 𝑤𝑐 (·) along with (2.3a), (2.3b), and (2.4), we can

construct 𝜏 ↦→ 𝑤̂0(𝜏). We call the map

𝜏
𝛾m↦→

(
𝑤̂0(𝜏), 𝐹̂ (𝜏)

)
, (2.8)

the measured force-displacement curve.

2.4 Theory

The goal of the model we develop in this section is to provide a prediction for the measured

force-displacement curves in the loading phase of the SS experiments.
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2.4.1 Equations governing the spicule’s equilibrium configurations

We denote the total length of the spicule specimen lying between the supports in the deformed

configuration 𝑆 𝜇m (see Figure 2.2(B) (ii) .1). We take our problem to be completely symmetric

about the trench’s mid-plane. For a given total spicule length, 𝑆, we define a spicule’s equilibrium

configuration to be a kinematically admissible spicule deformation map and a spicule-trench edge

contact force. The map should be such that the net force and the moment vanish on every one of the

spicule’s material regions; the contact force should be such that it satisfies the prescribed contact

constitutive law between the spicule and the trench.

Euler’s elastica theory

We assume the spicule to be inextensible. Thus, 𝑆 denotes the total length of the spicule specimen

lying between the supports in its reference configuration as well. We call the length of the spicule-

section lying between a spicule material particle on the spicule’s central axis and the spicule

cross-section contacting the trench’s left edge the particle’s arc-length coordinate 𝑠 ∈ (0, 𝑆) (see

Figure 2.2(B) (ii) .2). When there is no risk of confusion, we will henceforth be referring to a spicule

material particle lying on the spicule’s central axis simply as a spicule material particle. We call

𝑠 := 𝑠/𝑆, (2.9)

the particle’s scaled arc-length coordinate. We identify a spicule material particle with either its

arc-length or scaled arc-length coordinate.

As mentioned before, we assume that our problem is completely symmetric about the trench’s

mid-plane, i.e., the plane perpendicular to ℯ̂1 and containing the point (𝐿/2, 0, 0). Therefore, the

spicule’s deformed shape can be described using the (scaled) deformation mapping

𝜶̂(·) : (0, 1/2) → E, (2.10a)

where

𝜶̂ (·) = 𝜶 (·)
𝐿

, (2.10b)
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and 𝜶 (𝜉) is the position vector of the spicule material particle whose arc-length coordinate is 𝜉𝑆.

We can define a Frenet–Serret frame [51] corresponding to the curve 𝜶̂(·) at each spicule material

particle. The unit tangent and normal vectors in that frame at the material particle 𝑠 can be computed

as

ℯ̂𝑡 (𝑠) = 𝜶̂′ (𝑠) /∥𝜶̂′ (𝑠)∥, (2.11a)

ℯ̂𝑛 (𝑠) = ℯ̂
′
𝑡 (𝑠) /∥ℯ̂′𝑡 (𝑠)∥, (2.11b)

respectively, where 𝜶̂′ (·) is the derivative of 𝜶̂ (·), and ℯ̂
′
𝑡 (·) is the derivative of ℯ̂𝑡 (·). Using the

definition of 𝑠, the equations (2.9), and (2.10), it can be shown that ∥𝜶̂′ (𝑠)∥ = 𝑆, where

𝑆 =
𝑆

𝐿
. (2.12)

Let 𝜃 (·) : (0, 1/2) → (−𝜋, 𝜋] be defined such that 𝜃 (𝑠) is the angle between ℯ̂1 and ℯ̂𝑡 (𝑠) 1

(see Figure 2.5(A)). We can express ℯ̂𝑡 (𝑠) , ℯ̂𝑛 (𝑠) using 𝜃 (𝑠) as

ℯ̂𝑡 (𝑠) = cos(𝜃 (𝑠))ℯ̂1 + sin(𝜃 (𝑠))ℯ̂2, (2.13a)

ℯ̂𝑛 (𝑠) = sin(𝜃 (𝑠))ℯ̂1 − cos(𝜃 (𝑠))ℯ̂2, (2.13b)

respectively. Let 𝐸𝐼 𝑷̂(𝑠)/𝐿2 ∈ F be the force acting on the spicule cross-section containing the

spicule material particle 𝑠. Specifically, 𝐸𝐼 𝑷̂(0)/𝐿2 is the force acting on the spicule due to its

contact with the trench’s left edge. The vector 𝑷̂ (0) can be expressed as

𝑷̂ (0) = 𝑃̂1𝖋̂1 + 𝑃̂2𝖋̂2, (2.14)

where 𝑃̂1, 𝑃̂2 ∈ R.

The spicule’s high aspect ratio and the observation of large displacements in our SS experiments

motivates us to use the Euler’s elastica theory [52, 7] to model the spicule’s deformation. The

elastica theory is an extension of the EB theory to the regime of large displacements and rotations.

1To be clear, considering two vectors of unit magnitude 𝒂 := 𝑎1ℯ̂1 + 𝑎2ℯ̂2 and 𝒃 := 𝑏1ℯ̂1 + 𝑏2ℯ̂2, the angle between them
is the real number 𝜃 in (−𝜋, 𝜋] such that 𝑎1 cos(𝜃) − 𝑎2 sin(𝜃) = 𝑏1 and 𝑎2 cos(𝜃) + 𝑎1 sin(𝜃) = 𝑏2.
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As per the elastica theory, the spicule’s cross-sectional rotation 𝜃 (·) needs to satisfy the non-linear

differential equation

𝜃′′(𝑠)/𝑆2 + 𝑃̂1 sin(𝜃 (𝑠)) − 𝑃̂2 cos(𝜃 (𝑠)) = 0, (2.15a)

over the domain (0, 1/2) and satisfy the boundary conditions

𝜃′(𝑠) |𝑠=0 = 0, (2.15b)

𝜃 (𝑠) |𝑠=1/2 = 0. (2.15c)

In (2.15), 𝜃′(·) and 𝜃′′(·) denote 𝜃 (·)’s first and second derivatives, respectively. The boundary

condition (2.15b) follows from the fact that there is no bending moment acting on the spicule at 𝑠 = 0,

and the boundary condition (2.15c) follows from the problem’s symmetry about the trench’s mid

plane.

Coulomb friction model

Let

𝖋̂𝑡 (𝑠) :=𝔉 (ℯ̂𝑡 (𝑠)) = cos(𝜃 (𝑠))𝖋̂1 + sin(𝜃 (𝑠))𝖋̂2, (2.16a)

𝖋̂𝑛 (𝑠) :=𝔉 (ℯ̂𝑛 (𝑠)) = sin(𝜃 (𝑠))𝖋̂1 − cos(𝜃 (𝑠))𝖋̂2. (2.16b)

The linear map 𝔉 appearing in (2.16) has been defined in §2.2. Using 𝖋̂𝑡 (𝑠), 𝖋̂𝑛 (𝑠), we can

express 𝑷̂(𝑠) as the sum of 𝑷̂𝑡 (𝑠) and 𝑷̂𝑛 (𝑠), where 𝑷̂𝑡 (𝑠) = 𝑃̂𝑡 (𝑠)𝖋̂𝑡 (𝑠), 𝑷̂𝑛 (𝑠) = 𝑃̂𝑛 (𝑠)𝖋̂𝑛 (𝑠),

and 𝑃̂𝑡 (·), 𝑃̂𝑛 (·) : (0, 1/2) → R. We refer to 𝑷̂𝑡 (𝑠) and 𝑷̂𝑛 (𝑠) as, respectively, the (scaled)

tangential and normal forces at the material particle 𝑠. We call 𝑷̂𝑡 (0) and 𝑷̂𝑛 (0) the (scaled)

tangential and normal contact forces (at the left trench edge), respectively, and for brevity, denote

their magnitudes, i.e., 𝑃̂𝑡 (0) and 𝑃̂𝑛 (0), as 𝑃̂𝑡 and 𝑃̂𝑛, respectively.

We define the angle 𝛽0 ∈ (0, 𝜋) such that

cot (𝛽0) =
𝑃̂𝑡

𝑃̂𝑛
. (2.17)
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It follows from equations (2.14), (2.16), and (2.17), and the definitions of 𝑃̂𝑡 and 𝑃̂𝑛 that

𝑃̂1 = 𝑃̂𝑛 csc (𝛽0) cos (𝜃0 − 𝛽0) , (2.18a)

𝑃̂2 = 𝑃̂𝑛 csc (𝛽0) sin (𝜃0 − 𝛽0) , (2.18b)

where

𝜃0 := 𝜃 (0). (2.18c)

Substituting 𝑃̂1, 𝑃̂2 from (2.18) into (2.15a) and simplifying, we get that

𝜃′′(𝑠) + 𝑆2𝑃̂𝑛 csc (𝛽0) sin(𝜃 (𝑠) − 𝜃0 + 𝛽0) = 0. (2.19)

We model contact between the spicule and the trench edges using the Coulomb’s law of fric-

tion [53]. As per the Coulomb’s law, when 𝑃̂𝑛 ≥ 0,
��𝑃̂𝑡 �� ≤ 𝜇𝑃̂𝑛, which in terms of 𝛽0 reads

−𝜇 ≤ cot (𝛽0) ≤ 𝜇, (2.20)

where 𝜇 is the coefficient of friction. (As we mentioned in §2.1, in our problem we take the static

and kinetic coefficients of friction to have the same value).

2.4.2 Equilibrium force-displacement curves

Solution to the boundary value problem (2.15) using the solution to the nonlinear pendulum

problem

Following Blasius (see, e.g., [54, 55] for accessible references), we construct the solution to our

boundary value problem (BVP) (2.15) using the solution of an auxiliary initial value problem (IVP).

The IVP we consider is as follows. The function 𝛽 : (0, 1/2) → (−𝜋, 𝜋] satisfies the nonlinear
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ordinary differential equation (ODE)

𝛽′′(𝑠) + 𝜔2 sin(𝛽(𝑠)) = 0, (2.21a)

and the initial conditions

𝛽(𝑠) |𝑠=0 = 𝛽0, (2.21b)

𝛽′(𝑠) |𝑠=0 = 0, (2.21c)

where 𝜔 > 0 and 𝛽0 ∈ (0, 𝜋). The IVP (2.21) is related to the problem of a simple pendulum

executing finite angle motions in a plane. The complete solution to the IVP (2.21) is commonly

attributed to Euler [56]. For more modern references of the solution, see, e.g., [57, 58]. In order

to explicitly note the dependence of the solution to the IVP (2.21), i.e., 𝛽(·), on the parameters 𝜔

and 𝛽0, we denote 𝛽(·) in the remainder of this chapter as 𝛽(·;𝜔, 𝛽0) and express it as

𝛽 (𝑠;𝜔, 𝛽0) = 2 arcsin
(
sin

𝛽0

2
cd

(
𝜔 𝑠; sin2 𝛽0

2

))
, (2.22)

where cd(𝑢;𝑚) := cos(𝜓(𝑢;𝑚))
(
1 − 𝑚 sin2(𝜓(𝑢;𝑚))

)−1/2
is the Jacobi elliptic function. Here,𝜓(𝑢;𝑚)

is the Jacobi amplitude, which is the inverse of the elliptic integral of the first kind, i.e., 𝜓, 𝑢, 𝑚

satisfy the equation 𝑢 =
∫ 𝜓

0
(
1 − 𝑚2 sin(𝜁)2

)−1/2
𝑑𝜁 .

It can be shown that the solution to our BVP, 𝜃 (·), can be constructed using 𝛽 (·;𝜔, 𝛽0) as

𝜃 (𝑠) = 𝛽
(
𝑠;𝜔

(
𝑆, 𝑃̂𝑛, 𝛽0

)
, 𝛽0

)
− 𝛽

(
1
2

;𝜔
(
𝑆, 𝑃̂𝑛, 𝛽0

)
, 𝛽0

)
, (2.23a)

where

𝜔

(
𝑆, 𝑃̂𝑛, 𝛽0

)
:= 𝑆

(
𝑃̂𝑛 csc (𝛽0)

)1/2
. (2.23b)

It can be deduced from (2.23) that 𝜃 (·) depends on the independent parameters 𝑆, 𝑃̂𝑛, and 𝛽0.

We will explicitly note this dependence by denoting 𝜃 (·) as 𝜃 (·; 𝑆, 𝑃̂𝑛, 𝛽0). In order to make our
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results look less cumbersome, we will denote the sequence of independent parameters 𝑆, 𝑃̂𝑛, and 𝛽0

simply as p. In terms of p, the solution 𝜃 (·; 𝑆, 𝑃̂𝑛, 𝛽0) will appear as 𝜃 (·; p), and the result (2.23)

will read

𝜃 (𝑠; p) = 𝛽 (𝑠;𝜔 (p) , 𝛽0) − 𝛽
(
1
2

;𝜔 (p) , 𝛽0

)
, (2.24a)

where

𝜔 (p) := 𝑆
(
𝑃̂𝑛 csc (𝛽0)

)1/2
. (2.24b)

Midpoint deflection and force

In this section, we present formulae for calculating the midpoint deflection 𝑤̂0 and force 𝐹̂. As we

did with 𝜃 (·), when we want to note the dependence of 𝑤̂0, 𝐹̂, 𝜃0, and 𝜶̂ (·) on the independent

parameters 𝑆, 𝑃̂𝑛, and 𝛽0 explicitly, we will denote them as 𝑤̂0 (p), 𝐹̂ (p), 𝜃0(p) and 𝜶̂ (·; p),

respectively.

We can express 𝜶̂(𝑠; p) as 𝑥1(𝑠; p)ℯ̂1 + 𝑥2(𝑠; p)ℯ̂2, where 𝑥1(·; p), 𝑥2(·; p) are smooth real valued

functions on (0, 1/2). It follows from (2.11a) and (2.13a) that

𝑥′1(𝑠; p) = 𝑆 cos(𝜃 (𝑠; p)), (2.25a)

𝑥′2(𝑠; p) = 𝑆 sin(𝜃 (𝑠; p)). (2.25b)

Midpoint deflection Integrating (2.25b) from 𝑠 = 0 to 𝑠 = 1/2, simplifying the expression
∫ 1/2

0 𝑥′2(𝑠; p) 𝑑𝑠

that appears on the left hand side (LHS) of the resulting equation as 𝑥2(1/2; p) − 𝑥2(0; p), and then

noting that 𝑥2(1/2; p) = 𝑤̂0(p) and 𝑥2(0; p) = 0, we get that

𝑤̂0 (p) = 𝑆
∫ 1/2

0
sin (𝜃 (𝑠; p)) 𝑑𝑠. (2.26)
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Midpoint force From the balance of external forces acting on the left half of the spicule specimen

(Figure 2.5(B)) in the 𝖋̂2 direction, we get that

𝐹̂ + 2𝑃̂2 = 0. (2.27)

Substituting 𝑃̂2 in (2.27) from (2.18b) and then using (2.24b) and substituting the factor 𝑃̂𝑛 csc (𝛽0)

as 𝜔(p)2/𝑆2, we get

𝐹̂ (p) = −2𝜔(p)2 sin (𝜃0(p) − 𝛽0)
1
𝑆2
. (2.28)

Integrating (2.25a) from 𝑠 = 0 to 𝑠 = 1/2, simplifying the expression
∫ 1/2

0 𝑥′1(𝑠; p) 𝑑𝑠 that appears

on the LHS as 𝑥1(1/2; p) − 𝑥1(0; p), noting that 𝑥1(1/2; p) = 1/2 and 𝑥1(0; p) = 0, multiplying the

resulting equation with 2/𝑆, and then squaring the result, we get that

1
𝑆2

= 4
(∫ 1/2

0
cos (𝜃 (𝑠; p)) 𝑑𝑠

)2

. (2.29)

Substituting the factor 1/𝑆2 in (2.28) from (2.29) and simplifying, we get that

𝐹̂ (p) = 8𝜔 (p)2
(∫ 1/2

0
cos (𝜃 (𝑠; p)) 𝑑𝑠

)2

sin (𝛽0 − 𝜃0 (p)) . (2.30)

Compatibility

Substituting 𝜃 (·; p) in (2.29) from (2.24) and rearranging, we get

𝑆 =
1
2

(∫ 1/2

0
cos

(
𝛽 (𝑠;𝜔(p), 𝛽0) − 𝛽

(
1
2

;𝜔(p), 𝛽0

))
𝑑𝑠

)−1

. (2.31)

Upper envelope of the equilibrium region and the closing equation

In order to derive our model’s predictions for the force-displacement curves measured by the SS

experiments in the loading phase, the spicule-specimen’s equilibrium configurations first need to be

extracted. We define what we physically mean by the spicule specimen’s equilibrium configuration

at the beginning of §2.4.1 (when the spicule specimen is in one of its equilibrium configurations,
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Figure 2.6: The equilibrium region in the 𝑤̂0-𝐹̂, 𝑆-𝑤̂0, and 𝑆-𝐹̂ space for a representative case. We consider the case
in which the coefficient of friction varies as in (2.33) with 𝜇0 = 0.3, 𝐴 = 0.2, 𝜆̂ = 0.02𝜋, and 𝜙 = 0, i.e., in which
𝜇(𝑆) = 0.3

(
1 + 0.2 cos

(
𝑆/0.02

))
. For this case we computed the equilibrium regions using the procedure detailed in

Algorithm 1. Subfigures (A), (B), and (C) show the equilibrium region in the 𝑤̂0-𝐹̂, 𝑆-𝑤̂0, and 𝑆-𝐹̂ space, respectively.
In each of the subfigures the equilibrium region is shown in light gray, while the upper envelope of the equilibrium region
(i.e., the equilibrium curve) is shown as a dark gray curve. In (A) we mark a locus of configurations in which 𝑆 is constant
using a dashed black curve. The solid arrows above the equilibrium curve indicate that 𝑆 strictly increases as we travel
along the curve starting from the origin.

that does not necessarily mean that the MTS’s cantilever wedge is also in one of its equilibrium

configurations, i.e., that our entire mechanical system is in equilibrium. See §2.4.3 for further

discussion of this issue). Mathematically, a spicule’s equilibrium configuration can be described

as an ordered set
(
𝑆, 𝑃̂𝑛, 𝛽0

)
that satisfies the contact constitutive law (2.20) and the compatibility

condition (2.31). We mark the equilibrium configurations, which were determined numerically using

Algorithm 1, in the 𝑤̂0-𝐹̂, 𝑆-𝑤̂0, and 𝑆-𝐹̂ spaces for a representative case in Figures 2.6(A), (B),

and (C), respectively. For a given 𝑆, there can exist more than one equilibrium configuration. This is

partly because as can be seen from (2.17) and (2.20), the number cot (𝛽0) only needs to lie between

certain bounds, specifically between ±𝜇. Therefore, in general, the sets of equilibrium states have

non-zero measures in the 𝑤̂0-𝐹̂, 𝑆-𝑤̂0 or 𝑆-𝐹̂ spaces.

However, it can be argued that in the loading portion of the SS experiments, 𝑃̂𝑛 ≥ 0. Under

some mild assumptions on the loading rate, it can be further argued2 that cot (𝛽0) in fact achieves

its lower bound, i.e., that

cot (𝛽0) = −𝜇. (2.32)

As discussed in §2.1, it is reasonable to assume that 𝜇 varies along the spicule’s length so that the

value of 𝜇 depends on the contact position between the spicule and the trench’s left edge, which

depends on 𝑆. We assume that the dependence of 𝜇 on 𝑆 can be expressed as

𝜇

(
𝑆

)
= 𝜇0

(
1 + 𝐴 cos

(
𝜋𝑆

𝜆̂
+ 𝜙

))
, (2.33)

where 𝜆̂ := 𝜆/𝐿, 𝜆 ∈ R≥0. Here, 𝜆 𝜇m is the wavelength of the assumed periodic variation of the

coefficient of friction. Note that the value of the phase 𝜙, depending on the positions of contacting

points between the spicule specimens and the trench edges at the beginning of the experiments, may

2The mathematical analysis underlying this assertion is quite involved and therefore we plan on publishing it elsewhere.
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not be the same as the value of 𝜙 in (2.1).

Therefore, in an equilibrium state, the value of 𝛽0 is fully determined by the value of 𝑆 in that

state. More specifically, it follows from (2.32) that 𝛽0 is equal to the value of 𝛽0

(
𝑆

)
, where the

function 𝛽0(·) : [1,∞) → (0, 𝜋) is defined by equations

sin
(
𝛽0

(
𝑆

))
=

1√︂
1 + 𝜇

(
𝑆

)2
, (2.34a)

cos
(
𝛽0

(
𝑆

))
=

−𝜇
(
𝑆

)
√︂

1 + 𝜇
(
𝑆

)2
. (2.34b)

As mentioned in §2.1, for simplicity, we take 𝜇(·) to be of the form given by (2.33).

It now follows from (2.31) that in the state mentioned above, the value of 𝑃̂𝑛 is also fully

determined by the value of 𝑆; the value of 𝑃̂𝑛 has to be a root of 𝑓
(
·; 𝑆, 𝛽0

(
𝑆

))
, and the func-

tion 𝑓

(
·; 𝑆, 𝛽0

)
: R≥0 → R is defined by equation

𝑓

(
·; 𝑆, 𝛽0

)
= 1 − 2𝑆

∫ 1/2

0
cos

(
𝛽

(
𝑠;𝜔(𝑆, ·, 𝛽0), 𝛽0

)
− 𝛽

(
1
2

;𝜔(𝑆, ·, 𝛽0), 𝛽0

))
𝑑𝑠. (2.35)

In general, 𝑓
(
·; 𝑆, 𝛽0

(
𝑆

))
will have multiple roots. However, using practical considerations, it

can be deduced that only the smallest of 𝑓
(
·; 𝑆, 𝛽0

(
𝑆

))
’s roots is relevant in the context of the SS

experiments. We denote the value of that smallest root as 𝑃̂𝑛
(
𝑆

)
, which can be computed using the

Newton-Raphson method.

The results put forward in the last three paragraphs can be summarized by stating that, during the

loading portion of the SS experiments, the equilibrium states have the form
(
𝑆, 𝑃̂𝑛

(
𝑆

)
, 𝛽0

(
𝑆

))
. We

call the set of the equilibrium states having this form the upper envelope of the equilibrium region

(shown as gray curves in Figure 2.6). The upper envelope of the equilibrium region in the 𝑤̂0-𝐹̂

space can be expressed as the parametric curve

𝛾sp-eq :=
{(
𝑤+0

(
𝑆

)
, 𝐹̂+

(
𝑆

))
| 𝑆 ≥ 1

}
, (2.36a)
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where 𝑤̂+0 (·) : [1,∞) → R≥0 is defined by the equation

𝑤̂+0

(
𝑆

)
= 𝑤̂0

(
𝑆, 𝑃̂𝑛

(
𝑆

)
, 𝛽0

(
𝑆

))
, (2.36b)

and 𝐹̂+ : [1,∞) → R≥0 is defined by the equation

𝐹̂+
(
𝑆

)
= 𝐹̂

(
𝑆, 𝑃̂𝑛

(
𝑆

)
, 𝛽0

(
𝑆

))
. (2.36c)

We will be referring to 𝛾sp-eq simply as the spicule equilibrium curve. The equilibrium curve can

be numerically constructed using Algorithm 1 after changing line number 5 in it to "Compute 𝛽+0 ←

arccot
(
−𝜇

(
𝑆

))
, then 𝛽−0 ← 𝛽+0".

Algorithm 1 Procedure for computing the equilibrium region
1: Input: 𝜇0, 𝐴, 𝜆̂, 𝜙, 𝑆

∗a, and natural numbers 𝑛𝑆̂ , and 𝑛𝛽0
b

2: Initialization: 𝑆 = 1, 𝑃̂𝑛 = 0, 𝑤̂0 = 0, 𝐹̂ = 0, Δ𝑆 = 𝑆∗/𝑛𝑆̂
3: for 𝑆 = 1, 1 + Δ𝑆, 1 + 2Δ𝑆, . . . , 𝑆∗ do
4: Compute 𝜇

(
𝑆

)
← 𝜇0

(
1 + 𝐴 cos

(
𝜋𝑆/𝜆̂ + 𝜙

))
5: Compute 𝛽+0 ← arccot

(
−𝜇

(
𝑆

))
and 𝛽−0 ← arccot

(
𝜇

(
𝑆

))
6: Compute Δ𝛽0 ←

(
𝛽+0 − 𝛽

−
0
)
/𝑛𝛽0

7: for 𝛽0 = 𝛽−0 , 𝛽
−
0 + Δ𝛽0, 𝛽

−
0 + 2Δ𝛽0, . . . 𝛽

+
0 do

8: Solve for 𝑃̂𝑛 as the smallest root of 𝑓 (·; 𝑆, 𝛽0)c
9: Construct 𝜃 (·; p) from (2.24) using 𝑆, 𝑃̂𝑛,and 𝛽0

10: Determine 𝑤̂0(p) and 𝐹̂ (p) from (2.26), (2.30), (2.24b) and (2.18c)
11: Save the points (𝑆, 𝑤̂0(p)), (𝑆, 𝐹̂ (p)), and (𝑤̂0(p), 𝐹̂ (p)) as respective members of the

equilibrium regions in the 𝑆-𝑤̂0, 𝑆-𝐹̂, and 𝑤̂0-𝐹̂ spaces
12: end for
13: end for
14: Output: A collection of 𝑛𝑆̂ × 𝑛𝛽0 equilibrium points in each of the 𝑆-𝑤̂0, 𝑆-𝐹̂, and 𝑤̂0-𝐹̂ spaces

aThe parameter 𝑆∗ > 1 specifies the maximum value of 𝑆 among all the computed equilibrium configurations.
bThe parameters 𝑛

𝑆̂
and 𝑛𝛽0 , respectively, specify the number of different 𝑆 and 𝛽0 values among the computed equilibrium

configurations.
cdefined in (2.35)

Remarks

1. As can be noted from (2.36), the curve 𝛾sp-eq is parameterized by the total length 𝑆. The left

end of the curve, i.e., the point (0, 0), corresponds to 𝑆 = 1 (see Figure 2.6(A)). Thus, the

value of 𝑆 strictly increases as we travel along the curve starting from the origin.
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2. The equilibrium curves from our model for the cases in which 𝜇0 = 0.0 or 0.6 and 𝐴 = 0.0

or 0.4 are shown in Figure 2.7(A). In all cases, as expected, the equilibrium curves predicted

by our model asymptote to the one predicted by the EB theory (see equation (5) in [31]) as

the midpoint deflection becomes small.

3. When 𝐴 = 0.0, the most noticeable aspect of the equilibrium curves from our model is that

the force initially increases and later decreases with the midpoint deflection. In contrast, in the

equilibrium curve predicted by the EB theory (see Figure 2.7(A)), the force always increases

with the deflection.

4. When 𝐴 ≠ 0.0, the equilibrium curves from our model have an undulatory nature. The

sawtooth pattern in our model is a consequence of these undulations. The undulations appear

to become more pronounced as the values of 𝑆 and 𝑤̂0 increase, starting from when 𝐹̂ is

about to reach its maximum value. As noted from Figure 2.1 in the SS experiments, the

sawtooth-pattern is pronounced in this very same region.

2.4.3 Force-displacement curves that will be measured in the simply-supported ex-

periments

In §2.4.2, we discussed that only a subset (specifically, the upper envelope) of the spicule’s equilib-

rium configurations is relevant in the loading phase of the SS experiments. In the 𝑤̂0-𝐹̂ space, we

termed that upper envelope (2.36) the spicule-equilibrium curve, 𝛾sp-eq. The spicule configurations

sampled by the experiment have to necessarily lie on 𝛾sp-eq. However, not all the configurations

in 𝛾sp-eq will be sampled during the loading portion of the SS experiment. This is because the spicule

being in equilibrium does not necessarily mean that the MTS’s wedge is in one of its equilibrium

configurations. The force acting on the spicule’s midpoint has to be provided by the wedge’s apex

(shown marked in Figure 2.4(A)). However, that force may not necessarily be balanced by the force

acting on the wedge’s base due to the MTS’s cantilever’s deformation.

To be more precise, we analyze the force balance on the wedge of the MTS. We assume that in the

SS experiments, the total length 𝑆 evolves in the manner dictated by the function 𝑆 : [0, 𝜏∗] → [1,∞).

As mentioned previously, the experiment will only sample configurations on 𝛾sp-eq. At the time
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Figure 2.7: Equilibrium and measured force-displacement curves. (A) shows the equilibrium curves, 𝛾sp-eq, for the cases
𝜇

(
𝑆

)
= 0.6

(
1 + 0.4 cos

(
𝑆/0.02

))
, 𝜇

(
𝑆

)
= 0.6, and 𝜇

(
𝑆

)
= 0.0, using gray lines. The equilibrium curve predicted by

the Euler-Bernoulli theory is also shown for reference, using dashed brown lines. (B) and (C) again show the equilibrium
curve corresponding to 𝜇

(
𝑆

)
= 0.6

(
1 + 0.4 cos

(
𝑆/0.02

))
. They only consider this equilibrium curve and a cantilever

stiffness of 𝑘̂𝑐 = 30 and show the measured curves for two different 𝑤̂𝑠 (·). (B) considers the 𝑤̂𝑠 (·) given in (2.38) for 1𝑤𝑠 ,
2𝑤𝑠 , and 3𝑤𝑠 equal to 0.52, 0.65, and 0.69, respectively. In (B), on the equilibrium curve, we mark the overall-equilibrium
configurations at some three time instances that, respectively, belong to the intervals (0, 𝜏1], (𝜏1, 𝜏2], and (𝜏2, 𝜏3], which
appear in (2.38). The stable overall-equilibrium configurations are shown as filled circles; the unstable configurations
as open circles; and the partially-stable configurations as semi-filled circles. All overall-equilibrium configurations
corresponding to the same time instance are connected using a dashed gray line. The three dashed gray lines are the
graphs of the function (2.37b) at the three previously mentioned time instances. The graph of the measured curve in this
case consists of just the three points that are shown as 1𝑆1, 1𝑆2, and 2𝑆3. (C) shows the measured curve 𝛾𝑚 for the case
in which 𝑤̂𝑠 (·) is some continuous, monotonically increasing function of time. The measured curve in this case is the
discontinuous curve that is shown using thin black lines. The straight line segments that span the discontinuities of this
curve signify the slip instabilities occurring at the trench edges.

instance 𝜏, the measured midpoint deflection will be 𝑤̂+0
(
𝑆 (𝜏)

)
, i.e., 𝑤̂0(𝜏) = 𝑤̂+0

(
𝑆 (𝜏)

)
, and the

measured force acting on the spicule’s midpoint will be 𝐹̂+
(
𝑆(𝜏)

)
𝖋̂2, i.e., 𝐹̂ (𝜏) = 𝐹̂+

(
𝑆(𝜏)

)
. This

force needs to be provided by the wedge’s apex. Therefore, the force acting on the wedge’s apex

will be −𝐹̂+
(
𝑆(𝜏)

)
𝖋̂2. It follows from (2.4) and (2.2) that the force acting on the wedge’s base

is 𝑘̂𝑐
(
𝑤̂𝑠 (𝜏) − 𝑤̂+0

(
𝑆 (𝜏)

))
𝖋̂2, where 𝑤̂𝑠 (·) prescribes how the stage-displacement evolves with time

during the experiment. Therefore, the equilibrium condition for the wedge gives that 𝑆(𝜏) be a root

of the function 𝑅(·; 𝜏) : [1,∞) → R,

𝑅

(
𝑆; 𝜏

)
:= 𝐹̂cant(𝑤̂+0

(
𝑆

)
; 𝜏) − 𝐹̂+

(
𝑆

)
, (2.37a)

where

𝐹̂cant(𝑤̂0; 𝜏) := 𝑘̂𝑐 (𝑤̂𝑠 (𝜏) − 𝑤̂0). (2.37b)

We will be referring to the point
(
𝑤̂+0

(
𝑆 (𝜏)

)
, 𝐹̂+

(
𝑆 (𝜏)

))
, where 𝑆 (𝜏) is a root of 𝑅(·; 𝜏), an

overall-equilibrium configuration at the time instance 𝜏. The overall-equilibrium configurations at

the time instance 𝜏 can be visualized in the 𝑤̂0-𝐹̂ space (see, e.g., Figure 2.7(B)) as the intersection

points between 𝛾sp-eq and the graph of 𝐹̂cant(·; 𝜏).
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Evolution postulate and our model’s prediction for the measured force-displacement curves

In order to derive our model’s prediction for the measured force-displacement curve, we consider a

thought experiment in which

𝑤̂𝑠 (𝜏) =


1𝑤̂𝑠, 𝜏 ∈ (0, 𝜏1],
2𝑤̂𝑠, 𝜏 ∈ (𝜏1, 𝜏2],
3𝑤̂𝑠, 𝜏 ∈ (𝜏2, 𝜏3] .

(2.38)

In Figure 2.7(B), considering a representative 𝑘̂𝑐, we mark and label the overall-equilibrium

configurations at the three different stage displacements 1𝑤̂𝑠, 2𝑤̂𝑠, and 3𝑤̂𝑠. As noted from the figure,

there can exist more than one overall-equilibrium configurations at a given stage displacement. At

the stage displacement 1𝑤̂𝑠, there exists only one overall-equilibrium configuration. We denote the

total length in that configuration as 1𝑆1 and label the configuration as 1𝑆1 in Figure 2.7(B). However,

at 2𝑤̂𝑠, there exist three overall-equilibrium configurations. As before, we label these configurations

in Figure 2.7(B) using their total lengths, i.e., as 1𝑆2, 2𝑆2, and 3𝑆2. At 1𝑤̂𝑠, it is clear that the experiment

will measure the total length 1𝑆1, i.e., 𝑆(𝜏) = 1𝑆1 for all 𝜏 ∈ (0, 𝜏1]. However, at 2𝑤̂𝑠, which one of

the three total lengths will the experiment measure? From a theoretical mechanics perspective, the

question just posed is the same as the one analyzed in [59, 60, 50], though the mechanical system

investigated in [59, 60, 50] is different from the one studied in this chapter. Following the analysis

presented in [59, 60, 50], a prerequisite for an overall-equilibrium configuration to be measurable is

that it is stable. The overall equilibrium state with total length 𝑗𝑆𝑖 is stable, iff

𝑅′
(
𝑗𝑆𝑖; 𝜏

)
= −𝑘̂𝑐 𝑤̂+0

′
(
𝑗𝑆𝑖

)
− 𝐹̂+ ′

(
𝑗𝑆𝑖

)
< 0. (2.39)

Using (2.39), it can be deduced from Figure 2.7(B) that 1𝑆2 and 3𝑆2 are stable, while 2𝑆2 is

unstable. However, the question still remains as to which of 1𝑆2 and 3𝑆2 will be measured. To answer

this question, as done in [60], we postulate that among the different measurable configurations, the

system will evolve into the one that is closest to the last measured configuration. In the current

case, this evolution postulate implies that the configuration that the system will chose among the

measurable configurations will be the one whose total length is closest to the one in the last measured
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configuration. The last measured configuration in our thought experiment is 1𝑆1. Therefore, when

the stage displacement is 2𝑤̂𝑠, amongst 1𝑆2 and 3𝑆2, the experiment will measure the one that is

closer to 1𝑆1. It follows from remark 1 in §2.4.2 and Figure 2.7(B) that 1𝑆1 <
1𝑆2 <

3𝑆2. Therefore,

at 2𝑤̂𝑠, the experiment will measure the configuration 1𝑆2, i.e., 𝑆 (𝜏) = 1𝑆2 for all 𝜏 ∈ (𝜏1, 𝜏2]. When

the stage displacement is 3𝑤̂𝑠, there are four overall equilibrium configurations. We label those

as 𝑗𝑆3, 𝑗 = 1, .., 4, in Figure 2.7(B). Through similar analysis, it can be deduced that the system will

measure 2𝑆3 at 3𝑤̂𝑠, implying that 𝑆 (𝜏3) = 2𝑆3 for all 𝜏 ∈ (𝜏2, 𝜏3].

Now we consider the measured force-displacement curve for arbitrary 𝛾sp-eq, 𝑤̂𝑠 (·), and 𝑘̂𝑐. The

given 𝑤̂𝑠 (·) can be approximated using a function of the form (2.38). For example, we consider a

large number of equally spaced time instances in [0, 𝜏∗], say 𝜏0, 𝜏1, 𝜏2, etc., and define the value of

the approximate-𝑤̂𝑠 (·) for any time instance in (𝜏𝑖 , 𝜏𝑖+1] to be the constant value 𝑖+1𝑤̂𝑠 := 𝑤̂𝑠 (𝜏𝑖+1).

We can construct the evolution of the measured approximate-𝑆 (·) by carrying out analysis similar

to the one presented in the previous paragraph. By increasing the number of time instances, 𝑆(·)

can be approximated to any desired degree.

After determining the evolution of the measured configuration, i.e., 𝑆 (·), the measured force-

displacement curve can be constructed as

𝛾m =

{(
𝑤̂+0

(
𝑆(𝜏)

)
, 𝐹̂+

(
𝑆(𝜏)

))
| 𝜏 ∈ [0, 𝜏∗)

}
. (2.40)

We provide a systematic procedure for numerically constructing 𝛾m in Algorithm 2. In Figure 2.7(C),

we show a representative 𝛾m (black) by considering a continuous, monotonically increasing 𝑤̂𝑠 (𝜏).

The corresponding spicule equilibrium curve 𝛾sp-eq (gray) and cantilever stiffness 𝑘̂𝑐 are the same

as those in Figure 2.7(B). As can be seen in (C), the curve 𝛾m is discontinuous, i.e., it is a union

of non-intersecting smooth curves. We connect the nearest terminal ends of adjoining smooth curve

segments in 𝛾m using dashed line segments. The dashed line segments physically denote mechanical

instabilities. The quantities 𝑤̂0, 𝐹̂, and 𝑆 all change by a finite amount during the occurrence of

those instabilities. With its discontinuities, 𝛾m, at least qualitatively, captures the sawtooth pattern

observed in the SS experiments.
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Algorithm 2 Procedure for computing the measured force-displacement curve
1: Input: 𝛾sp-eq, 𝑤̂𝑠 (·), 𝑘̂𝑐, 𝜏∗, and a natural number 𝑛a

2: Initialization: 𝜏0 = 0, 𝑆0 = 1, Δ𝜏 = 𝜏∗/𝑛
3: for 𝑖 = 0, 1, 2, . . . , 𝑛 do
4: Compute 𝜏𝑖+1 ← 𝜏𝑖 + Δ𝜏
5: Construct 𝑅 (·; 𝜏𝑖+1) from (2.37) using 𝛾sp-eq, 𝑤̂𝑠 (·), and 𝑘̂𝑐
6: Solve for the roots of 𝑅 (·; 𝜏𝑖+1). We denote those roots as 𝑗𝑆𝑖+1, where 𝑗 ∈ J :=
{1, 2, . . . , 𝑛𝑖+1}

7: Set 𝑆𝑖+1 ← 𝑘∗𝑆𝑖+1, where 𝑘∗ = arg min𝑘∈K
��𝑘𝑆𝑖+1 − 𝑆𝑖 ��,K :=

{
𝑝 ∈ J | 𝑅′(𝑝𝑆𝑖+1; 𝜏𝑖+1) < 0

}b

8: Save
(
𝑤̂+0

(
𝑆𝑖+1

)
, 𝐹̂+

(
𝑆𝑖+1

))
as a point belonging to the measured force-displacement curve

9: end for
10: Output: A collection of 𝑛 points that belong to the measured force-displacement curve
aThe parameter 𝑛 specifies the number of computed points on the measured force-displacement curve.
b𝑅′ (·; 𝜏) is defined in (2.39).

2.5 Comparing theoretical predictions for the force-displacement curves

with their experimental measurements

In §2.4.3, we discussed how the force-displacement curves predicted by our model qualitatively

capture the sawtooth pattern (see Figure 2.7(C)). In this section, we discuss how the predictions

from our model for the force-displacement curves compare with their measurements reported in [31].

Kochiyama et al. [31] reported measurements of force-displacement curves from 38 SS experi-

ments. We place those curves in the following three categories based on the nature of the sawtooth

pattern observed in them.

C.1 Curves displaying a clear sawtooth pattern.

C.2 Curves displaying a nominal sawtooth pattern.

C.3 Curves displaying almost no sawtooth pattern.

Category C.1 This category consists of curves from the SS experiments which Kochiyama et al.

labeled as SS4, SS8, SS11, SS12, SS14, SS16, SS18, SS20, SS25, SS30, SS32, SS33, SS35, and

SS38 (see Figure 2.9). There are 14 curves in total in this category.
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Category C.2 This category consists of curves from the SS experiments which Kochiyama et al.

labeled as SS5, SS7, SS17, SS19, SS22, SS24, SS26, and SS29 (see Figure 2.10). There are eight

curves in total in this category.

Category C.3 This category consists of curves from the SS experiments which Kochiyama et al.

labeled as SS1, SS2, SS3, SS6, SS9, SS10, SS13, SS15, SS21, SS23, SS27, SS28, SS31, SS34,

SS36, and SS37 (see Figure 2.11). These are 16 curves in total.

We compare our model’s predictions with each of the measured curves in Figures 2.9 (Cate-

gory C.1), 2.10 (Category C.2), and 2.11 (Category C.3). The values of the parameters 𝜇0, 𝐴, 𝜆,

and 𝜙 were manually adjusted so that our model’s predictions matched the measured curves as

closely as possible. These manually chosen values are shown alongside each comparison (see top

right hand corner of each subfigure in Figures 2.9–2.11). In each of the subfigures of Figures 2.9–

2.11, our model’s prediction for the measured curve is shown in black (consisting of solid and dashed

segments). The measured curve is shown in blue. For reference, we also include the prediction from

the EB theory, as well as from our model for the case 𝜇0 = 0. The prediction from the EB theory

(brown dashed) appears as a straight line, while that from our model for the case 𝜇0 = 0 (brown

solid) appears as a section of an upside down parabola.

When comparing our model to the curves from C.1 and C.2, the values of 𝜇0, 𝐴, 𝜆, and 𝜙 were

adjusted, whereas when comparing to the curves from C.3, only the value of 𝜇0 was adjusted. We

will explain this difference shortly after we discuss the former. The values chosen for 𝜙 do not

have much experimental significance, since they primarily correlate with the position of contacting

points between the spicule specimens and the trench edges at the beginning of the experiments. The

values of 𝐴 and 𝜆 do have experimental significance, as we expect their values to correlate with the

variation in spicules’ surface friction. The mean-range of the values chosen for 𝜆 when comparing to

curves from C.1 and C.2 are, in the format of mean-(minimum, maximum), 10.883-(5.498, 25.133)

and 44.670-(23.562,58.905), respectively (see Figure 2.8(A)). The mean-range of the values chosen

for 𝐴when comparing to curves from C.1 and C.2 are 0.145-(0.030, 0.333) and 0.074-(0.040, 0.135),

respectively. A graphical representation of the distribution of the values chosen for 𝐴 is shown as

error bars in Figure 2.8(B). We would consider the chosen values for 𝐴 and 𝜆 to be reasonable if
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they were, respectively, close to other estimates of 𝐴 and 𝜆 that were arrived at independently. For

ascertaining how reasonable the values chosen for 𝐴 and 𝜆 are, it would be ideal if we could directly

measure the variation of the coefficient of friction along the spicules’ lengths, perhaps using an

Atomic Force Microscope (AFM). Unfortunately, we currently do not have such AFM data available

to us (see §2.6 for further discussion).

We considered the possibility of evaluating the values chosen for 𝐴 and 𝜆 using the spicules’

SEM images, such as those shown in Figure 2.3. Though we believe that the parameter 𝐴 depends

on the spicules’ surface topography, we do not currently have an insight into the mathematical nature

of that dependence. Consequently, we are unable to gauge the reasonableness of the values chosen

for 𝐴 from the spicules’ SEM images. We are more confident of evaluating 𝜆’s chosen values using

the SEM images. We denote the projected thickness of a spicule on an image as 𝑧, and define the

topography map: 𝑠 ↦→ 𝑧(𝑠). If we calculate the Fourier spectrum of 𝑧(𝑠), we expect the dominant

angular frequency in that spectrum to be a good estimate for 2𝜋/𝜆. However, we were unable

to successfully carry out such an evaluation. The reason behind this can be explained through a

rough estimation as follows. As mentioned previously, the means of the values chosen for 𝜆 when

comparing to the curves from C.1 and C.2 are ≈ 11 and 45 𝜇m, respectively. In order to evaluate the

soundness of these values using the aforementioned Fourier analysis, SEM images with a horizontal

field width (HFW) of ideally 10 times the expected wavelength (around 450 𝜇m) would be needed.

The resolution in our SEM images with such HFW would be limited to around 0.29 𝜇m. Considering

that the outer-layer thickness of a spicule is typically 0.4 𝜇m [18] and assuming that at least 10 pixels

are needed on an image for describing the undulation in a spicule’s lateral surface, a resolution of

ideally 0.04 𝜇m is required. Therefore, the competition between the HFW and the resolution of

SEM images prevents us from evaluating the reasonableness of the values chosen for 𝜆 from the

spicules’ SEM images.

When comparing to the curves from category C.3, we only adjusted the value of 𝜇0. Our

model predicts the lack of any sawtooth pattern when 𝐴 = 0, i.e., when the coefficient of friction is

constant along the spicule’s length. Since the curves in C.3 displayed almost no sawtooth-pattern,

we took 𝐴 = 0 when comparing to the curves from this category. Due to the form of 𝜇(·) given

in (2.33), with 𝐴 = 0, the values of 𝜆 and 𝜙 become irrelevant.
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We show the values we chose for 𝜇0 when comparing to the curves from C.1–C.3 in Figure 2.8(B).

The mean-range of the values chosen for 𝜇0 when comparing our model’s predictions to the curves

from C.1, C.2, and C.3 are 0.656-(0.284, 1.3), 0.688-(0.52, 1.07), and 0.520-(0.0,1.0), respectively.

We consider a final category of curves, C.4, which consists of the curves SS8 and SS32 from C.1,

SS24 from C.2, and SS13 and SS36 from C.3. We believe that the curves from C.4 are suspect.

Within the context of beam models, the EB theory provides an upper bound for the force, while our

model for the case 𝜇0 = 0 provides a lower bound. As can be seen from Figure 2.12, the forces

in the curves from C.4 sometimes exceed the force predicted by the EB theory. We speculate that

the spicules in the experiments related to C.4 were unable to slide due to some reason, perhaps due

to a protrusion on the spicule’s surface getting stuck at the trench’s edge. On excluding the curves

from C.4, we get the mean-range of the values chosen for 𝜇0 to be 0.584-(0.284,0.93), 0.633-(0.52,

0.77), and 0.457-(0.0, 0.7) for C.1, C.2, and C.3, respectively. The mean-range considering all

curves except those from C.4 is 0.541-(0.0, 0.93).

As mentioned previously, we were unable to directly characterize the 𝜇(·) in our experiments.

Note that the contact in our experiments is between silica (spicule) and stainless steel (trench edge).

Therefore, as an alternative, we compare the values we chose for 𝜇0 to the values reported in literature

for the coefficient of friction between glass and different types of steel, see Table 2.1. We mark the

minimum and the maximum of the values shown in Table 2.1, which are respectively 0.5 and 0.721,

as green dashed lines in Figure 2.8(B).

As can be noted from Figure 2.8(B), the values we chose for 𝜇0 are quite reasonable.
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Figure 2.8: Distribution of the values we chose for 𝜆 and 𝜇0 to get the predictions from our model for the force-
displacement curves to compare favorably with their experimental measurements. Subfigure (A) consists of two plots,
which show the chosen values for 𝜆 that we arrived at when comparing to curves from C.1 and C.2, respectively. Subfigure
(B) consists of three plots, which show the chosen values for 𝜇0 that we arrived at when comparing to curves from C.1,
C.2, and C.3, respectively. All plots belonging to either (A) or (B) share the same 𝑦-axis. The 𝑥-axis in all plots in both
(A) and (B) gives the test number, which ranges from 0 to 40. We use black five-pointed star, black up-pointing triangle,
and black circle to mark the values we chose when comparing, respectively, to curves from C.1, C.2, and C.3. However,
if the curve corresponding to a chosen value also belonged to C.4 then we show that chosen value using a red cross. In
each plot a black horizontal line is used to mark the mean of the chosen values in that plot. In computing the means,
we excluded a chosen value if the curve that it corresponds to also belonged to C.4. The remainder of the statements in
this caption pertain only to (B). The gray horizontal line (labeled as 0.541) that runs across all plots in (B) marks the
mean of values we chose for 𝜇0 when comparing to all curves not from C.4. We mark the maximum (labeled as 0.721)
and the minimum (labeled as 0.5) of the measured values for the coefficient of friction between glass and steels that are
shown in Table 2.1. In general, the coefficient of friction is expected to lie between 0 and 1. These two values are shown
marked using blue dashed lines. The size of the error bar around each value chosen for 𝜇0 when comparing to a curve
from either C.1 or C.2 is proportional to the value chosen for 𝐴 in that comparison. Note that there are no error bars in
the plot corresponding to C.3, since when comparing to curves from that category we took 𝐴 = 0 (see §2.5 for details).

Materials Geometry Surface condition Coefficient
of friction

Glass–Hard steel [61] plane–spherical end of a rod
(of diameter 2.54mm)

polished, clean, dry 0.605

Glass–Mild steel [61] plane–spherical end of a rod
(of diameter 2.54mm)

polished, clean, dry 0.721

Glass–Mild steel [62] plane–sphere (of diameter 5
mm)

polished, clean, dry 0.51-0.61

Glass–Stainless steel [63] — polished, in vacuum 0.5

Stainless steel (with silica
coating)–Stainless steel [64]

plane–sphere (of diameter 10
mm)

in air 0.7

Table 2.1: Estimates for the coefficient of friction between glass and steel from literature

2.6 Concluding remarks

1. As can be noted from Table 2.1 and Figure 2.8(B), the values of 𝜇0, which were chosen to

match our model’s predictions as closely as possible with the measurements of [31] are quite

consistent with the values reported in literature for the coefficient of friction between glass

and steel (note that the contact in our experiments is between silica (spicule) and stainless

steel (trench edge)). This consistency supports the view that it is valid to use the developed

model to interpret Kochiyama et al.’s SS experiments.

2. It is unlikely that the friction coefficient varies in a sinusoidal fashion along the spicule’s

length. It is even more unlikely that the coefficient of friction varies in the exact same manner
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at both the left and the right trench edges during the experiment, as assumed in our model.

The goal of assuming that the variation of the coefficient of friction along the spicule’s length

was symmetric about the spicule’s midpoint was to make the problem tractable. However,

the decision to model the variation of the coefficient of friction using a single sinusoid

was more deliberate. We have compared the predictions from other versions of our model

that incorporate more realistic variations for the friction coefficient with the experimental

curves. These more realistic variations involved superposition of multiples sinusoids, and

consequently involved a larger number of free parameters than the presented single sinusoidal

variation, which contains four free parameters, namely 𝜇0, 𝐴, 𝜆, and 𝜙. Unsurprisingly, the

predictions from those other versions of our model match the experimental curves better than

those from the presented version of the model. Despite the above fact, we chose to focus this

chapter on the version based on the single sinusoidal variation, since our primary goal was to

present insight into the potential mechanism(s) underlying the sawtooth pattern, rather than to

analytically reproduce the measured curves. And among the different versions of our model

that we studied, we believe that the one based on the single sinusoidal variation illustrates the

sawtooth mechanism captured by our model in the clearest manner.

3. The mechanism underlying the sawtooth patterns in our experiments is similar to the sur-

face topography (roughness) based mechanism put forward for explaining the stick-slip phe-

nomenon [65, 66, 67]. The controlling factors in the surface topography mechanism of

stick-slip are the surface’s roughness and the stiffness of the loading system, which are the

same as the ones in our model’s mechanism for the sawtooth pattern if we assume that the

friction variation in our work is primarily due to the spicule’s surface roughness. One dif-

ference in the mechanics of the SS experiments and the stick-slip phenomenon is that in the

SS experiments, the spicule is slipping both before and after the occurrence of an instability,

while in the stick-slip phenomenon, the specimen is stationary before the occurrence of an

instability, and is sliding afterwards.

4. Our preliminary research suggests that there can exist an alternative model for the SS ex-

periments, which is also capable of capturing the sawtooth patterns in the measured force-

displacement curves. Interestingly, in that model, it is not required to assume that the coefficient
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of friction varies along the spicule’s length. Since we were unable to experimentally ascertain

that the coefficient of friction indeed varied along the spicule’s length, a model that does not

require the assumption of a varying friction coefficient may seem preferable to the one that

does. However, this alternative model also contains assumptions that cannot be readily justi-

fied through experiments. Furthermore, we were unable to derive any quantitative predictions

from that different model for the measured force-displacement curves. For these reasons, we

gave preference to the variable friction based model that we presented in this chapter.
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Figure 2.9: Comparing measured force-displacement curves from the SS tests belonging to category C.1 with their
theoretical predictions. Each subfigure corresponds to a different test. The subfigures with a red cross mark at their
top left corners correspond to tests that also belong to category C.4. The following statements apply to each subfigure
separately. The experimentally measured force-displacement curve is shown in blue. The prediction from our model for
that curve is shown in black. The values we chose for the parameters 𝜇0, 𝐴, 𝜆, and 𝜙 in our model for generating that
prediction are shown at the top right corner. The predictions from the Euler-Bernoulli theory and from our model for the
case 𝜇0 = 0 are shown using brown dashed and brown solid lines, respectively. The gray dashed oblique lines are the
graphs of the function (2.37b) at the time instances at which we noted a sudden drop in the measured force. In generating
these graphs, in the function (2.37b) we used the 𝑘̂𝑐 and 𝑤̂𝑠 (·) that we constructed using the experimental details of the
test.
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Figure 2.10: Comparing measured force-displacement curves from the SS tests belonging to category C.2 with their
theoretical predictions. Each subfigure corresponds to a different test. The subfigures with a red cross mark at their top
left corners correspond to tests that also belong to category C.4. The statements made in the caption of Figure 2.9 that
apply to its subfigures individually apply to the subfigures of this figure individually as well.
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Figure 2.11: Comparing measured force-displacement curves from the SS tests belonging to category C.3 with their
theoretical predictions. Each subfigure corresponds to a different test. The subfigures with a red cross mark at their top
left corners correspond to tests that also belong to category C.4. The statements made in the caption of Figure 2.9 that
apply to its subfigures individually apply to the subfigures of this figure individually as well.
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Figure 2.12: Comparing measured force-displacement curves from the SS tests belonging to category C.4 with their
theoretical predictions. Each subfigure corresponds to a different test. The statements made in the caption of Figure 2.9
that apply to its subfigures individually apply to the subfigures of this figure individually as well.
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Effective bending stiffness of

multilayered composite cylinders with
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W. Fang, W. Deng, and H. Kesari. Effective bending stiffness of multilayered composite cylinders

with cylindrical orthotropy. International Journal of Solids and Structures, In submission.

3.1 Introduction

Structural biomaterials are fascinating model material systems for the discovery of new mechanics

of materials principles. The remarkable enhancement in the structural biomaterials’ macro-scale

properties in comparison to their micro-scale properties is believed to be due to the highly organized

and quite elaborate architecture in which the mineral phases is interlaid with the organic phase. A

number of studies have been performed to delineate the mechanical principles that quantitatively

capture the relationship between large-scale mechanical properties and small-scale architecture. In

most of those studies the focus has been on the brick-mortar architecture which can be described

55



56

as a ordered stacking of thin flat platelets. For example, Gao and co-workers [68, 69] developed a

multi-level staggered mechanical (tension-shear chain) model for a self-similar bone to understand

the role of hierarchical structures of bone. Bertoldi et al. [70] derived the effective stiffness tensor of

nacre based on the tension-shear chain model through the homogenization technique and showed that

nacre was orthotropic and had different Young’s modulus when in tension and compression. Rim et

al. [71] performed a parametric analysis to investigate the effect of the microstructure geometry on the

nacre-inspired composite’s strength and toughness. Begley et al. [72] developed a micromechanical

model to evaluate the effective properties of the brick-mortar composite, such as elastic modulus,

strength and work-to-failure. Shao et al. [73] presented a microstructure-based fracture mechanics

model to study the toughening effect due to the crack-bridging mechanism of platelets in nacre.

However, there exist a large number of structural biomaterials with cylindrical structures and

displaying a helical symmetry. Representative examples include the Ponderosa pine [14], the sea

sponge skeletons [16], and the tusk of the narwhal [74], as shown in Figure 3.1 (A-C). Furthermore,

some other helical structural biomaterials are often found to have the architecture consisting of a

co-axial array of thin annular layers, which is referred to multilayered composite structure. This

multilayered helical structure is observed in the osteon of bone [15], the artery wall [75], and the

wood’s cell wall [76] etc. (see Figure 3.1 (D-F)). Some engineering materials such as multi-

walled carbon nanotube (see Figure 3.1(G)) and filament-wound composite pipes have multilayered

helical structure as well. Although the property-structure connection of biomaterials with brick-

mortar architecture has been extensively studied, the relationship between the effective mechanical

properties and the small-scale architectures for structural biomaterials consisting of cylindrical layers

with helical symmetries is much elusive.

Most of the multilayered structural biological and engineering composite materials are essen-

tially anisotropic and heterogeneous. Moreover, the helical symmetric layers of the structures are

cylindrical orthotropic. Understanding and analyzing the overall deformation of such materials with

multilayered anisotropic cylindrical microstructures requires the knowledge of their effective (i.e.,

homogenized) elastic properties, which can be obtained through the anisotropic elasticity theory and

homogenization theory. The theory of anisotropic elasticity in the cylindrical coordinates system

is developed and summarized in monographs by [79, 80]. Analytical solutions for displacement
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A B C

GFED

Figure 3.1: Representative examples of structures displaying a helical symmetry. (A) Ponderosa pine (modified
with permission from [14]), (B) the sea sponge skeletons (reprinted from [18]), (C) the tusk of the narwhal (image
courtesy Glenn Williams), (D) the osteon microstructure of bone (modified with permission from [77]), (E) the artery
wall (modified with permission from [75]), (F) the wood’s cell wall (modified with permission from [76]), and (G)
multiwalled carbon nanotube (modified with permission from [78]).

and stress analysis of anisotropic composite cylinders subjected to typical loading conditions such

as tension, shear, torsion, pressuring, thermal deformation and bending are extensively studied, for

example, see [81, 82, 40, 83, 84, 85, 86, 87, 88, 89] etc. Inspired by those analytical solutions, a

recent study by Gnoli et al. [90] compared the stiffness of the fiber-reinforced cylinder composite

beams with various lamination schemes. One interesting observation is that all stiffness constants

seem to become stable when three or four layers are considered in the composite beams.

Regarding the homogenization of multilayered cylindrical structures, Chatzigeorgiou et al. [91]

studied the homogenized elastic coefficients of an anisotropic hollow layered tube with discontin-

uous elastic constants under axisymmetric loading condition. They [92] also proposed a modified

asymptotic expansion homogenization method to compute effective thermomechanical properties

of composites with periodicity in cylindrical coordinates. By taking into account the discontinuous

stress and strain distributions in each layer, Sun et al. [93, 94] proposed a force-displacement equiv-

alence method to determine the homogenized elastic constants of general multilayered composite

cylindrical structures with curvilinear orthotropy. However, the lack of asymptotic analysis makes

their method too complicated to apply in practice.

In this chapter, we derive analytical expressions for the asymptotic bending stiffness of multi-

layered composite cylinders with cylindrical orthotropy by performing asymptotic analysis on the



58

bending stiffness formula obtained by Jolicoeur and Cardou [40]. While Jolicoeur and Cardou

studied cylinders, with or without a core, with both no-slip and no-friction interfacial conditions

between adjacent layers, we focus on hollow multilayered cylindrical structures in particular. It is

found that the asymptotic bending stiffness of perfectly bonded multilayered cylindrical structures

consisting of two alternatively arranged orthotropic materials is higher than that of structures made

of either constituent material. The calculation of the asymptotic bending stiffness, unlike Jolicoeur

and Cardou’s formula, does not involve the inversion of a large-size matrix, therefore is much more

computational efficient.

The chapter is organized as follows: §3.2 describes the model problem of pure bending of

multilayered cylindrical structures and summarizes the results obtained by Jolicoeur and Cardou; §3.3

presents the asymptotic analysis procedures of bending stiffness of the structure. The expressions

of asymptotic bending stiffness for different interfacial conditions and lamination schemes are

derived; §3.4 illustrates the numerical examples and discussions of the results; The final section

includes the major conclusions and discussions.

3.2 Pure bending of multilayered composite cylinders with cylindrical

orthotropy

We consider a hollow composite cylinder consisting of 𝑁 co-axial cylindrical layers without a solid

core and each layer is cylindrical orthotropic with different principal material property orientations

(see Figure 3.2). The inner and outer radius of the cylinder is 0𝑟 and 𝑁𝑟 , respectively, where

0 < 0𝑟 < 𝑁𝑟.

We take E to be a three dimensional, oriented, Hilbert space and introduce vectors (ℯ̂1, ℯ̂2, ℯ̂3)

to form a basis for E. We also define an Euclidean point space E as E’s principle homogeneous

space. The vectors ℯ̂1, ℯ̂2, and ℯ̂3 are orthonormal, that is, ℯ̂𝑖 · ℯ̂ 𝑗 = 𝛿𝑖 𝑗 , for 𝑖, 𝑗 ∈ (1, 2, 3), where

the Kronecker delta symbol 𝛿𝑖 𝑗 is defined as unity if 𝑖 = 𝑗 and zero otherwise. Following the

conventions in [95, 96], we define the vectors in E to have units of length, say meters, and refer to E

as the physical-space. The units are carried by the basis vectors (ℯ̂1, ℯ̂2, ℯ̂3) (see Figure 3.3(A)).
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We place the cylinder in E so that the axis of the cylinder is aligned with ℯ̂3 and cross sections

are in (ℯ̂1, ℯ̂2) plane (see Figure 3.3(A)).

We also introduce a set of orthonormal vectors (ℯ̂𝑟 (𝜃), ℯ̂𝜃 (𝜃), ℯ̂𝑧 (𝜃)) as basis for a global

cylindrical coordinate system in E. The dependence of (ℯ̂𝑟 (𝜃), ℯ̂𝜃 (𝜃), ℯ̂𝑧 (𝜃)) on (ℯ̂1, ℯ̂2, ℯ̂3) is

given by

ℯ̂𝑟 (𝜃) = cos(𝜃)ℯ̂1 + sin(𝜃)ℯ̂2, (3.1a)

ℯ̂𝜃 (𝜃) = − sin(𝜃)ℯ̂1 + cos(𝜃)ℯ̂2, (3.1b)

ℯ̂𝑧 (𝜃) = ℯ̂3. (3.1c)

For an individual layer of material, we construct a local cylindrical coordinate system according

to the principal material property orientation of the layer. We refer to the local cylindrical coordinate

system as the material coordinate system. It is a rotation of the global cylindrical coordinate system

through an angle 𝜑, in clockwise direction with respect to the axis ℯ̂𝑟 (𝜃) (see Figure 3.3). We denote

the basis of the material coordinate system as
(
𝖋̂𝑟 (𝜃; 𝜑), 𝖋̂𝜃 (𝜃; 𝜑), 𝖋̂𝑧 (𝜃; 𝜑)

)
, and the transformation

matrix from (ℯ̂𝑟 (𝜃), ℯ̂𝜃 (𝜃), ℯ̂𝑧 (𝜃)) to
(
𝖋̂𝑟 (𝜃; 𝜑), 𝖋̂𝜃 (𝜃; 𝜑), 𝖋̂𝑧 (𝜃; 𝜑)

)
as Q(𝜑), which can be expressed

as

Q(𝜑) =


1 0 0

0 cos(𝜑) − sin(𝜑)

0 sin(𝜑) cos(𝜑)


. (3.2)

In terms of Q(𝜑) , we have the transformation relation between (ℯ̂𝑟 (𝜃), ℯ̂𝜃 (𝜃), ℯ̂𝑧 (𝜃)) and
(
𝖋̂𝑟 (𝜃; 𝜑), 𝖋̂𝜃 (𝜃; 𝜑), 𝖋̂𝑧 (𝜃; 𝜑)

)
as

𝖋̂𝑖 (𝜃; 𝜑) =
∑︁
𝑗∈I

𝑄𝑖 𝑗 (𝜑)ℯ̂ 𝑗 (𝜃), for 𝑖 ∈ I, (3.3)

where I := (𝑟, 𝜃, 𝑧), 𝑄𝑖 𝑗 (𝜑) = (Q(𝜑))𝑖 𝑗 are elements of the matrix Q(𝜑).

It turns out that the basis
(
𝖋̂𝑟 (𝜃; 𝜑), 𝖋̂𝜃 (𝜃; 𝜑), 𝖋̂𝑧 (𝜃; 𝜑)

)
are closely related to the Frenet–Serret

frame [51], which describes a local coordinate system on a particle moving along a continuous,

differentiable curve in E. In this case, we imagine a helix tightly wound on the cylinder and the
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tangent unit vector of the helix is along the principle direction of the orthotropic material 𝖋̂𝑧 (𝜃; 𝜑)

(see Figure 3.3). Then, as per the definition of Frenet–Serret frame, 𝖋̂𝑟 (𝜃; 𝜑) is negative to the normal

unit vector and 𝖋̂𝜃 (𝜃; 𝜑) is negative to the binormal unit vector of the helix. The helical angle is the

complement of 𝜑 and the pitch size, 𝑝, is related to 𝜑 by

tan(𝜑) = 2𝜋𝑟/𝑝. (3.4)

It should be noted that when two layers of different radii share the same helical angle, the pitch

sizes of the two layers are not the same. According to the relation (3.4), for inner layer with smaller

radius than that of the outer layer, 𝑝 is smaller. In this chapter, we deal with the case in which

𝜑 are constant or alternatively arranged throughout the radial direction of the cylinder. The given

formulae do not apply to the case in which pitch sizes are constant throughout the radial direction

of the cylinder (e.g., helices on helicoid are of constant pitch). It is not clear whether the pitch

size of cylindrical layers in osteons, cell-walls or spicules, changes from the outside to the inside.

However, we highlight this fact since it might be critical to be cognizant of this fact when applying

the presented theory to experiments.

The solution of a single cylinder with cylindrical orthotropy subjected to pure bending was

obtained by Lekhnitskii [79]. Jolicoeur and Cardou extended this method to a more general bending

problem of a co-axial array of 𝑁 cylindrical layers with cylindrical orthotropy. Each cylindrical

layers have different helical angles. The cylinder can be either hollow or with a solid core. The

interfaces between adjacent layers could be either perfectly bonded or frictionless. The elastic

problem is solved by using stress function method with assumptions that the elastic cylinder is under

small strains, the loads along 𝑧-axis are constant, no shear load resultant, and stresses and strains

only depend on 𝑟 and 𝜃, which implies constant curvature of the bent cylinder. In the following, we

describe the generalized Hooke’s law of cylindrical orthotropy in §3.2.1. The results obtained by

Jolicoeur and Cardou and relevant to the pure bending problem are summarized in §3.2.2.
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N

Figure 3.2: Three-dimensional schematics of 𝑁-layer cylindrical structure. (A) General view and cross section view for
𝑁 = 1. (B) General view and cross section view for 𝑁 = 2. (C) General view and cross section view for 𝑁 = 3. (D)
Cross-section view of an arbitrary 𝑁-layer cylindrical structure. Inner and outer radii for the 1st layer, 𝑛th layer and 𝑁 th

layer are marked in the figure.

Figure 3.3: A single-layer cylindrical structure with cylindrical orthotropy. The set of vectors (ℯ̂1, ℯ̂2, ℯ̂3) are the
basis vectors of the global Cartesian coordinate system, while (ℯ̂𝑟 (𝜃), ℯ̂𝜃 (𝜃), ℯ̂𝑧 (𝜃)) are the basis of a global cylindrical
coordinate system. The vector set

(
𝖋̂𝑟 (𝜃; 𝜑), 𝖋̂𝜃 (𝜃; 𝜑), 𝖋̂𝑧 (𝜃; 𝜑)

)
is used to denote the basis of the material coordinate

system, where 𝜑 is the helical angle.

3.2.1 Transformation of constitutive law

The generalized Hooke’s law is

𝝈 = C 𝝐 , (3.5)

where 𝝈, 𝝐 , andC are the Cauchy stress tensor, infinitesimal strain tensor1 and elastic stiffness tensor,

respectively. Eqn. (3.5) can be inverted as

𝝐 = S𝝈, (3.6)

1Here we replace the shear strain in the infinitesimal strain tensor by “engineering shear strains” which are related to the
formal definition by a factor of 2.
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where S = Inv (C) is the elastic compliance tensor, Inv (·) is the inverse operation.

In the material coordinate system whose basis is
(
𝖋̂𝑟 (𝜃; 𝜑), 𝖋̂𝜃 (𝜃; 𝜑), 𝖋̂𝑧 (𝜃; 𝜑)

)
, we rewrite

Eqn. (3.6) with index notation as

𝜖
(𝖋̂)
𝑖 𝑗

=
∑︁
𝑘,𝑙∈I

𝑆
(𝖋̂)
𝑖 𝑗𝑘𝑙

𝜎
(𝖋̂)
𝑘𝑙
, for 𝑖, 𝑗 ∈ I = (𝑟, 𝜃, 𝑧) , (3.7)

where 𝜖 (𝖋̂)
𝑖 𝑗

, 𝑆(𝖋̂)
𝑖 𝑗𝑘𝑙

, and 𝜎
(𝖋̂)
𝑘𝑙

are the components of 𝝐 , S, and 𝝈, respectively, with respect to

the basis
(
𝖋̂𝑟 (𝜃; 𝜑), 𝖋̂𝜃 (𝜃; 𝜑), 𝖋̂𝑧 (𝜃; 𝜑)

)
. For helical fibers with cylindrical orthotropy, the elastic

compliance components in its material coordinate system, 𝑆(𝖋̂)
𝑖 𝑗𝑘𝑙

, are constant from point to point.

It is desirable to carry out the analysis in the global cylindrical coordinate system of the structure.

Therefore we need to transform the constitutive equation from the material coordinate system to the

global cylindrical coordinate system. As discussed in § 3.2, The material coordinates are related to

the global cylindrical coordinates by a rotation transformation Q(𝜑) (see Eqn. (3.3)). Thus, through

change of basis, the compliance form of the generalized Hooke’s law in the global cylindrical

coordinate system becomes

𝜖
(ℯ̂)
𝑖 𝑗

=
∑︁
𝑘,𝑙∈I

𝑆
(ℯ̂)
𝑖 𝑗𝑘𝑙

𝜎
(ℯ̂)
𝑘𝑙
, for 𝑖, 𝑗 ∈ I, (3.8)

where 𝜖 (ℯ̂)
𝑖 𝑗

, 𝑆 (ℯ̂)
𝑖 𝑗𝑘𝑙

, and 𝜎 (ℯ̂)
𝑘𝑙

are the components of 𝝐 , S, and 𝝈, respectively, with respect to the

basis (ℯ̂𝑟 (𝜃), ℯ̂𝜃 (𝜃), ℯ̂𝑧 (𝜃)). The relations between two sets of components w.r.t different bases are

given by

𝜖
(ℯ̂)
𝑖 𝑗

=
∑︁
𝑘,𝑙∈I

𝑄T
𝑖𝑘 (𝜑)𝑄

T
𝑗𝑙 (𝜑)𝜖

(𝖋̂)
𝑘𝑙
, (3.9)

𝜎
(ℯ̂)
𝑖 𝑗

=
∑︁
𝑘,𝑙∈I

𝑄T
𝑖𝑘 (𝜑)𝑄

T
𝑗𝑙 (𝜑)𝜎

(𝖋̂)
𝑘𝑙
, (3.10)

𝑆
(ℯ̂)
𝑖 𝑗𝑘𝑙

=
∑︁

𝑝,𝑞,𝑟 ,𝑠∈I
𝑄T
𝑖 𝑝 (𝜑)𝑄T

𝑗𝑞 (𝜑)𝑄T
𝑘𝑟 (𝜑)𝑄

T
𝑙𝑠 (𝜑)𝑆

(𝖋̂)
𝑝𝑞𝑟𝑠, (3.11)

where (·)T is the transpose operation.

Therefore, 𝑆 (ℯ̂)
𝑖 𝑗𝑘𝑙

can be obtained from 𝑆
(𝖋̂)
𝑖 𝑗𝑘𝑙

and the helical angle 𝜑 through relation (3.11). It
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should be noted that due to symmetry, the 81 components in neither 𝑆(𝖋̂)
𝑖 𝑗𝑘𝑙

nor 𝑆 (ℯ̂)
𝑖 𝑗𝑘𝑙

are independent.

For a general orthotropic material in its material coordinate system, the number of independent

compliance constants in 𝑆(𝖋̂)
𝑖 𝑗𝑘𝑙

is nine. With the additional variable 𝜑, there should be ten independent

constants in 𝑆 (ℯ̂)
𝑖 𝑗𝑘𝑙

.

3.2.2 Bending stiffness formula by Jolicoeur and Cardou

The bending stiffness of the 𝑁-layer cylindrical composite is obtained by Jolicoeur and Cardou as

𝐸𝐼 =

𝑁∑︁
𝑛=1

[∑︁
𝑖∈L

𝑛𝛼𝑖
𝑛𝐾𝑖

(
p
(
𝑛−1𝑟, 𝑛𝑚𝑖 + 2

)
− p (𝑛𝑟, 𝑛𝑚𝑖 + 2)

)
+ 𝑛𝛾

(
p
(
𝑛−1𝑟, 4

)
− p (𝑛𝑟, 4)

)]
,

(3.12a)

with

𝑛𝛼𝑖 :=
𝜋

𝑛𝑠
(ℯ̂)
33

𝑛𝑠
(ℯ̂)
13 +

𝑛𝑠
(ℯ̂)
23 (

𝑛𝑚𝑖 + 1) − 𝑛𝑠 (ℯ̂)34
𝑛𝑔𝑖

𝑛𝑚𝑖
𝑛𝑚𝑖 + 2

, (3.12b)

𝑛𝛾 :=
𝜋

𝑛𝑠
(ℯ̂)
33

𝑛𝜇1(𝑛𝑠 (ℯ̂)13 + 3𝑛𝑠 (ℯ̂)23 ) − 2𝑛𝜇2
𝑛𝑠
(ℯ̂)
34 − 1

4
, (3.12c)

where 𝑁 denotes the total number of layers, L := (1, 2, 3, 4), 𝑛−1𝑟 and 𝑛𝑟 the internal and external

radii of the 𝑛th layer, 𝑛𝑚𝑖 , 𝑛𝑔𝑖 , 𝑛𝜇1, and 𝑛𝜇2 are material constants related with elastic constants of

the 𝑛th layer (see Appendix A.1). We use p (𝑥, 𝑦) to denote the power operation where 𝑥 is the base

and 𝑦 is the exponent. We also employed Voigt notation. That is, we introduce elastic compliance

constants 𝑠𝑖 𝑗 , 𝑖, 𝑗 ∈ (1, . . . , 6). According to the convention of Voigt notation, the non-zero elements

of 𝑠𝑖 𝑗 are defined as

𝑠11 := 𝑆𝑟𝑟𝑟𝑟 , 𝑠12 := 𝑆𝑟𝑟 𝜃 𝜃 , 𝑠13 := 𝑆𝑟𝑟 𝑧𝑧 , 𝑠14 := 𝑆𝑟𝑟 𝜃𝑧 ,

𝑠22 := 𝑆𝜃 𝜃 𝜃 𝜃 , 𝑠23 := 𝑆𝜃 𝜃𝑧𝑧 , 𝑠24 := 𝑆𝜃 𝜃 𝜃𝑧 , 𝑠33 := 𝑆𝑧𝑧𝑧𝑧 ,

𝑠34 := 𝑆𝑧𝑧𝜃𝑧 , 𝑠44 := 2𝑆𝜃𝑧𝜃𝑧 , 𝑠55 := 2𝑆𝑟 𝑧𝑟 𝑧 , 𝑠66 := 2𝑆𝑟 𝜃𝑟 𝜃 .

The coefficients 𝑛𝐾𝑖 are determined by the boundary conditions and continuity conditions of

displacement and stress at the interface.
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Boundary condition. The traction free boundaries at innermost radius 0𝑟 and outermost radius 𝑁𝑟

require

∑︁
𝑖∈L

1𝐾𝑖 p
(

0𝑟, 1𝑚𝑖 − 2
)
= −1𝜇1,

∑︁
𝑖∈L

1𝐾𝑖
1𝑔𝑖 p

(
0𝑟, 1𝑚𝑖 − 2

)
= −1𝜇2, (3.13a)∑︁

𝑖∈L

𝑁𝐾𝑖 p
(
𝑁𝑟, 𝑁𝑚𝑖 − 2

)
= −𝑁𝜇1,

∑︁
𝑖∈L

𝑁𝐾𝑖
𝑁𝑔𝑖 p

(
𝑁𝑟, 𝑁𝑚𝑖 − 2

)
= −𝑁𝜇2. (3.13b)

Interfacial condition: no friction. In the case of no friction interface, 𝑢𝑟 and 𝜎𝑟𝑟 are continu-

ous, 𝜏𝑟 𝜃 and 𝜏𝑟 𝑧 are zero at the interface. Therefore 𝑛𝐾𝑖 satisfy following equations

∑︁
𝑖∈L

𝑛𝐾𝑖 p (𝑛𝑟, 𝑛𝑚𝑖 − 2) = −𝑛𝜇1,
∑︁
𝑖∈L

𝑛𝐾𝑖
𝑛𝑔𝑖 p (𝑛𝑟, 𝑛𝑚𝑖 − 2) = −𝑛𝜇2, (3.14a)∑︁

𝑖∈L

𝑛𝐾𝑖 p
(
𝑛−1𝑟, 𝑛𝑚𝑖 − 2

)
= −𝑛𝜇1,

∑︁
𝑖∈L

𝑛𝐾𝑖
𝑛𝑔𝑖 p

(
𝑛−1𝑟, 𝑛𝑚𝑖 − 2

)
= −𝑛𝜇2, (3.14b)

for 𝑛 = 1, 2, . . . , 𝑁 , where L = (1, 2, 3, 4).

Interfacial condition: no slip. In the case of perfect bonding (no slip) interface between layers,

the continuity conditions of stresses 𝜎𝑟𝑟 , 𝜏𝑟 𝜃 , 𝜏𝑟 𝑧 and displacements 𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧 at the interface yields

∑︁
𝑖∈L

(
𝑛𝐾𝑖 p (𝑟, 𝑛𝑚𝑖 − 2) − 𝑛+1𝐾𝑖 p

(
𝑟, 𝑛+1𝑚𝑖 − 2

))
= 𝑛+1𝜇1 − 𝑛𝜇1, (3.15a)∑︁

𝑖∈L

(
𝑛𝐾𝑖

𝑛𝑔𝑖 p (𝑟, 𝑛𝑚𝑖 − 2) − 𝑛+1𝐾𝑖𝑛+1𝑔𝑖 p
(
𝑟, 𝑛+1𝑚𝑖 − 2

))
= 𝑛+1𝜇2 − 𝑛𝜇2, (3.15b)∑︁

𝑖∈L

(
𝑛𝐾𝑖

𝑛𝑄𝑖 p (𝑟, 𝑛𝑚𝑖 − 2) − 𝑛+1𝐾𝑖𝑛+1𝑄𝑖 p
(
𝑟, 𝑛+1𝑚𝑖 − 2

))
= 𝑛+1𝑄5 − 𝑛𝑄5, (3.15c)∑︁

𝑖∈L

(
𝑛𝐾𝑖

𝑛𝑊𝑖 p (𝑟, 𝑛𝑚𝑖 − 2) − 𝑛+1𝐾𝑖𝑛+1𝑊𝑖 p
(
𝑟, 𝑛+1𝑚𝑖 − 2

))
= 𝑛+1𝑊5 − 𝑛𝑊5, (3.15d)

for 𝑛 = 1, 2, . . . , 𝑁−1, where𝑄𝑖 and𝑊𝑖 , 𝑖 ∈ (1, 2, 3, 4, 5) are material constants (see Appendix A.1).
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3.3 Effective bending stiffness

In this section, we derive the asymptotic bending stiffness of multilayer cylindrical structure. Specif-

ically, for a given lamination scheme, we analyze the asymptotic behavior of Eqn. (3.12a) by limiting

the total number of layers, 𝑁 , to infinity. The asymptotic expansion is performed under the following

assumptions: (i) We assume that the cross-section area of the structure is constant and the thickness

of each layer is equal and vanishing as 𝑁 goes to infinity. (ii) We also assume that the constitutive

properties of all layers are the same in their own material coordinate system. But the principal

material property orientations, i.e. helical angles, of the layers may be different.

We use the stacking-sequence notation to describe the spatial arrangement of layers’ helical

angles. As per stacking-sequence notation, we use [0𝜑]𝑁 to denote a lamination scheme consisting

of 𝑁 layers and all layers have same helical angle, 0𝜑. For this lamination scheme, the material

property of a material point does not change with its position in the cylinder. Thus the material is

essentially homogeneous.

We also consider cases where the helical angles are not uniform and the composed material

becomes heterogeneous. We use [𝐼𝜑/𝐼 𝐼𝜑]𝑁/2 to denote a lamination scheme consisting of 𝑁 layers

where layers with helical angles 𝐼𝜑 and 𝐼 𝐼𝜑 are alternatively arranged.

Based on the lamination schemes and interfacial conditions, we consider three different scenarios

here. (i) Homogeneous material, no friction: the lamination scheme is [0𝜑]𝑁 and no friction exists

between layers. (ii) Heterogeneous material, no friction: the lamination scheme is [𝐼𝜑/𝐼 𝐼𝜑]𝑁/2 and

the interfaces between layers is frictionless. (iii) Heterogeneous material, no slip: the lamination

scheme is [𝐼𝜑/𝐼 𝐼𝜑]𝑁/2 as well, but there is no slip between the adjacent layers.

3.3.1 Homogeneous material and freely slipping interface

First we consider that the elastic property for each layer is the same. The interfaces between layers are

frictionless. This is equivalent to the scenario where a homogeneous cylinder is cut into layers with

uniform thickness and there is no friction between the layers. In this case, we drop the subscript 𝑛 of

the material constants for the sake of simplicity. We solve for the coefficients 𝑛𝐾𝑖 for 𝑛 = 1, 2, . . . , 𝑁

from Eqns. (3.13) and (3.14). Let layer thicknessΔ𝑟 :=
(
𝑁𝑟 − 0𝑟

)
/𝑁 , radius sequence 𝑛𝑟 := 0𝑟+𝑛 ·Δ𝑟 .



66

Applying Taylor series expansion on the inverse of the coefficient matrix of 𝑛𝐾𝑖 around 𝑛𝑟 , we have

𝑛𝐾𝑖 = 𝑃𝑖 · p (𝑛𝑟,−𝑚𝑖 + 2) +𝑂 (Δ𝑟), for 𝑖 ∈ L = (1, 2, 3, 4) , 𝑛 = 1, 2, . . . , 𝑁, (3.16)

where 𝑃𝑖 are material constants given in Appendix A.2. Substituting Eqn. (3.16) into Eqn. (3.12a),

we have

𝐸𝐼 =

𝑁∑︁
𝑛=1

[∑︁
𝑖∈L

𝛼𝑖 (𝑃𝑖 p (𝑛𝑟,−𝑚𝑖 + 2) +𝑂 (Δ𝑟))
(

p
(
𝑛−1𝑟, 𝑚𝑖 + 2

)
− p (𝑛𝑟, 𝑚𝑖 + 2)

)]
+𝛾

(
p
(

0𝑟, 4
)
− p

(
𝑁𝑟, 4

))
.

Applying Taylor series expansion and simplifying the above equation, we have

𝐸𝐼 = −
𝑁∑︁
𝑛=1

[∑︁
𝑖∈L
(𝛼𝑖𝑃𝑖 (𝑚𝑖 + 2) p (𝑛𝑟, 3) · Δ𝑟)

]
+ 𝛾

(
p
(

0𝑟, 4
)
− p

(
𝑁𝑟, 4

))
+𝑂 ( p (Δ𝑟, 2)) . (3.17)

Taking the limit 𝑁 → ∞, according to the definition of Riemann integral, we convert the sum of

series in Eqn. (3.17) into integral as

(𝐸𝐼)∞ = −
∑︁
𝑖∈L

(∫ 𝑁𝑟

0𝑟
𝛼𝑖𝑃𝑖 (𝑚𝑖 + 2) p (𝑟, 3) 𝑑𝑟

)
+ 𝛾

(
p
(

0𝑟, 4
)
− p

(
𝑁𝑟, 4

))
.

Finally, we obtain the asymptotic bending stiffness as

(𝐸𝐼)∞ = −
p
(
𝑁𝑟, 4

)
− p

(0𝑟, 4)
4

(∑︁
𝑖∈L

𝛼𝑖𝑃𝑖 (𝑚𝑖 + 2) + 4𝛾

)
. (3.18)

3.3.2 Heterogeneous material and freely slipping interface

We consider the lamination scheme of the multilayered cylindrical composite as [𝐼𝜑/𝐼 𝐼𝜑]𝑁/2. That

is, layers with helical angles 𝐼𝜑 and 𝐼 𝐼𝜑 are alternatively arranged from the core to the periphery of the

cylinder. We use 𝐼 and 𝐼 𝐼 as subscripts to denote material constants of layers with odd and even layer

numbers. Under no friction interfacial condition (3.14) and considering boundary condition (3.13),

the 𝑛𝐾𝑖 for 𝑛 = 1, 2, . . . , 𝑁 can be solved from a linear system.

In this case, 𝑛𝐾𝑖 of adjacent layers are not coupled with each other and thus can be obtained by

using the similar technique being used in the homogeneous material case. Applying Taylor series
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expansion on the inverse of the coefficient matrix of 𝑛𝐾𝑖 around 𝑛𝑟 gives

𝑛𝐾𝑖 =
𝑛𝑃𝑖 · p (𝑛𝑟,−𝑛𝑚𝑖 + 2) +𝑂 (Δ𝑟), for 𝑖 ∈ L, 𝑛 = 1, 2, . . . , 𝑁, (3.19)

where 𝑛𝑃𝑖 are material constants of the 𝑛th layer (see Appendix A.2). Substituting Eqn. (3.19) into

Eqn. (3.12a), we have

𝐸𝐼 =

𝑁∑︁
𝑛=1

[ ∑︁
𝑖∈L

𝑛𝛼𝑖 (𝑛𝑃𝑖 p (𝑛𝑟,−𝑛𝑚𝑖 + 2) +𝑂 (Δ𝑟)) ·

(− p (𝑛𝑟, 𝑛𝑚𝑖 + 1) (𝑛𝑚𝑖 + 2)Δ𝑟 +𝑂 ( p (Δ𝑟, 2))) + 𝑛𝛾(−4 p (𝑛𝑟, 3) Δ𝑟 +𝑂 ( p (Δ𝑟, 2)))
]
.

Applying Taylor series expansion and simplifying the above equation, we have

𝐸𝐼 = −
𝑁∑︁
𝑛=1

[ ∑︁
𝑖∈L

𝑛𝛼𝑖
𝑛𝑃𝑖 (𝑛𝑚𝑖 + 2) + 4𝑛𝛾

]
p (𝑛𝑟, 3) · Δ𝑟 +𝑂 ( p (Δ𝑟, 2)). (3.20)

Since the arrangement of material property is periodic, the odd layers share the same material

constants 𝐼𝛼𝑖 , 𝐼𝑃𝑖 , 𝐼𝑚𝑖 , and 𝐼𝛾 while the even layers share the same material constants 𝐼 𝐼𝛼𝑖 , 𝐼 𝐼𝑃𝑖 , 𝐼 𝐼𝑚𝑖 ,

and 𝐼 𝐼𝛾. We rewrite Eqn. (3.20) as

𝐸𝐼 = −
∑︁

odd layers

[ ∑︁
𝑖∈L

𝐼𝛼𝑖
𝐼𝑃𝑖 (𝐼𝑚𝑖 + 2) + 4𝐼𝛾

]
p (𝑛𝑟, 3) · Δ𝑟

−
∑︁

even layers

[ ∑︁
𝑖∈L

𝐼 𝐼𝛼𝑖
𝐼 𝐼𝑃𝑖 (𝐼 𝐼𝑚𝑖 + 2) + 4𝐼 𝐼𝛾

]
p (𝑛𝑟, 3) · Δ𝑟 +𝑂 ( p (Δ𝑟, 2)).

(3.21)

Taking the limit 𝑁 →∞, according to the definition of Riemann integral, the Eqn. (3.21) becomes

(𝐸𝐼)∞ =
1
2

{
−
[∑︁
𝑖∈L

𝐼𝛼𝑖
𝐼𝑃𝑖 (𝐼𝑚𝑖 + 2) + 4𝐼𝛾

] ∫ 𝑁𝑟

0𝑟
p (𝑟, 3) 𝑑𝑟

−
[∑︁
𝑖∈L

𝐼 𝐼𝛼𝑖
𝐼 𝐼𝑃𝑖 (𝐼 𝐼𝑚𝑖 + 2) + 4𝐼 𝐼𝛾

] ∫ 𝑁𝑟

0𝑟
p (𝑟, 3) 𝑑𝑟

}
.

Finally, we obtain the asymptotic bending stiffness as

(𝐸𝐼)∞ =
1
2

[
𝐼 (𝐸𝐼)∞ + 𝐼 𝐼 (𝐸𝐼)∞

]
, (3.22a)
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where

𝑗 (𝐸𝐼)∞ = −
p
(
𝑁𝑟, 4

)
− p

(0𝑟, 4)
4

[∑︁
𝑖∈L

𝑗𝛼𝑖
𝑗𝑃𝑖 ( 𝑗𝑚𝑖 + 2) + 4 𝑗𝛾

]
, for 𝑗 = 𝐼, 𝐼 𝐼 . (3.22b)

3.3.3 Heterogeneous material and no slipping interface

For the case that the lamination scheme of the multilayered cylindrical composite is [𝐼𝜑/𝐼 𝐼𝜑]𝑁/2

under no slip interfacial condition, the 4𝑁 unknowns 𝑛𝐾𝑖 can be solved from the boundary conditions

by Eqn. (3.13) and the interfacial conditions by Eqn. (3.15).
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Figure 3.4: A set of representative plots of 𝐾𝑖 with layer number 𝑛 for a cylindrical composite with lamination
scheme [−15°/25°]50 under no slip interfacial condition. The dimensions and material properties of the cylindrical
structure is given in Section 3.4

Using bold san-serif font symbol to denote matrices, we rewrite Eqns. (3.13) and (3.15) as

𝑛B 𝑛−1K = 𝑛A 𝑛K − 𝑛D, for 𝑛 = 2, 3, . . . , 𝑁, (3.23a)
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where

𝑛B =



p
(
𝑛−1𝑟, 𝑛−1𝑚1

)
p
(
𝑛−1𝑟, 𝑛−1𝑚2

)
p
(
𝑛−1𝑟, 𝑛−1𝑚3

)
p
(
𝑛−1𝑟, 𝑛−1𝑚4

)
𝑛−1𝑔1 p

(
𝑛−1𝑟, 𝑛−1𝑚1

)
𝑛−1𝑔2 p

(
𝑛−1𝑟, 𝑛−1𝑚2

)
𝑛−1𝑔3 p

(
𝑛−1𝑟, 𝑛−1𝑚3

)
𝑛−1𝑔4 p

(
𝑛−1𝑟, 𝑛−1𝑚4

)
𝑛−1𝑄1 p

(
𝑛−1𝑟, 𝑛−1𝑚1

)
𝑛−1𝑄2 p

(
𝑛−1𝑟, 𝑛−1𝑚2

)
𝑛−1𝑄3 p

(
𝑛−1𝑟, 𝑛−1𝑚3

)
𝑛−1𝑄4 p

(
𝑛−1𝑟, 𝑛−1𝑚4

)
𝑛−1𝑊1 p

(
𝑛−1𝑟, 𝑛−1𝑚1

)
𝑛−1𝑊2 p

(
𝑛−1𝑟, 𝑛−1𝑚2

)
𝑛−1𝑊3 p

(
𝑛−1𝑟, 𝑛−1𝑚3

)
𝑛−1𝑊4 p

(
𝑛−1𝑟, 𝑛−1𝑚4

)


,

(3.23b)

𝑛K =



𝑛𝐾1

𝑛𝐾2

𝑛𝐾3

𝑛𝐾4


, (3.23c)

𝑛A =



p
(
𝑛−1𝑟, 𝑛𝑚1

)
p
(
𝑛−1𝑟, 𝑛𝑚2

)
p
(
𝑛−1𝑟, 𝑛𝑚3

)
p
(
𝑛−1𝑟, 𝑛𝑚4

)
𝑛𝑔1 p

(
𝑛−1𝑟, 𝑛𝑚1

)
𝑛𝑔2 p

(
𝑛−1𝑟, 𝑛𝑚2

)
𝑛𝑔3 p

(
𝑛−1𝑟, 𝑛𝑚3

)
𝑛𝑔4 p

(
𝑛−1𝑟, 𝑛𝑚4

)
𝑛𝑄1 p

(
𝑛−1𝑟, 𝑛𝑚1

)
𝑛𝑄2 p

(
𝑛−1𝑟, 𝑛𝑚2

)
𝑛𝑄3 p

(
𝑛−1𝑟, 𝑛𝑚3

)
𝑛𝑄4 p

(
𝑛−1𝑟, 𝑛𝑚4

)
𝑛𝑊1 p

(
𝑛−1𝑟, 𝑛𝑚1

)
𝑛𝑊2 p

(
𝑛−1𝑟, 𝑛𝑚2

)
𝑛𝑊3 p

(
𝑛−1𝑟, 𝑛𝑚3

)
𝑛𝑊4 p

(
𝑛−1𝑟, 𝑛𝑚4

)


, (3.23d)

𝑛D = − p
(
𝑛−1𝑟, 2

)


𝑛𝜇1 − 𝑛−1𝜇1

𝑛𝜇2 − 𝑛−1𝜇2

𝑛𝑄5 − 𝑛−1𝑄5

𝑛𝑊5 − 𝑛−1𝑊5


. (3.23e)

The matrices 𝑛−1K and 𝑛K are coupled with each other in this case. Therefore, each 𝑛K cannot

be solved individually. The computational complexity of solving linear equation of size 𝑛 is 𝑂 (𝑛3).

Therefore, the computational time for solving a linear system of size 4𝑁 is growing up very quickly

when 𝑁 is increasing.

To overcome this difficulty, we come up with a differential equation based asymptotic analysis

method to estimate 𝑛K as 𝑁 approaches infinity. Since the matrices 𝑛K are decoupled for different

layers, each 𝑛K can be solved individually, which greatly improves the computational efficiency. For

the sake of clarity, we only post essential steps of the derivation in this section. For the details of

the complete derivation, we ask the readers to refer to Appendix A.3.
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We first substitute 𝑛 as 𝑛−1 into Eqn. (3.23a) and combine the resulting equation with Eqn. (3.23a)

to find out the relation between 𝑛K and 𝑛−2K as

𝑛A 𝑛K = 𝑛B Inv
(
𝑛−1A

)
𝑛−1B 𝑛−2K + 𝑛B Inv

(
𝑛−1A

)
𝑛−1D + 𝑛D. (3.24)

In Eqn. (3.24), we take Taylor series expansion on Inv
(
𝑛−1A

)
and 𝑛−1B around 𝑛−1𝑟 to obtain (see

Appendix A.3.1 for details)

𝑛B Inv
(
𝑛−1A

)
𝑛−1B = 𝑛A + Δ𝑟

𝑛−1𝑟

(
𝑛B 𝑛−1m̃ Inv (𝑛B) 𝑛A − 𝑛A 𝑛m̃

)
+𝑂 ( p (Δ𝑟, 2)), (3.25a)

𝑛B Inv
(
𝑛−1A

)
𝑛−1D + 𝑛D =

Δ𝑟

𝑛−1𝑟

(
2 𝑛D + 𝑛B 𝑛−1m̃ Inv (𝑛B) 𝑛−1D

)
+𝑂 ( p (Δ𝑟, 2)). (3.25b)

Then by substituting Eqn. (3.25) into Eqn. (3.24), we obtain

𝑛A 𝑛K =

[
𝑛A + Δ𝑟

𝑛−1𝑟

(
𝑛B 𝑛−1m̃ Inv (𝑛B) 𝑛A − 𝑛A 𝑛m̃

)
+𝑂 ( p (Δ𝑟, 2))

]
𝑛−2K

+ Δ𝑟

𝑛−1𝑟

(
2 𝑛D + 𝑛B 𝑛−1m̃ Inv (𝑛B) 𝑛−1D

)
+𝑂 ( p (Δ𝑟, 2)),

(3.26)

which gives the asymptotic relation between 𝑛−2K and 𝑛K. From a set of representative plots for 𝐾𝑖

versus 𝑛 of a 100-layered structure (see Figure 3.4), we deduce that the 𝐾𝑖 of odd and even layer

numbers are continuous in the asymptotic sense (for 𝑁 → ∞), which are indicated by red dashed

lines. We use 𝑛K̄(𝑟) to denote the continuous representation of 𝑛K as a function of radius 𝑟 . Hence,

we approximate 𝑛−2K to the first order of Δ𝑟 as

𝑛−2K̄(𝑟) = 𝑛K̄(𝑟) − 2
𝑑 𝑛K̄(𝑟)
𝑑𝑟

Δ𝑟 +𝑂 ( p (Δ𝑟, 2)). (3.27)

For the odd and even layer numbers, 𝑛K̄(𝑟) are written as oddK̄(𝑟) and evenK̄(𝑟). For simplicity,

we drop the left superscript “odd” and “even” in the derivation of the governing equations for oddK̄(𝑟)

and evenK̄(𝑟) since both of them satisfy the same set of differential equations for K̄(𝑟). We also drop

the left superscript for other variables in the following derivations when there is no confusion.

Substituting Eqn. (3.27) into Eqn. (3.26) and making simplification (see Appendix A.3.2 for
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details), we obtain a linear ODE system of K̄(𝑟)

2𝑟
𝑑

(
f(𝑟)K̄(𝑟)

)
𝑑𝑟

=
(
M̃ + m̃

) (
f(𝑟)K̄(𝑟)

)
+ p (𝑟, 2) F̃, (3.28)

with boundary conditions given by Eqn. (3.13). Solving this linear ODE system (see Appendix A.3.3

for the details of the solution procedures), we obtain

𝑛𝐾𝑖 = p (𝑛𝑟,−𝑛𝑚𝑖) ©­«𝑛𝐺𝑖0 p (𝑛𝑟, 2) +
∑︁
𝑗∈L

𝑛𝐺𝑖 𝑗 p
(
𝑛𝑟, 𝑛𝜆 𝑗

)ª®¬ , for 𝑖 ∈ L, 𝑛 = 1, 2, 3, ..., 𝑁, (3.29)

where 𝑛𝐺𝑖 𝑗 ( 𝑗 = 0 to 4) and 𝑛𝜆 𝑗 ( 𝑗 ∈ L = (1, 2, 3, 4)) given by Eqn. (A.28) are constants related to

material constants of the 𝑛th layer. Substituting Eqn. (3.29) into Eqn. (3.12a), we obtain the bending

stiffness as

𝐸𝐼 = −
𝑁∑︁
𝑛=1


∑︁
𝑖∈L

𝑛𝛼̂𝑖
©­«𝑛𝐺𝑖0 p (𝑛𝑟, 2) +

∑︁
𝑗∈L

𝑛𝐺𝑖 𝑗 p
(
𝑛𝑟, 𝑛𝜆 𝑗

)ª®¬ 𝑛𝑟 + 4𝑛𝛾 p (𝑛𝑟, 3)
 +𝑂 (Δ𝑟), (3.30)

where 𝑛𝛼̂𝑖 := 𝑛𝛼𝑖 (𝑛𝑚𝑖 + 2).

Since the material properties of the layers of the structure are alternately arranged, the odd layers

share the same material constants 𝐼𝛼𝑖 , 𝐼𝛾, 𝐼𝑚𝑖 , 𝐼𝐺𝑖 𝑗 , and 𝐼𝜆 𝑗 , and the even layers have the same

constants 𝐼 𝐼𝛼𝑖 , 𝐼 𝐼𝛾, 𝐼 𝐼𝑚𝑖 , 𝐼 𝐼𝐺𝑖 𝑗 , and 𝐼 𝐼𝜆 𝑗 . Therefore,

𝐸𝐼 = −1
2

∑︁
odd layers


(∑︁
𝑖∈L

𝐼𝛼̂𝑖
𝐼𝐺𝑖0 + 4𝐼𝛾

)
p (𝑛𝑟, 3) +

∑︁
𝑖∈L

∑︁
𝑗∈L

𝐼𝛼̂𝑖
𝐼𝐺𝑖 𝑗 p

(
𝑛𝑟, 1 + 𝐼𝜆 𝑗

)
− 1

2

∑︁
even layers

[ (∑︁
𝑖∈L

𝐼 𝐼𝛼̂𝑖
𝐼 𝐼𝐺𝑖0 + 4𝐼 𝐼𝛾

)
p (𝑛𝑟, 3)

+
∑︁
𝑖∈L

∑︁
𝑗∈L

𝐼 𝐼𝛼̂𝑖
𝐼 𝐼𝐺𝑖 𝑗 p

(
𝑛𝑟, 1 + 𝐼 𝐼𝜆 𝑗

)]
+𝑂 (Δ𝑟).

(3.31)

As 𝑁 →∞, according to the definition of Riemann integral, the Eqn. (3.31) becomes

(𝐸𝐼)∞ = −1
2

[∑︁
𝑖∈L

(
𝐼𝛼̂𝑖

𝐼𝐺𝑖0 + 𝐼 𝐼𝛼̂𝑖 𝐼 𝐼𝐺𝑖0
)
+ 4

(
𝐼𝛾 + 𝐼 𝐼𝛾

)] ∫ 𝑁𝑟

0𝑟
p (𝑟, 3) 𝑑𝑟

− 1
2

∑︁
𝑖∈L

∑︁
𝑗∈L

[∫ 𝑁𝑟

0𝑟

(
𝐼𝛼̂𝑖

𝐼𝐺𝑖 𝑗 p
(
𝑟, 1 + 𝐼𝜆 𝑗

)
+ 𝐼 𝐼𝛼̂𝑖 𝐼 𝐼𝐺𝑖 𝑗 p

(
𝑟, 1 + 𝐼 𝐼𝜆 𝑗

))
𝑑𝑟

]
.
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Finally, we obtain the asymptotic bending stiffness as

(𝐸𝐼)∞ = −1
8

[∑︁
𝑖∈L

(
𝐼𝛼̂𝑖

𝐼𝐺𝑖0 + 𝐼 𝐼𝛼̂𝑖 𝐼 𝐼𝐺𝑖0
)
+ 4

(
𝐼𝛾 + 𝐼 𝐼𝛾

)] (
p
(
𝑁𝑟, 4

)
− p

(
0𝑟, 4

))
− 1

2

∑︁
𝑖∈L

∑︁
𝑗∈L

[ 𝐼𝛼̂𝑖 𝐼𝐺𝑖 𝑗
2 + 𝐼𝜆 𝑗

(
p
(
𝑁𝑟, 2 + 𝐼𝜆 𝑗

)
− p

(
0𝑟, 2 + 𝐼𝜆 𝑗

))
+
𝐼 𝐼𝛼̂𝑖

𝐼 𝐼𝐺𝑖 𝑗

2 + 𝐼 𝐼𝜆 𝑗

(
p
(
𝑁𝑟, 2 + 𝐼 𝐼𝜆 𝑗

)
− p

(
0𝑟, 2 + 𝐼 𝐼𝜆 𝑗

))]
.

(3.32)

3.4 Numerical examples and discussions

In this section, the bending stiffness of multilayered cylindrical structures with different lamination

schemes and interfacial conditions are numerically studied and the asymptotic bending stiffness

formulae derived in §3.3 are validated.

The cylindrical composite is divided into 𝑁 co-axial layers with constant thickness. The in-

nermost and outermost radii of the cylindrical structure are taken to be 0𝑟 = 2 mm and 𝑁𝑟 = 14

mm, respectively. Three different combinations of lamination schemes and interfacial conditions

are considered: (i) [−15°]𝑁 and [25°]𝑁 with no friction interfacial condition, (ii) [−15°/25°]𝑁/2

with no friction interfacial condition, (iii) [−15°/25°]𝑁/2 with no slip interfacial condition. In all

three scenarios, the non-zero elastic compliance components of cylindrically orthotropic material in

each layer’s in material coordinate system are the same and provided in Tab. 3.1.

Table 3.1: Elastic compliance components of cylindrically orthotropic material in material coordinate system (10−10

m2/N)

𝑠
(𝖋̂)
11 𝑠

(𝖋̂)
12 𝑠

(𝖋̂)
13 𝑠

(𝖋̂)
22 𝑠

(𝖋̂)
23 𝑠

(𝖋̂)
33 𝑠

(𝖋̂)
44 𝑠

(𝖋̂)
55 𝑠

(𝖋̂)
66

1.05 -0.0632 -0.0842 1.18 -0.0941 0.20 4.00 5.00 2.50

The relations between bending stiffness and total layer number 𝑁 for the structures consisting of

homogeneous materials with no friction interface are shown as solid lines in Figure 3.5. The bending

stiffness of one-layer cylinders is 881.47 N·m2 and 528.11 N·m2 for the materials with -15° and 25°

helical angles, respectively. As we increase the total layer number, for both materials, the bending

stiffness first decreases rapidly then becomes stable after 𝑁 is greater than five. When the layer
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thickness approaches to zero as 𝑁 → ∞, the bending stiffness converges to a non-zero constant,

which is given by Eqn. (3.18). The asymptotic bending stiffness of composite with lamination

scheme [−15°]∞ and [25°]∞ are 722.15 N·m2 and 412.13 N·m2, respectively (see Figure 3.5).

The relation between bending stiffness and total layer number for the heterogeneous layer prop-

erties with no friction interface is plotted as solid line in Figure 3.6. The lamination scheme for this

case is [−15°/25°]𝑁/2. The bending stiffness oscillates as the total layer number increases due to

the alternated arrangement of the layer properties. Eventually, it approaches to a non-zero constant

as 𝑁 → ∞, which is the asymptotic bending stiffness given by Eqn. (3.22a). The asymptotic ho-

mogenized bending stiffness of the heterogeneous structure is 567.14 N·m2 (see Figure 3.6), which

is equal to the average of those of two homogeneous materials.

The plot of bending stiffness for the heterogeneous material and no slip interface case, in which

the lamination scheme is [−15°/25°]𝑁/2, is shown as solid line in Figure 3.7. The bending stiffness

oscillates as the total layer number increases and approaches to a non-zero constant, which is

the asymptotic bending stiffness given by Eqn. (3.32). Furthermore, it is interesting to note that

the asymptotic bending stiffness of heterogeneous structures exceeds the bending stiffness of both

homogeneous structures. The maximum bending stiffness, 1093.12 N·m2, is achieved when the total

layer number is five. The asymptotic bending stiffness, 1046.94 N·m2, is higher than those of the

structures consisting of homogeneous materials, which are 881.47 N·m2 and 528.11 N·m2. This

implies that we could build up stiffer composite from compliant materials by designing the spatial

arrangements of laminae.

3.5 Conclusions

In this chapter, we present an asymptotic analysis of bending stiffness of multilayered compos-

ite cylindrical structures with cylindrical orthotropy. Specifically, we consider hollow cylinders

composed of infinite number of layers with uniform thickness and alternatively arranged material

orientations. The interfacial conditions between adjacent layers can be no slip or no friction. By

taking the asymptotic limit of the result given by Jolicoeur and Cardou [40], we derived the analytical

expressions for the asymptotic bending stiffness of multilayered composite cylindrical structures.
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Figure 3.5: The variations of effective bending stiffness as the number of layers increases (solid lines) and their asymptotic
limits as the number of layers approach infinity (dashed lines) for composite cylinders with lamination schemes [−15°]𝑁
and [25°]𝑁 with no friction interfacial condition.
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Figure 3.6: The variations of effective bending stiffness as the number of layers increases (solid lines) and their
asymptotic limits as the number of layers approach infinity (dashed lines) for composite cylinders with lamination
schemes [−15°/25°]𝑁/2 with no friction interfacial condition.
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Figure 3.7: The variations of effective bending stiffness as the number of layers increases (solid lines) and their
asymptotic limits as the number of layers approach infinity (dashed lines) for composite cylinders with lamination
schemes [−15°/25°]𝑁/2 with no slip interfacial condition.
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It can be noted from Figure 3.5, 3.6, and 3.7 that the effective bending stiffness converges to the

asymptotic result rather fast as the number of layers increases. The asymptotic bending stiffness can

be considered as an approximation to the effective bending stiffness of an actual 𝑁-layer composite

cylinder when 𝑁 is larger than 20. For the non-slip interface scenario, the boundary conditions (3.15)

of adjacent layers are coupled. To solve for 𝑛𝐾𝑖 (𝑛 = 1, 2, . . . , 𝑁 , 𝑖 = 1, 2, 3, 4), one needs to solve a

4𝑁 × 4𝑁 linear system, which is substantially computational expensive when 𝑁 is a large number.

However, with the asymptotic expression given by (3.32), the computational cost becomes trivial, so

as the loss in accuracy. Therefore, the asymptotic expressions of bending stiffness greatly accelerate

the design process of the multilayered composite cylinders. Although we only consider two material

orientations for the heterogeneous structure, we believe that the method used in this work can be

extended to multiple material orientations with similar analysis procedures. It is also extensible to

the scenario of non-hollow cylindrical structures, i.e. cylinders with solid cores, which brings in

more applicability to the presented method.

More importantly, it can be shown in Figure 3.7 that it is possible to design a composite beam

with higher bending stiffness using intrinsic compliant materials through lamellar architectures

and appropriate geometric arrangement. In addition, from Figure 3.5 and Figure 3.6, the rational

arrangement of material orientations and control of interfacial properties can be useful to design

composite cylinders with desired bulk mechanical properties. The results shed light on the structure-

property connections of a number of helical symmetric structural biological materials, such as Ea.

anchor spicules, ponderosa pine and the artery wall, etc. The discovery also provides insights in the

design of stiffer composite cylinders with applications in aerospace and building industries.

Taking the Ea. anchor spicules for example, the results shown in Figure 3.5 indicates that by

cutting a hollow cylinder into multiple concentric tubes and assuming no friction between adjacent

layers, the effective bending stiffness of the multilayered cylinder is reduced. This result is quite

generous for structures made with orthotropic materials of different helical angles. Because of the

high compliance property of the spicules under bending, the spicules are able to provide better

anchorage to secure the glass sponge on the bottom sea floor.

It should be noted that, although the results presented in this chapter are very encouraging, they

are far from a complete proof that the primary mechanical benefit of the lamellar architectures in
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the Ea. anchor spicule is to increase its bending stiffness. To complete the proof, the following

experiments are required:

1. Characterization of the Ea. spicule’s material properties. In the numerical example in §3.4,

we use a dummy material to illustrate our design idea to achieve desired bending stiffness for

composite cylindrical structure. However, to determine whether the idea is also applicable in

Ea. anchor spicules, we have to measure the orthotropic material properties of the actual Ea.

spicules. Material characterization of orthotropic material is a difficult task, especially when

the material is forming in cylindrical shape with multiple layers. Many material characteri-

zation methods involve inverse engineering, which is to deduce the material properties from

the structure’s bulk properties. These methods rely on the correctness of the assumptions on

the material type and the homogenization theory. We will look for more independent method

to characterize the Ea. spicule’s material properties. One possible solution is to extract the

solid silica core of the Ea. spicule and measure the core’s material properties as the material

properties of the genetic silica in the spicules.

2. Characterization of the interfacial property of the adjacent silica layers. We assume that the

interfacial property to be no friction for the silica layers in Ea. anchor spicules. However,

there exist thin proteinaceous interfaces between adjacent silica layers in Ea. anchor spicules.

The interfacial condition should lay between no slip and no fraction.

3. Measurement of thickness and helical angles of each silica layers. The thickness of each

cylindrical silica layers can be measured using high magnification images. The helical angles

can be measured through images of spicule specimen after tensile test (see Figure 1.5).

However, more efforts are required to correlate the helical angles with the right layer numbers.

4. Characterization of the Ea. spicule’s bulk property. This is straightforward and can be

performed on our customized mechanical test stage [38, 29].



Chapter 4

A geometrically nonlinear shear

deformable beam theory

4.1 Introduction

With the rapid development of soft electronics and bionic robot, the study on deformation of highly

flexible structures has raised a lot of interest. Furthermore, in the field of aircraft design, slender

structures that can undergo large elastic deformations are widely used as construction components.

Therefore, a practical and precise geometrically nonlinear beam theory is highly demanded.

In addition, slender composite structures undergoing large elastic deformation also exist in bio-

logical structural materials. For example, the Ea. anchor spicules (long, hair-like skeletal elements)

play an important role in securing the sponge into the soft sediments of the sea floor [39]. Some

spicules will tangle with small rocks in the mud and form knots, which helps the sponge anchor

tightly to the sea floor. When a spicule forms a knot, we expect not only bending deformation but

also shearing deformation along the spicule. As in artificial lamellar composite beams, the shearing

effect can be critical in the deformation of spicules because of the layered internal architectures

in spicules. To investigate the structure-function relationships in these finite deformable laminated

structures, we demand a geometrically nonlinear beam theory incorporating shear deformation.

Among all geometrically nonlinear beam theories, the most elementary one is the Elastica

77
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theory [6, 7], which is an extension of Euler-Bernoulli beam theory in finite deformation regime.

A more general geometrically nonlinear plane beam theory where bending, transverse shearing

and axial stretching are taken account of was first presented by Reissner [8]. In this theory,

Reissner applied the principle of virtual work to determine the relations between physical strains

and displacements. The balance laws of resultant forces and moments are derived by free-body-

diagram analysis. He suggested that an associated system of constitutive equations can be deduced

from experimental measurements. Later, Simo [9] extended Reissner’s plane beam theory into a

three-dimensional dynamic theory, also known as geometrically-exact rod model.

Due to the high nonlinearity of the governing equations of these beam theories, researchers

usually solve them by numerical methods based on finite element approximation [97, 98]. However,

for plane beam theory with simple constitutive relations, the problem can be solved analytically. For

example, Goto et al. [99] presented elliptic integral solutions of geometrically nonlinear plane beam

problem with axial and shear deformation.

In this chapter, we propose a variationally consistent shear deformable beam theory, which is

a finite deformation generalization of Timoshenko beam theory. Taking advantage of the slender

geometrical feature of beams, we propose a set of kinematic assumptions allowing for arbitrarily

large bending and shearing deformation. Following the general three-dimensional continuum theory

and employing the Hellinger-Reissner variational principle, we develop a shear deformable beam

theory in a systematic way.

Here is a brief outline of this chapter. In section 4.2, we illustrate the kinematic assumptions

and the derivations of the shear deformable beam theory in the context of continuum mechanics.

Then in section 4.3, we discuss the well-posedness of the proposed beam theory by comparing this

model with Reissner’s finite strain beam theory [8]. In section 4.4, we briefly present the procedures

of finite element formulation of the proposed beam theory. In section 4.5, we present a series of

numerical examples to demonstrate the capacity of the proposed theory. Finally, in section 4.6, we

make a conclusion of this work.
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4.2 A variationally consistent formulation of shear deformable beams

We consider an initially straight slender structure of length 𝐿 with constant cross-section Ω ∈ R2.

An orthonormal set of Cartesian basis vectors
{
Ê1, Ê2, Ê3

}
spans R3, with {𝑋1, 𝑋2, 𝑋3} being its

corresponding set of Cartesian coordinates. The origin of the coordinate system, marked as O, is

located at one end of the centroidal axis of the beam. In its undeformed configuration, which we

denote as B0, the beam is stress free. The axial direction of the beam is collinear with Ê1 and the

principal axes of inertia of Ω are collinear with
{
Ê2, Ê3

}
. Thus the centroidal axis of the beam can

be described as {𝑋1 ∈ [0, 𝐿] | 𝑋2 = 0, 𝑋3 = 0}.

The deformation map is denoted by 𝝓 : B0 ⊂ R3 → R3. The material points in the deformed

configuration 𝝓(X) are designated by x, with associated basis vectors {ê1, ê2, ê3}.

4.2.1 Kinematics

We consider the following four assumptions to the beam’s kinematics: (i) Plane sections normal to

the centroidal line remain plane after deformation. (ii) The centroidal line does not undergo any

length change. (iii) The material of the beam is incompressible. (iv) We ignore the deformation

in Ê3 direction caused by Poisson’s effect. The assumption (i) is a classical kinematic hypothesis

that widely used in many beam models such as Euler-Bernoulli beam theory and Timoshenko beam

theory [1]. The assumptions (ii-iv) are intended to simplify the model so that the resulting formulas

are more tractable.

Based on these assumptions, we propose the following kinematics:

𝑥1 = 𝑋1 + 𝑢(𝑋1) − 𝛼(𝑋1)𝑋2 sin(𝜃 (𝑋1)), (4.1a)

𝑥2 = 𝑤(𝑋1) + 𝛼(𝑋1)𝑋2 cos(𝜃 (𝑋1)), (4.1b)

𝑥3 = 𝑋3. (4.1c)

where 𝑢(𝑋1) and 𝑤(𝑋1) are the displacements of the material points on centroidal line in Ê1 and

Ê2 directions, respectively (see Figure 4.1). The angle between the normal direction of deformed

cross section and Ê1 is designated by 𝜃 (𝑋1). The expansion factor 𝛼(𝑋1) allows the cross-section
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area to change during the deformation and will be determined through assumption (iii). It should be

noted that the incorporation of 𝛼(𝑋1) in the kinematics is important in stabilizing the system under

high-shear deformation. We will elaborate this argument in Section 4.3.

Figure 4.1: The schematic of the kinematics for a plane beam.

By imposing 𝑋2 = 𝑋3 = 0, we have 𝝓0 = 𝝓(X) |𝑋2=𝑋3=0, the deformation map of the centroidal

line. An infinitesimal element of the centroidal line dX = 𝑑𝑋1Ê1 in undeformed configuration is

mapped to dx = (𝑑𝑋1 + 𝑑𝑢)Ê1 + 𝑑𝑤Ê2 in deformed configuration. The assumption (ii) implies that

|dx| = |dX| = 𝑑𝑋1, that is,
√︁
(1 + 𝑢′)2 + 𝑤′2 = 1, where (·)′ indicates 𝑑 (·)/𝑑𝑋1. We designate the

tangent angle of the deformed centroidal line by 𝜓(𝑋1). It follows that sin(𝜓) = 𝑑𝑤/|dx| = 𝑤′ and

cos(𝜓) = (𝑑𝑋1 + 𝑑𝑢)/|dx| = 𝑢′ + 1.

Following the standard continuum mechanics definition, we calculate the deformation gradient

tensor as F = 𝜕x/𝜕X. The Jacobian 𝐽 = det(F) is computed as 𝐽 = 𝛼(𝑋1) cos(𝜃 (𝑋1) − 𝜓(𝑋1)) −

𝑋2𝛼(𝑋1)2𝜃′(𝑋1). We enforce 𝐽 to be unit in average over the cross section, which gives the expansion

factor 𝛼(𝑋1) as

𝛼(𝑋1) =
1

cos(𝜃 (𝑋1) − 𝜓(𝑋1))
=

1
cos(𝛾(𝑋1))

, (4.2)

where shear angle 𝛾(𝑋1) = 𝜃 (𝑋1) − 𝜓(𝑋1) is the difference angle between the normal direction of

the cross section and the tangent direction of the centroidal line at position 𝑋1. In Timoshenko beam

theory, 𝛾 is independent of 𝑋1 while in Euler-Bernoulli beam theory 𝛾 = 0 since shear deformation

is ignored.

We now proceed to calculate the components of Green-Lagrangian strain tensor E = (F𝑇F−I)/2



81

as

𝐸11 = −𝑋2

(
𝜓′ + 𝛾′ sec2(𝛾)

)
+
𝑋2

2
2

sec2(𝛾)
(
𝜃′2 + 𝛾′2 tan2(𝛾)

)
, (4.3a)

𝐸12 = 𝐸21 = −1
2

tan(𝛾) + 𝑋2

2
𝛾′ sec2(𝛾) tan(𝛾), (4.3b)

𝐸22 =
1
2

tan2(𝛾), (4.3c)

𝐸13 = 𝐸31 = 𝐸23 = 𝐸32 = 𝐸33 = 0. (4.3d)

4.2.2 Hellinger-Reissner variational principle

In the previous section, we discussed about the kinematic hypotheses. In order to build a close-

formed beam model, we also need equilibrium equations of motion and constitutive relations as

well.

Generally, there are two paths one can follow to achieve this goal. They are theoretically

equivalent but involve different experimental consideration. One path is to focus on the concepts

of resultants forces/moments and physical strains (such as shear angles, curvatures of the centroidal

line, etc.) [8, 100, 101, 102]. In this path, equilibrium equations of motion provide the relations

between the internal resultant forces/moments and the external applied forces/moments. Physical

constitutive relations between the resultants forces and physical strains are usually deduced from

experimental measurements [8, 100].

In another path, the close-formed governing equations are derived from calculus of varia-

tions [103]. An energy functional is constructed following the theory of continuum mechanics.

Among all kinds of energy functionals, the most commonly used one is the total potential energy of

the system. By the principle of minimum total potential energy, the governing equations follows as

the Euler-Lagrange equations. In this path, the material constitutive relations that connect the stress

and strain of the beam’s material are required. Such relations, analogous to the physical constitutive

relations, are typically measured from experiments. However, due to the wide availability of mate-

rial databases, the material constitutive relations are more accessible than the physical constitutive

relations for beams.

In this model, we follow the second path. Thus our derivations circumvent the problem of
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needing to determine constitutive relations between stress resultants and generalized strains by

physical experiments. Instead, existing material constitutive relations, e.g. Saint Venant-Kirchhoff

law, at the stress-strain level can be utilized.

The minimum total potential energy principle is commonly used to derive the governing equa-

tions of beam models [103]. According to this principle, the energy functional Π is defined as

the combination of elastic strain energy 𝑈 and external potential energy 𝑉 , that is, Π = 𝑈 + 𝑉 .

By minimizing Π over the space of kinematically admissible displacement field, one will obtain a

set of governing equations and boundary conditions. However, even in the classic Euler-Bernoulli

beam theory, the implementation of the minimum total potential energy principle causes inconsis-

tency [104]. We will elaborate the inconsistency as follows.

In the derivation of pure bending Euler-Bernoulli beam theory, the only non-zero component of

the linearized infinitesimal strain is 𝜖11 = −𝑋2𝑤
′′. Cauchy stress 𝝈 is calculated through the linear

elastic constitutive law

𝝈 = 2𝜇𝝐 + 𝜆 tr(𝝐)I, (4.4)

where 𝜇 and 𝜆 are Lamé coefficients, I is the second order identity tensor and tr(·) is trace operation.

Lamé coefficients are related to Poisson’s ratio 𝜈 and Young’s modulus 𝐸 by 𝜇 = 𝐸/(2 + 2𝜈) and

𝜆 = 𝜈𝐸/((1 + 𝜈) (1 − 2𝜈)).

It’s easy to check that the lateral normal Cauchy stress components 𝜎22 and 𝜎33 are non-zero,

which violates the stress-free boundary conditions on the beam’s lateral surfaces. Furthermore, the

total strain energy of Euler-Bernoulli beam𝑈EB =
∫
B 𝝈 : 𝝐/2 𝑑𝑉 is given by

𝑈EB =
𝐸∗𝐼

2

∫ 𝐿

0
𝑤′′2 𝑑𝑋1, (4.5)

where 𝐸∗ = 𝐸 (1 − 𝜈)/((1 + 𝜈) (1 − 2𝜈)) is the effective Young’s modulus, which is larger than 𝐸

if 𝜈 ≠ 0. To resolve the problem of incorrect effective Young’s modulus, one needs to artificially

modify either the strain tensor or stress tensor. The artificially modified strain and stress will

inevitably violate the constitutive law and boundary condition.

To avoid the inconsistency, we choose to apply the Hellinger-Reissner variational principle
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instead of the minimum total potential energy principle for deriving the geometrically nonlinear shear

deformable beam theory. The Hellinger-Reissner variational principle [105] allows displacements

and stresses to be assumed and varied separately. As a result, the strains recovered from displacements

and strains computed from stresses will not generally be the same. This expands the solution space

and looses the constitutive constraint so that it is possible to further reduce functional value of total

energy of the system.

The Hellinger-Reissner functional ΠHR for a general three-dimensional finite deformation prob-

lems is expressed as

ΠHR [u, S] =
∫
𝑉

(
S : Eu − 1

2
S : S : S − b · u

)
𝑑𝑉 −

∫
𝑆𝑡

t̂ · u 𝑑𝑆, (4.6)

where b, t̂ and S are the body force vector, specified surface traction and compliance tensor, re-

spectively. The first integral is over the whole beam and the second integral is over the traction

boundary 𝑆𝑡 . The kinematically admissible displacement field u only needs to satisfy the displace-

ment boundary conditions and Eu is the Green-Lagrangian strain tensor calculated from u. The

second Piola-Kirchhoff stress S may also come from assumptions.

In our geometrically nonlinear shear deformable beam model, we assume that 𝑆11 and 𝑆12 = 𝑆21

distribute linearly and uniformly over cross sections, respectively:

𝑆11 = −𝑀 (𝑋1)
𝐼

𝑋2, (4.7a)

𝑆12 = 𝑆21 =
𝑉 (𝑋1)
𝐴

, (4.7b)

where 𝑀 and 𝑉 are unknown functions of 𝑋1, the second moment of inertia is 𝐼 =
∫
Ω
𝑋2

2 𝑑Ω

and the cross-section area is 𝐴 =
∫
Ω
𝑑Ω. We ignore all other components in S considering the

relatively small magnitudes of those stress components. As for the constitutive law, we employ Saint

Venant-Kirchhoff constitutive law [106] to model the stress-strain relation of the beam:

S = 2𝜇E + 𝜆 tr(E)I. (4.8)
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The corresponding compliance tensor in component form is

S𝐼 𝐽𝐾𝐿 =
1 + 𝜈
2𝐸
(𝛿𝐼𝐿𝛿𝐽𝐾 + 𝛿𝐼𝐾𝛿𝐽𝐿) −

𝜈

𝐸
𝛿𝐼 𝐽𝛿𝐾𝐿 . (4.9)

We choose to employ Saint Venant-Kirchhoff constitutive law because it is the simplest among

all nonlinear constitutive models. As similar to other hyperelastic constitutive models, it reduces to

linear elastic constitutive law in the limit of infinitesimal deformation. Although this constitutive

model has a few drawbacks, e.g. the stored energy function is not polyconvex, the lack of any

term preventing the Jacobian to approach zero [106], it is quite popular in numerical computations

due to its relative simplicity in implementation. It is often used in modeling structures undergoing

large deformation within the framework of finite element methods (FEM) and adopted by many

commercial FEM software such as ABAQUS and ANSYS.

Due to the assumption (ii) that the centroidal line of the beam is inextensible, we are able

to describe the material point position along the beam’s centroidal line by arc-length coordinate

𝑠 = 𝑋1 ∈ [0, 𝐿]. For the boundary conditions, we assume that the left end (𝑠 = 0) of the beam is

encastered while the right end (𝑠 = 𝐿) of the beam is under a moment M = 𝑀0Ê3. In addition,

there is distributed force P(𝑠) = 𝑃1(𝑠)Ê1 + 𝑃2(𝑠)Ê2 applied along the beam. We substitute the

assumed deformation mapping (4.1a)-(4.1c), Green-Lagrangian strain components (4.3a)-(4.3d),

the assumed stress components (4.7a), (4.7b) and the compliance tensor (4.9) into the Hellinger-

Reissner functional (4.6):

ΠHR [𝑀 (𝑠), 𝑉 (𝑠), 𝜃 (𝑠), 𝜓(𝑠)] =
∫
𝑉

(
𝑀𝑋2

2
𝐼

(
𝛾′ sec2(𝛾) + 𝜓′

)
− 𝑉
𝐴

tan(𝛾) −
𝑀2𝑋2

2
2𝐸𝐼2 −

𝑉2

2𝜇𝐴2

)
𝑑𝑉

−
∫ 𝐿

0
(𝑃𝑢 (𝑠) cos(𝜓) − 𝑃𝑢 (𝑠) + 𝑃𝑤 (𝑠) sin(𝜓)) 𝑑𝑠 − 𝑀0𝜃 |𝑠=𝐿 .

(4.10)

where 𝑃𝑢 (𝑠) =
∫ 𝐿
𝑠
𝑃1(𝜉) 𝑑𝜉, 𝑃𝑤 (𝑠) =

∫ 𝐿
𝑠
𝑃2(𝜉) 𝑑𝜉, and the shear angle 𝛾(𝑠) = 𝜃 (𝑠) − 𝜓(𝑠). If the

external force only involves concentrative force at the right end, that is P = 𝑃0𝛿(𝑠 − 𝐿)Ê1 +𝑉0𝛿(𝑠 −

𝐿)Ê2 where 𝛿(𝑥) is Dirac delta function, we will obtain 𝑃𝑢 (𝑠) = 𝑃0 and 𝑃𝑤 (𝑠) = 𝑉0.

Through variations with respect to 𝑀 (𝑠), 𝑉 (𝑠), 𝜃 (𝑠) and 𝜓(𝑠), we obtain a set of governing
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equations

𝑀 = 𝐸𝐼

(
𝛾′ sec2(𝛾) + 𝜓′

)
, (4.11a)

𝑉 = −𝜇𝐴 tan(𝛾), (4.11b)

𝑀 ′ = 𝑃𝑢 sin(𝜓) − 𝑃𝑤 cos(𝜓), (4.11c)

𝑉 = −𝑃𝑢 sin(𝜓) + 𝑃𝑤 cos(𝜓). (4.11d)

with boundary conditions

𝜃 = 0, at 𝑠 = 0, (4.12a)

𝛾 = 0, at 𝑠 = 0, (4.12b)

𝛾 = 0, at 𝑠 = 𝐿, (4.12c)

𝑀 = 𝑀0, at 𝑠 = 𝐿. (4.12d)

4.2.3 Reduction to Elastica theory and Timoshenko beam theory

As a geometrically nonlinear shear deformable beam model, the closed-form system of first-order

ODE (4.11a)-(4.12d) should reduce to the Elastica theory when the shear deformation is negligible.

On the other hand, it should reduce to Timoshenko beam theory when restricted to small deformation.

The rigorous way to show the reduction should start from the functional level. That is, we first make

proper approximations of functional ΠHR (4.10), then derive the governing equations for the reduced

theory through variations.

When the shear deformation is negligible, we expect the shear angle 𝛾 = 0 and the shear stiffness

𝜇𝐴 → ∞, which implies 𝜓 = 𝜃. Assuming concentrative force P = 𝑃0Ê1 + 𝑉0Ê2 and moment

M = 𝑀0Ê3 are applied on the right end (𝑠 = 𝐿) of a cantilever beam, the Hellinger-Reissner

functional as per Elastica theory becomes

ΠE [𝑀 (𝑠), 𝜃 (𝑠)] =
∫
𝑉

(
𝑀𝑋2

2
𝐼

𝜃′ −
𝑀2𝑋2

2
2𝐸𝐼2

)
𝑑𝑉 −

∫ 𝐿

0
(𝑃0 (cos(𝜃) − 1) +𝑉0 sin(𝜃)) 𝑑𝑠 − 𝑀0𝜃 |𝑠=𝐿 .

(4.13)

Through variations with respect to 𝑀 (𝑠), 𝜃 (𝑠) and eliminating 𝑀 (𝑠), we obtain the governing
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equation of Elastica theory [104] as

(𝐸𝐼𝜃′)′ − 𝑃0 sin(𝜃) +𝑉0 cos(𝜃) = 0, (4.14)

with boundary conditions

𝜃 = 0, at 𝑠 = 0, (4.15a)

𝐸𝐼𝜃′ = 𝑀0, at 𝑠 = 𝐿. (4.15b)

On the other hand, if the deformation is restricted to be infinitesimally small, we can linearize

the functional ΠHR (4.10) and reproduce the Timoshenko beam theory. Assuming concentrative

force P = 𝑃0Ê1 + 𝑉0Ê2 and moment M = 𝑀0Ê3 are applied on the right end (𝑠 = 𝐿) of a cantilever

beam, we substitute the expansions sin(𝜓) = 𝜓 + 𝑂 (𝜓3), cos(𝜓) = 1 + 𝑂 (𝜓2), tan(𝛾) = 𝛾 + 𝑂 (𝛾3)

and sec(𝛾) = 1 +𝑂 (𝛾2) into functional (4.10)

ΠT [𝑀 (𝑠), 𝑉 (𝑠), 𝜃 (𝑠), 𝛾(𝑠)] =
∫
𝑉

(
𝑀𝑋2

2
𝐼

(
𝜃′ +𝑂 (𝛾2)𝛾′

)
− 𝑉
𝐴

(
𝛾 +𝑂 (𝛾3)

)
−
𝑀2𝑋2

2
2𝐸𝐼2 −

𝑉2

2𝜇𝐴2

)
𝑑𝑉

−
∫ 𝐿

0

(
𝑂 (𝜓2)𝑃0 +𝑉0

(
𝜃 − 𝛾 +𝑂 (𝜓3)

))
𝑑𝑠 − 𝑀0𝜃 |𝑠=𝐿 ,

(4.16)

where the symbol𝑂 (𝑝𝑞) denotes all terms in the expression that vanish at a rate that is faster than or

equal to 𝑝𝑞 as 𝑝 → 0. As 𝛾 and 𝜓 approach infinitesimal small, we take the first order approximation

of ΠT (4.16). Through variations with respect to 𝑀 (𝑠), 𝑉 (𝑠), 𝜃 (𝑠) and 𝛾(𝑠), we obtain a set of

governing equations

𝑀 = 𝐸𝐼𝜃′, (4.17a)

𝑉 = −𝜇𝐴𝛾, (4.17b)

𝑀 ′ = −𝑉0, (4.17c)

𝑉 = 𝑉0, (4.17d)
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with boundary conditions

𝜃 = 0, at 𝑠 = 0, (4.18a)

𝑀 = 𝑀0, at 𝑠 = 𝐿. (4.18b)

Recall that 𝑤′ = sin(𝜓) = 𝜓 + 𝑂 (𝜓3). Under first order approximation, we have 𝜓 = 𝑤′. With an

additional boundary condition 𝑤(0) = 𝑤0, where 𝑤0 is the deflection of the beam at position 𝑠 = 0,

the equations (4.17a)-(4.18b) are indeed the governing equations of Timoshenko beam theory [2].

4.3 Comparison with Reissner’s theory in conjunction with Saint Venant-

Kirchhoff constitutive model

Among the different versions of geometrically nonlinear shear deformable beam theories, the most

prominent one is proposed by Reissner [8] in 1972 as mentioned in Section 4.1. The main differences

between Reissner’s theory and the proposed theory lie in the assumption of kinematics. As we

described in Section 4.2.1, we proposed four assumptions to the beam’s kinematics. The plane

cross-section assumption (i) and no Poisson’s effect assumption (iv) are shared by Reissner’s theory

as well. Other researchers, such as Iwakuma and Kuranishi [101], Chaisomphob et al. [102] and

Simo [9], adopted the equivalent kinematics in their study. The in-extensibility assumption (ii) does

not have fundamental effect to the model, as we include this assumption only for simplicity of the

model since it suppresses one degree of freedom. It is the assumption (iii) and its implication that

makes the proposed theory quite different from the existing models. In the kinematics (4.1a)-(4.1c)

of the proposed theory, we introduce an extra expansion factor 𝛼(𝑋1) over the cross section of the

beam while Reissner’s theory does not have this degree of freedom. The ignorance of changes in

the cross-sectional area in kinematic assumption also exists in Simo’s geometrically nonlinear beam

theory [9].

In this section, we are going to discuss the different characteristics between Reissner’s theory

and the proposed beam model under compressive axial loading. We show that Reissner’s theory

in conjunction with Saint Venant-Kirchhoff constitutive model is ill-posed, in the sense that the
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existence of minimizers to the functional is not guaranteed, while the existence of minimizers to the

proposed beam model is proved. The nonlinear FEM computation results are consistent with our

analysis.

4.3.1 Ill-posedness of Reissner’s theory in conjunction with Saint Venant-Kirchhoff

constitutive model

To compare our model with Reissner’s finite strain beam theory, we need to simplify Reissner’s

theory and make these two models comparable. Since Reissner’s theory takes account of stretching,

bending and shearing deformation of the beam, we would like to restrict the stretching deformation

in his theory according to assumption (ii). Due to the fact that Reissner did not stipulate any

constitutive relations for his model, we choose to employ Saint Venant-Kirchhoff constitutive law,

the most fundamental nonlinear constitutive relation for finite deformation, as we did for our model.

Stipulating the expansion factor 𝛼(𝑋1) ≡ 1 and following the same procedures as in Section 4.2, we

obtain a set of governing equations

𝑀 = 𝐸𝐼𝜃′ cos(𝛾), (4.19a)

𝑉 = −𝜇𝐴 sin(𝛾), (4.19b)

𝑀𝜓′ = − (𝑀 ′ +𝑉) cot(𝛾), (4.19c)

(𝑀 cos(𝛾))′ = 𝑃𝑢 sin(𝜓) − 𝑃𝑤 cos(𝜓). (4.19d)

with boundary conditions

𝜃 = 0, at 𝑠 = 0, (4.20a)

𝑀 cos(𝛾) = 𝑀0, at 𝑠 = 𝐿. (4.20b)

We formulate the dimensionless Hellinger-Reissner functional Π̂HR = ΠHR𝐿/(𝐸𝐼) for the com-

pressive buckling problem (𝑃𝑢 (𝑠) = 𝑃0 < 0, 𝑃𝑤 (𝑠) = 𝑀0 = 0) as

Π̂HR [𝑀̂ (𝑠), 𝑉̂ (𝑠), 𝜃 (𝑠), 𝛾(𝑠)] =
∫ 1

0

(
1
2
𝑀̂2 + 𝑘

2
𝑉̂2 − 𝑃̂0(cos(𝜃 − 𝛾) − 1)

)
𝑑𝑠, (4.21)
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where 𝑠 = 𝑠/𝐿, 𝑘 = 𝜇𝐴𝐿2/(𝐸𝐼), 𝑀̂ = 𝑀𝐿/(𝐸𝐼), 𝑉̂ = 𝑉/(𝜇𝐴), 𝑃̂0 = 𝑃0𝐿
2/(𝐸𝐼) are dimensionless

variables.

For Reissner’s finite strain beam theory, we non-dimensionalize equations (4.19a) and (4.19b)

then substitute them into Π̂HR (4.21). In this way, we eliminate the dependence of the functional

on 𝑀̂ and 𝑉̂ . Only kinematic variables 𝜃 and 𝛾 remain in the functional, which is convenient

for theoretical analysis and numerical calculation later (see Section 4.4). For Reissner’s theory, it

follows that

Π̂R [𝜃 (𝑠), 𝛾(𝑠)] =
∫ 1

0

[
1
2
(𝜃′)2 cos2(𝛾) + 𝑘

2
sin2(𝛾) − 𝑃̂0(cos(𝜃 − 𝛾) − 1)

]
𝑑𝑠. (4.22)

The admissible space for 𝜃 and 𝛾 is

K =
{
𝜃 (𝑠) ∈ 𝐻1

𝛾 (0, 1), 𝛾(𝑠) ∈ 𝐿∞ ((0, 1); [−𝜋, 𝜋]) | 𝜃 (0) = 0, cos(𝛾) > 0
}
,

where 𝐻1
𝛾 (0, 1) is a weighted Sobolev space, with the norm

(∫ 1

0

(
𝜃′(𝑠)2 cos2(𝛾(𝑠)) + 𝜃 (𝑠)2

)
𝑑𝑠

)1/2
< ∞.

The constraint cos(𝛾) > 0 comes from the compatibility condition of the beam’s deformation,

⟨det(F)⟩ = cos(𝛾) > 0, where ⟨·⟩ indicates taking average over the cross section. In the following,

we show that the functional Π̂R has no minimizer in the admissible space K through proof by

contradiction.

We denote𝑚 as the infimum of Π̂R for any (𝜃 (𝑠), 𝛾(𝑠)) ∈ K and start by observing that𝑚 ≥ 2𝑃̂0

since

Π̂R [𝜃 (𝑠), 𝛾(𝑠)] ≥
∫ 1

0
−𝑃̂0(cos(𝜃 − 𝛾) − 1) 𝑑𝑠

≥
∫ 1

0
−2|𝑃̂0 | 𝑑𝑠

= 2𝑃̂0.
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We then show that 𝑚 = 2𝑃̂0 by constructing a minimizing sequence. Let 𝑛 ∈ N and consider

two sequences of piecewise functions

𝜃𝑛 (𝑠) :=

−𝜋𝑛𝑠, 0 ≤ 𝑠 ≤ 1

𝑛
,

−𝜋, 1
𝑛
≤ 𝑠 ≤ 1.

(4.23a)

𝛾𝑛 (𝑠) :=


𝜋
2

(
1 − 1

𝑛

)
, 0 ≤ 𝑠 ≤ 1

𝑛
,

0, 1
𝑛
≤ 𝑠 ≤ 1.

(4.23b)

We substitute 𝜃𝑛 (𝑠) and 𝛾𝑛 (𝑠) into functional Π̂R (4.22) and obtain a sequence of Π̂R
𝑛 as

Π̂R
𝑛 =

𝑘 − 4𝑃̂0 + 𝑘 cos
(
𝜋
𝑛

)
4𝑛

+
2𝑃̂0 cos

(
𝜋

2𝑛
)

𝜋𝑛
+ 𝑛𝜋

2

4

(
1 − cos

𝜋

𝑛

)
+ 2𝑃̂0 (4.24)

As 𝑛→∞, we have Π̂R
𝑛 → 2𝑃̂0, which implies that 𝑚 = 2𝑃̂0.

For the sake of contradiction, we assume that there exists a minimizer (𝜃 (𝑠), 𝛾̄(𝑠)) ∈ K. Then

we should have Π̂R [𝜃 (𝑠), 𝛾̄(𝑠)] = 2𝑃̂0. We deduce that sin2(𝛾̄) = (𝜃′)2 = 0 and cos(𝜃 − 𝛾̄) = −1

have to be true a.e. (almost everywhere) in (0, 1). Since 𝜃 (𝑠) ∈ 𝐻1(0, 1) is continuous and 𝜃 (0) = 0,

the only possible solution for 𝜃 (𝑠) is that 𝜃 ≡ 0. Thus we are left with that cos(𝛾̄) = −1 has to be true

a.e. in (0, 1). Obviously, cos(𝛾̄) = −1 contradicts the compatibility condition. Thus our assumption

that there exists a minimizer for Π̂R leads to a contradiction. Therefore, at least for the compressive

buckling problem, Reissner’s theory is ill-posed.

4.3.2 Proof of the existence of solutions for the proposed beam model

In this subsection, we provide a proof to show the conditional existence of solutions for the proposed

geometrically nonlinear shear deformable beam model. A sufficient existence condition is 𝑘 ≥√︁
𝑃̂𝑢 (𝑠)2 + 𝑃̂𝑤 (𝑠)2 for a cantilever under distributed loading, where 𝑃̂𝑢 (𝑠) = 𝑃𝑢 (𝑠)𝐿2/(𝐸𝐼) and

𝑃̂𝑤 (𝑠) = 𝑃𝑤 (𝑠)𝐿2/(𝐸𝐼). Specifically, for the compressive buckling problem, a sufficient existence

condition is 𝑘 + 𝑃̂0 > 0. The general method to show existence of minimizers for minimization

problems in the Calculus of Variations is the Direct Method [107]. For the proposed beam theory,

not all conditions in the Direct Method are satisfied. Thus, the Direct Method is not applicable in

this case. Although the Direct Method fails, existence of solutions might still be possible, as we
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demonstrate in the following proof.

To obtain the dimensionless Hellinger-Reissner functional for a geometrically nonlinear shear

deformable beam under distributed loading, we non-dimensionalize equations (4.11a) and (4.11b),

then substitute them into Π̂HR (4.21). The functional for this model follows as

Π̂F [𝜃 (𝑠), 𝛾(𝑠)] =
∫ 1

0

[
1
2
(𝜃′ + 𝛾′ tan2(𝛾))2 + 𝑘

2
tan2(𝛾) − 𝑃̂𝑢 (cos(𝜃 − 𝛾) − 1) − 𝑃̂𝑤 sin(𝜃 − 𝛾)

]
𝑑𝑠,

(4.25)

with essential boundary condition 𝜃 (0) = 0.

We introduce new variables 𝑝(𝑠) = 𝜃 (𝑠) − 𝛾(𝑠) + tan(𝛾(𝑠)) and 𝑞(𝑠) = tan(𝛾(𝑠)), so that

𝑝′(𝑠) = 𝜃′(𝑠) + 𝛾′(𝑠) tan2(𝛾(𝑠)) and 𝑝(𝑠) − 𝑞(𝑠) = 𝜃 (𝑠) − 𝛾(𝑠). Substituting these transformations

into the functional Π̂F (4.25), we obtain a transformed functional of 𝑝(𝑠) and 𝑞(𝑠) as

Π̂FT [𝑝(𝑠), 𝑞(𝑠)] =
∫ 1

0

[
1
2
(𝑝′)2 + 𝑘

2
𝑞2 + 𝑓 (𝑝 − 𝑞)

]
𝑑𝑠, (4.26)

where 𝑓 (𝑝 − 𝑞) = −𝑃̂𝑢 (cos(𝑝 − 𝑞) − 1) − 𝑃̂𝑤 sin(𝑝 − 𝑞). The essential boundary condition 𝜃 (0) = 0

comes out to be a constraint

𝑞(0) = tan (𝑞(0) − 𝑝(0)) . (4.27)

The constraint (4.27) can not be implemented directly since 𝑞(𝑠) ∈ 𝐿∞ ((0, 1); [−𝜋, 𝜋]) can

take arbitrary value at 𝑠 = 0 without affecting the value of the functional 4.26. Considering that

𝑝(𝑠) ∈ 𝐻1 ((0, 1); [−𝜋, 𝜋]), 𝑝(𝑠) has to be continuous on (0, 1). Therefore, it is reasonable to put

constraints on 𝑝(0). Based on the above discussion, the admissible space for 𝑝(𝑠), 𝑞(𝑠) comes out

to be

K =
{
𝑝(𝑠) ∈ 𝐻1 ((0, 1); [−𝜋, 𝜋]) , 𝑞(𝑠) ∈ 𝐿∞ ((0, 1); [−𝜋, 𝜋]) | 𝑝(0) ∈ A

}
,

where the set

A =
{
𝑦 ∈ R | 𝑥 := arg min 𝑥 ↦→ 𝑘𝑥2/2 + 𝑓 (𝑦 − 𝑥), 𝑥 = tan(𝑥 − 𝑦)

}
,

accounts for both the minimality of 𝑞(0) and constraint (4.27). We present the proof of the

existence of minimizers for functional Π̂FT (4.26) as follows. By introducing set A for 𝑝(0), the
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constraint (4.27) is compatibly incorporated into the proof.

Let {𝑝𝑛, 𝑞𝑛} be a minimizing sequence for Π̂FT (4.26). Then, since {𝑝𝑛} must be bounded in

𝐻1(0, 1), for a subsequence and a 𝑝∞ ∈ 𝐻1(0, 1), 𝑝𝑛 ⇀ 𝑝∞ weakly in 𝐻1(0, 1). As for boundary

condition, we have 𝑝∞(0) = 0 by weak continuity of trace in 𝐻1(0, 1).

Now we choose a sequence {𝑔𝑛} ⊂ 𝐿∞(0, 1) of piecewise constant functions such that 𝑔𝑛 → 𝑝∞

strongly in 𝐿2(0, 1). We further choose a subsequence, not relabeled, so that 𝑔𝑛 (𝑠) → 𝑝∞(𝑠) for

a.e. 𝑠, and call the set of all 𝑠 for which we have this convergence S. For each 𝑛 ∈ N and 𝑠 ∈ (0, 1),

we solve for ℎ𝑛 (𝑠) that minimizes

𝑥 ↦→ 𝑘

2
𝑥2 + 𝑓 (𝑔𝑛 (𝑠) − 𝑥).

This minimizer exists because the map is continuous on [−𝜋, 𝜋]. Note that we can choose the

ℎ𝑛 so that they are piecewise constant functions as well. Then we define 𝑞∞ := lim sup
𝑛→∞

ℎ𝑛. Now that

we have defined 𝑝∞ and 𝑞∞, we will prove that they are minimizers of the functional Π̂FT through

the following two claims.

Claim 1. 𝑞∞(𝑠) minimizes

𝑥 ↦→ 𝑘

2
𝑥2 + 𝑓 (𝑝∞(𝑠) − 𝑥), (4.28)

for all 𝑠 ∈ S.

Proof of Claim 1. We prove this claim for any fixed 𝑠 ∈ 𝑆. By definition of 𝑞∞(𝑠), we can choose a

sequence {𝑛𝑙} such that ℎ𝑛𝑙 (𝑠) → 𝑞∞(𝑠). By continuity of 𝐹 (𝑥, 𝑦) := 𝑘
2 𝑦

2 + 𝑓 (𝑥 − 𝑦) in both 𝑥 and

𝑦

𝑘

2
ℎ𝑛𝑙 (𝑠)2 + 𝑓 (𝑔𝑛𝑙 (𝑠) − ℎ𝑛𝑙 (𝑠)) →

𝑘

2
𝑞∞(𝑠)2 + 𝑓 (𝑝∞(𝑠) − 𝑞∞(𝑠)) =: 𝛽.

Suppose for some 𝑦̄ ∈ [−𝜋, 𝜋],

𝑘

2
𝑦̄2 + 𝑓 (𝑝∞(𝑠) − 𝑦̄) =: 𝛼 < 𝛽.

Then
𝑘

2
𝑦̄2 + 𝑓 (𝑔𝑛𝑙 (𝑠) − 𝑦̄) → 𝛼 < 𝛽.
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So, for 𝑙 large enough,

𝑘

2
𝑦̄2 + 𝑓 (𝑔𝑛𝑙 (𝑠) − 𝑦̄) <

𝑘

2
ℎ𝑛𝑙 (𝑠)2 + 𝑓 (𝑔𝑛𝑙 (𝑠) − ℎ𝑛𝑙 (𝑠)),

which is contradicting the minimality of ℎ𝑛𝑙 (𝑠). So the claim is true.

Note that it follows immediately that Π̂FT [𝑝∞, 𝑞∞] ≤ Π̂FT [𝑝∞, 𝑞] for all 𝑞 ∈ 𝐿∞((0, 1); [−𝜋, 𝜋]).

Claim 2. (𝑝∞, 𝑞∞) minimizes Π̂FT.

Proof of Claim 2. As {𝑝𝑛, 𝑞𝑛} being minimizing sequence for Π̂FT (4.26), we know that Π̂FT [𝑝𝑛, 𝑞𝑛] →

inf Π̂FT. So it is enough to show Π̂FT [𝑝𝑛, 𝑞𝑛] → Π̂FT [𝑝∞, 𝑞∞].

Regarding the first term of Π̂FT, we know from weak convergence [107, 108] that

∫ 1

0

1
2
(𝑝′∞)2𝑑𝑠 ≤ lim inf

𝑛→∞

∫ 1

0

1
2
(𝑝′𝑛)2𝑑𝑠. (4.29)

We also know from claim 1 that Π̂FT [𝑝∞, 𝑞∞] = min Π̂FT [𝑝∞, ·] .We then choose a subsequence,

not relabeled, so that we have a.e. convergence of 𝑝𝑛 to 𝑝∞. Now set 𝐹 (𝑥, 𝑦) := 𝑘
2 𝑦

2 + 𝑓 (𝑥 − 𝑦),

where 𝑥, 𝑦 ∈ [−𝜋, 𝜋]. Note that there exists 𝐶 > 0 such that

|𝐹 (𝑥, 𝑦) − 𝐹 (𝑢, 𝑣) | ≤ 𝐶 ( |𝑥 − 𝑢 | + |𝑦 − 𝑣 |).

It follows that if 𝑥𝑛 → 𝑥, then min 𝐹 (𝑥𝑛, ·) → min 𝐹 (𝑥, ·). In particular, by the a.e. convergence

of 𝑝𝑛 to 𝑝∞ and the minimality of 𝑞∞ on 𝐹 (𝑥𝑛, ·), we have min 𝐹 (𝑝𝑛, ·) → 𝐹 (𝑝∞, 𝑞∞) a.e., and

therefore

lim inf
𝑛→∞

∫ 1

0
𝐹 (𝑝𝑛, 𝑞𝑛)𝑑𝑠 ≥ lim inf

𝑛→∞

∫ 1

0
min 𝐹 (𝑝𝑛, ·)𝑑𝑠 =

∫ 1

0
𝐹 (𝑝∞, 𝑞∞)𝑑𝑠. (4.30)

Combining (4.29) and (4.30), we have

lim inf
𝑛→∞

Π̂FT [𝑝𝑛, 𝑞𝑛] ≥ Π̂FT [𝑝∞, 𝑞∞] .

Since lim inf
𝑛→∞

Π̂FT [𝑝𝑛, 𝑞𝑛] ≤ Π̂FT [𝑝∞, 𝑞∞] is always true, we obtain lim inf
𝑛→∞

Π̂FT [𝑝𝑛, 𝑞𝑛] = Π̂FT [𝑝∞, 𝑞∞],
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and (𝑝∞, 𝑞∞) minimizes Π̂FT.

Therefore, we proved the existence of solutions for the proposed beam model. The sufficient

existence condition results from the boundary condition 𝑝(0) ∈ A, where the non-emptiness of A

requires 𝑘 ≥
√︁
𝑃̂𝑢 (𝑠)2 + 𝑃̂𝑤 (𝑠)2.

4.4 Finite element formulation

Due to the nonlinearity of the ODE system (4.11a)-(4.12d), analytical solutions are not available

most of the time. Consequently, we derive a numerical formulation which can be solved using finite

element method (FEM). We are going to present the derivation of the weak form, discretization and

linearization in this section. The Newton-Raphson update procedure is examined subsequently.

4.4.1 Weak form

We take advantage of the Hellinger-Reissner functional we have built up in Section 4.3. The weak

form can be derived directly by taking variations to the dimensionless functional Π̂FT (4.26):

∫ 1

0

[
𝑝′𝛿𝑝′ +

(
𝑃̂𝑢 sin(𝑝 − 𝑞) − 𝑃̂𝑤 cos(𝑝 − 𝑞)

)
𝛿𝑝 +

(
𝑘𝑞 − 𝑃̂𝑢 sin(𝑝 − 𝑞) + 𝑃̂𝑤 cos(𝑝 − 𝑞)

)
𝛿𝑞

]
𝑑𝑠 = 0.

(4.31)

The admissible spaces for variations are 𝛿𝑝(𝑠) ∈ 𝑊1,2(0, 1) and 𝛿𝑞(𝑠) ∈ 𝐿2(0, 1). We will address

the constraint equation (4.27) by eliminating the corresponding degree of freedom (DOF) in the

discretized form.

4.4.2 Discretization

We introduce a standard finite element discretization [0, 1] = ⋃𝑛el
𝑒=1 𝐼

ℎ
𝑒 , where 𝐼ℎ𝑒 is a typical element

with length ℎ > 0 and 𝑛el is the total number of elements. As usual, the calculations are performed

on an element basis. We interpolate the elemental trial solutions and weighting functions in terms
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of shape functions 𝑁𝑖 (𝑠) according to

𝑝ℎ𝑒 (𝑠) =
𝑛en∑︁
𝑖=1

𝑁𝑖 (𝑠)𝑝𝑒𝑖 , 𝛿𝑝ℎ𝑒 (𝑠) =
𝑛en∑︁
𝑖=1

𝑁𝑖 (𝑠)𝛿𝑝𝑒𝑖 , (4.32a)

𝑞ℎ𝑒 (𝑠) =
𝑛en∑︁
𝑖=1

𝑁𝑖 (𝑠)𝑞𝑒𝑖 , 𝛿𝑞ℎ𝑒 (𝑠) =
𝑛en∑︁
𝑖=1

𝑁𝑖 (𝑠)𝛿𝑞𝑒𝑖 . (4.32b)

where 𝑛en is the number of nodes in element 𝐼ℎ𝑒 , 𝑁𝑖 (𝑠) the elemental shape function associated with

node 𝑖, and 𝑝𝑒
𝑖
, 𝛿𝑝𝑒

𝑖
, 𝑞𝑒
𝑖
, 𝛿𝑞𝑒

𝑖
are the nodal values of corresponding solution functions of element 𝐼ℎ𝑒

at node 𝑖.

We calculate the elemental contribution to the residual vector by substituting the discretiza-

tion (4.32a) and (4.32b) into weak form (4.31). For each element 𝐼ℎ𝑒 , we define residual vectors

F𝑒 (p𝑒) = (𝐹𝑒𝑝
𝑖
, 𝐹𝑒𝑟
𝑖
)𝑇
𝑖=(1,2,...,𝑛en ) , where p𝑒 = (𝑝𝑒

𝑖
, 𝑞𝑒
𝑖
)𝑇
𝑖=(1,2,...,𝑛en ) . We calculate 𝐹𝑒𝑝

𝑖
, 𝐹𝑒𝑟
𝑖

as

𝐹
𝑒𝑝

𝑖
(p𝑒) =

∫
𝐼ℎ𝑒

©­«
𝑛en∑︁
𝑗=1

𝑁 ′𝑗 𝑝
𝑒
𝑗

ª®¬ 𝑁𝑖 ′ + 𝑃̂𝑢 sin ©­«
𝑛en∑︁
𝑗=1

𝑁 𝑗 (𝑝𝑒𝑗 − 𝑞𝑒𝑗 )
ª®¬ 𝑁𝑖 − 𝑃̂𝑤 cos ©­«

𝑛en∑︁
𝑗=1

𝑁 𝑗 (𝑝𝑒𝑗 − 𝑞𝑒𝑗 )
ª®¬ 𝑁𝑖

 𝑑𝑠,
(4.33a)

𝐹𝑒𝑟𝑖 (p𝑒) =
∫
𝐼ℎ𝑒

𝑘 ©­«
𝑛en∑︁
𝑗=1

𝑁 𝑗𝑞
𝑒
𝑗

ª®¬ − 𝑃̂𝑢 sin ©­«
𝑛en∑︁
𝑗=1

𝑁 𝑗 (𝑝𝑒𝑗 − 𝑞𝑒𝑗 )
ª®¬ + 𝑃̂𝑤 cos ©­«

𝑛en∑︁
𝑗=1

𝑁 𝑗 (𝑝𝑒𝑗 − 𝑞𝑒𝑗 )
ª®¬
 𝑁𝑖 𝑑𝑠.

(4.33b)

We assemble all F𝑒 together and obtain a global residual vector F = A𝑛el
𝑒=1F𝑒, whereA is the finite

element assembly operator [109]. However, owing to the existence of a constraint equation (4.27),

special treatment on F is required. Before discussing the modification on F, we first define the global

solution vector as p = (𝑝1, 𝑞1, 𝑝2, 𝑞2, ..., 𝑝𝑛np , 𝑞𝑛np)𝑇 where 𝑝𝐼 , 𝑞𝐼 are global DOFs, 𝑛np is the total

number of nodes in finite element mesh. We arrange the ordering of nodes and elements in such

a way that position 𝑠 = 0 corresponds to local node number 𝑖 = 1 of element 𝐼ℎ1 and global node

number 𝐼 = 1 as well. It follows that the finite-dimensional solutions 𝑝ℎ (𝑠), 𝑞ℎ (𝑠) have boundary

values 𝑝ℎ (0) = 𝑝1 and 𝑞ℎ (0) = 𝑞1. The constraint (4.27) becomes 𝑞1 = tan (𝑞1 − 𝑝1).

Now we proceed to discuss the modification on F after assembly F = A𝑛el
𝑒=1F𝑒. To account

for the constraint 𝑞1 = tan (𝑞1 − 𝑝1), we solve for 𝑝1 as 𝑝1 = 𝑞1 − arctan(𝑞1). We substitute this
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relation to the residual vector F to eliminate its dependence on 𝑝1. Furthermore, we superpose

(𝜕Π̂FT/𝜕𝑝1) (𝑑𝑝1/𝑑𝑞1) on the second element of F and remove the first element. In the meantime,

we remove the DOF 𝑝1 from the global solution vector p. Therefore, the length of the modified

residual vector F becomes 2𝑛np − 1, which is same as the modified total number of DOFs. In next

subsection, we introduce the linearization and solving method for the nonlinear system F(p) = 0.

4.4.3 Linearization and modified Newton-Raphson method

We apply Newton-Raphson method [110] to solve the nonlinear system F(p) = 0. In the 𝑘 th iteration,

the (𝑘 + 1)th solution vector is computed as

p𝑘+1 = p𝑘 − 𝛼𝑘H𝑘 (p𝑘)−1F𝑘 (p𝑘), (4.34)

where H𝑘 (p𝑘) = ∇p𝑘
F𝑘 is a (2𝑛np − 1) × (2𝑛np − 1) Jacobian matrix, and 𝛼𝑘 is the step length in the

𝑘 th iteration. We define the incremental search direction Δp𝑘 as in p𝑘+1 − p𝑘 = 𝛼𝑘Δp𝑘 and rewrite

the iteration equation (4.34) in form of a linear system

H𝑘 (p𝑘)Δp𝑘 = −F𝑘 (p𝑘). (4.35)

In finite element implementation, similar to the assembly of F𝑘 , H𝑘 is assembled following H𝑘 =

A𝑛el
𝑒=1H𝑒

𝑘
, where H𝑒

𝑘
(p𝑒
𝑘
) = ∇p𝑒

𝑘
F𝑒
𝑘

is an 𝑛en × 𝑛en matrix in which the (𝑖, 𝑗) element is calculated as

𝜕 [F𝑒
𝑘
]𝑖/𝜕 [p𝑒𝑘] 𝑗 .

During the iteration, when p𝑘 is far away from the solution, the Hessian matrix H𝑘 (p𝑘) may not

be positive definite, so the search direction Δp𝑘 may not be a descent direction. We use modified

Cholesky factorization [111] to make sure that p𝑘 solved from (4.35) is always a descent direction

by replacing H𝑘 (p𝑘) with a positive definite approximation. In addition, we apply backtracking

approach [112] to search for an appropriate step length 𝛼𝑘 . The backtracking approach will select

a short enough 𝛼𝑘 to ensure that Π̂FT(p𝑘 + 𝛼𝑘Δp𝑘) achieves adequate reductions at modest cost.

On the other hand, the step length 𝛼𝑘 is not too short to make reasonable progress along the given

search direction.
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We use quadratic 1D elements to divide the domain. Three Gauss quadrature points are adopted

for numerical integration. To initiate the Newton-Raphson procedure, an initial guess of the solution

vector p0 is required. We calculate the error of convergence as ∥Δp𝑘 ∥ in each step. The iterative

loop stops whenever the error of convergence drops below a threshold value 𝜀 = 10−6.

4.5 Numerical Examples

In this section, we present a series of numerical examples using the FEM formulations derived in

the above section. We obtain quadratic rate of convergence for these examples.

4.5.1 Compressive buckling problem

In the first subsection, we focus our attention on the compressive buckling problem, in which a

cantilever is encastered at one end 𝑠 = 0 and loaded at the other end 𝑠 = 1 by a concentrated force

P̂ = 𝑃0Ê1 where 𝑃0 < 0. As the magnitude of 𝑃0 exceeds a certain critical value, the cantilever will

buckle suddenly and deform continuously hereafter. We solve this problem using both the proposed

theory and Reissner’s theory.

Based on the proposed geometrically nonlinear shear deformable beam model, we solved for the

deformed shapes of beams for 𝑘 = 1000, 200, 150, 110, 100 under compressive force P̂ = −100Ê1.

The centroidal lines of deformed beams are shown in Figure 4.2 (A)–(B). Although the deformed

shapes are various for different 𝑘 , the dimensionless displacements in Ê2 direction at the right end

𝑤̂(𝑠 = 1) are pretty consistent across all solutions.

We also employed Reissner’s theory in conjunction with Saint Venant-Kirchhoff constitutive

model to solve for the compressive buckling problem where 𝑃̂0 = −100. The nonlinear FEM calcula-

tion failed to converge for 𝑘 = 200, 150, 110, 100 except for the case 𝑘 = 1000. We plot the converged

solution for 𝑘 = 1000 and some representative unconverged solutions for 𝑘 = 200, 150, 110, 100 in

Figure 4.2 (C)–(D). The unconverged solutions depend on the choice of initial guess and number

of Newton-Raphson iterations. For the unconverged deformed beam shapes shown in Figure 4.2

(C)–(D), we took the solutions in Figure 4.2 (A) as initial guess and ran 5 iterations. More iterations
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cause both the error of convergence and the dimensionless Hellinger-Reissner energy Π̂R going to

infinity.

As per our analysis in section 4.3.1, there is no global minimizer to functional (4.22). Thus we

suspect that the converged solution for 𝑘 = 1000 is not a global minimizer. By substituting the con-

verged solution into (4.22), we obtain the dimensionless Hellinger-Reissner energy Π̂R as −160.811.

While by substituting one set of admissible solutions taken from the minimizing sequences (4.23a)

and (4.23b) (for example, taking 𝑛 = 200) into (4.22), we obtain Π̂R to be −195.827, which is

smaller than the energy from the numerical solution. Clearly, the numerical solution for 𝑘 = 1000

shown in Figure 4.2 (C) is not a global minimizer to functional Π̂R. Furthermore, we tried to use

the aforementioned minimizing sequences solution as an initial guess to start the Newton-Raphson

procedure. In this case, the error of convergence blew up after a few iterations. The failure of

nonlinear FEM on the compressive buckling problem based on Reissner’s theory in conjunction

with Saint Venant-Kirchhoff constitutive model, is consistent with our analysis in section 4.3.1 that

Reissner’s theory is ill-posed in this loading scenario.
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Figure 4.2: (A) The centroidal lines of deformed cantilever beam under concentrated force P̂ = −100Ê1 at 𝑠 = 1 according
to the proposed beam theory. From bottom to top, 𝑘 is decreasing as 1000, 200, 150, 110, 100. (B) The zoomed figure
of the region is surrounded by a red box in (A). Note that the aspect ratio has been adjusted. (C) The centroidal lines
of a deformed cantilever beam under concentrated force P̂ = −100Ê1 at 𝑠 = 1 according to Reissner’s beam theory. The
corresponding 𝑘 value for each curve is marked in the figure. (D) The zoomed figure of the region is surrounded by a red
box in (C). Note that the aspect ratio has been adjusted.

4.5.2 Multiple loops example

In this subsection, we show a more complicated numerical example to illustrate the capacity of

the proposed beam model. In the example shown in Figure 4.3, an initially straight beam, whose

dimensionless arc length coordinate is 𝑠 ∈ [0, 1], is under multiple concentrative forces and moments.

We solved for the deformed shape through nonlinear FEM (see section. 4.4) based on the proposed

shear deformable large deformation beam theory. We also plotted the variation of dimensionless

shear force 𝑉̂ = 𝑉𝐿2/(𝐸𝐼), axial force 𝑃̂ = 𝑃𝐿2/(𝐸𝐼), moment 𝑀̂ = 𝑀𝐿/(𝐸𝐼), shear angle 𝛾,

cross-section rotation angle 𝜃, and tangent angle of the centroidal line 𝜓 along the beam.
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(A) (C)

(B)

(D)

Figure 4.3: (A) Reference configuration of a straight cantilever beam fixed on the left end. (B) The deformed shape of
the cantilever beam. The straight and curved arrows denote the concentrative forces and moment applied on the beam,
respectively. Note that the direction of the concentrative forces does not change during the deformation process. (C) The
variation of dimensionless shear force 𝑉̂ = 𝑉𝐿2/(𝐸𝐼), axial force 𝑃̂ = 𝑃𝐿2/(𝐸𝐼), and moment 𝑀̂ = 𝑀𝐿/(𝐸𝐼) along the
beam. (D) The variation of shear angle 𝛾, cross-section rotation angle 𝜃, and tangent angle of the centroidal line 𝜓 along
the beam.

4.6 Discussion and conclusion

As discussed in Section 1, we are interested in exploring the effect of shear stiffness on the anchoring

capacity of Ea. spicules. The layered structure of Ea. spicules does provide more degrees of freedom

to their deformation, for example, interlayer slippage and delamination. For simplification, we model

the multilayered composite beam as monolithic beam with various shear stiffness. Similar to the

effective bending stiffness discussed in Chapter 3, the effective shear stiffness of the multilayered

beam can be greater or smaller than the homogenized monolithic one depending on the interfacial

properties. However, we do not put our focus on the computation of the effective shear stiffness.

Instead, we assume that the multilayered beam has different effective shear stiffness and directly

study the effect of various shear stiffness on the deformation of the beam.

Because we are interested in the anchoring ability of Ea. spicules, we deliberately bend the

beam into a loop in our numerical example (see Section 4.5.1). This loading condition simulates the
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actual behavior of spicules when they are wound around rocks or sands to prevent the sponge from

being pulled away by underwater current. In Section 4.5.1, we vary the shear stiffness by choosing

different values of 𝑘 for the beam. As shown in Figure 4.2 (A) and (B), the shear stiffness does make

a difference to the deformed shape of the beams. However, the maximum deflections in ê2 direction

remain the same for all five numerical cases. That is, the resulting bending moment at the symmetric

point of the beam does not depend on the effective shear stiffness of the beam. The maximum

normal stress along the beam is mainly determined by the bending moment at the symmetric point

of the beam. And the spicules’ anchoring ability depends on how much end force they can transmit

without failure through normal stress. Therefore, we can draw the conclusion that the shear effect

from the multilayered architectures of Ea. spicules does not contribute to the spicules’ anchoring

ability. The internal architectures of the spicules help secure the sponge on the sea floor through

mechanisms other than varying the spicules’ shear stiffness.

Although we arrived at negative results in our exploration on the effect of shear for Ea. spicules,

the development of the geometrically nonlinear shear deformable beam theory itself is of significant

importance. We list the importance of the presented beam theory as follows

1. The presented beam theory is a finite deformation generalization of Timoshenko beam theory.

It is the simplest geometrically nonlinear theory that is capable to deal with shear deformation

of a beam. Unlike Simo’s geometrically-exact rod model [9], which is more complicated to

understand and utilize, the presented theory is lightweight and easy to use.

2. The development of the beam theory follows classical kinematic hypothesis for beams and

general three-dimensional continuum theory. We develop this beam theory in a rigorous and

systematic way. The procedure can be reused in the development of other reduced-order

theories, such as plate theory and shell theory, with customized complexities.

3. The development of the beam theory provides a valuable example of the application of

Hellinger-Reissner variational principle. As opposed to the commonly used minimum total

potential energy principle, the Hellinger-Reissner variational principle looses the constitutive

constraint and expands the solution space.

4. In this work, we provide a rigorous proof that the well-known Reissner’s theory [8] can be
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problematic if being used without extreme caution. On the other hand, we also provide a

proof of the existence of solutions for the proposed beam model so that the audience know

under what conditions the proposed theory is working. This is particularly useful in numerical

computation to avoid non-physical numerical solutions.

The development of the geometrically nonlinear shear deformable beam theory is just a first step

of our exploration. On top of this beam theory, we have provided a solution existence proof and a

numerical scheme for computing numerical solutions. In future, we will seek for more potentials of

the proposed theory and the development framework as well. For examples, we will try to loose some

of the kinematic restrictions or expands the constitutive law to elasto-plastic constitutive relations.

Potential applications of the expanded beam theory could be the design of guide wires for endoscopy,

the mechanical analysis of power cords and data transmission cables, to name a few.



Chapter 5

Asymptotic analysis of sponge spicules’

tolerance to geometric variations

regarding buckling instability

5.1 Introduction

We have been concentrating on Euplectella aspergillum spicules in the previous chapters. In

this chapter, we switch our focus to a related but different marine sponge, Tethya aurantia (Ta.),

and its skeletal element. The sponge Ta. is a sessile animal that grows on rocky surfaces in the

Mediterranean [113] (see Figure 1.6 (A)). The skeletal elements that we investigate are needle-

shaped structures called strongyloxea spicules (see Figure 1.6 (E)).

In this chapter, we refer to strongyloxea spicules from Ta. as “Ta. spicules”, or simply “spicules”

when there is no ambiguity. The Ta. spicules are axially symmetric, silica rods. They are roughly

35 𝜇m thick, 2 mm long, Unlike Ea. spicules, the Ta. spicules monolithic rods without any internal

architectures. Besides, the Ta. spicules are tapered along their length. We found that the tapered

shape is remarkably uniform across different Ta. spicules.

In previous study, Monn and Kesari have identified a new connection between the mechanical

design and buckling resistance in Ta. spicules [114]. Although most research about stiff, mineralized

103
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biomaterials, such as nacre and bone, focus on the material’s toughness properties [115, 116], the

structure-property connection Monn and Kesari have identified in Ta. spicules falls in the entirely

new category of buckling resistance. The work of this chapter is based on Monn and Kesari’s results

in [114]. Thus I will recap the results given by Monn and Kesari as a background of this work in

Section 5.1.1 .

5.1.1 Structure-property connection of Ta. spicules by Monn and Kesari

In the paper by Monn and Kesari, they introduced and investigated the hypothesis that the Ta.

spicules’ taper is an adaptation aimed at enhancing their ability to provide stiffness to the sponge.

This hypothesis is motivated by the observations of the sponge’s skeletal anatomy (see Figure 1.6

(B) and (C)) and the theory of Euler buckling. For the sponge, mechanical stiffness is important for

it to feed itself underwater. Based on the sponge’s skeletal anatomy, Ta. spicules provides stiffness to

sponges by sustaining compressive axial force. However, due to the slenderness of Ta. spicules, they

will undergo abrupt buckling failure if the axial compressive force exceeds a critical amount, which

is so called buckling strength or buckling resistance. According to the theory of Euler buckling,

the buckling resistance of a slender structure can be increased by tapering it [43]. Therefore, Monn

and Kesari proposed that the tapered shape of Ta. spicules will enhance their buckling resistance to

better support the sponge.

They tested the hypothesis as follow. They performed flexural tests on Ta. spicules to characterize

the deformation behavior and the stiffness of the spicules. The mechanical testing indicates that

the spicules’ mechanical behavior is linear elastic until failure. Then they performed finite element

analysis (FEA) based computational mechanics calculations to identify the approximate loading sce-

nario of the spicules. In their computational mechanics calculations, they used the information about

the spicules’ arrangement within the sponge and the stiffness of both the spongin and spicules. The

results of the calculation indicates that the typical loading condition of the spicules is equivalent to a

pin-ended column under compressive, axial forces. Combining the above two piece of information,

they conclude that the spicules stiffening ability is limited by the Euler buckling instability. It has

been proved that for a given length and volume, there exist an axisymmetric column with the greatest

buckling strength. The correct solution of the optimal column profile was discovered in 1851 [117]
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and an accessible proof that it is in fact optimal was given in 1962 [118]. This optimal profile,

which they refer to as the Clausen profile, is also tapered on both end. The Clausen profile provide

buckling strength enhancement of up to 33% over that of a cylinder.

Monn and Kesari compared spicules’ profiles to the best fitted Clausen profile and several other

prototypical best fitted profiles, such as a semiellipse, an isosceles triangle and a constant. They

found that the Clausen profile describes the spicules’ tapers the best out of the different profiles

that they considered. They also used the structural mechanics model along with measurements of

the spicules shape to directly estimate the load they can transmit before buckling. Compared to

a cylinder with the same length and volume, they predicted that the spicules shape enhances this

critical load by up to 30%, which is close to the enhancement of 33% provided by the Clausen

column. Therefore, they conclude that the function of tapered shape of Ta. spicules is to enhance

their buckling resistance to better support the sponge.

5.1.2 Tolerance of the Clausen profile

In the comparison between spicules’ profiles and several prototypical profiles including Clausen

profile, although Monn and Kesari found that Clausen profile describes the spicules’ tapers the best

out of the different profiles that they considered, around 0.0156% mean sum of squared residuals is

measured between 31 Ta. spicules’ profile and the Clausen profile.

The mathematically precise Clausen profile, of course, does not exist in nature. The precision

with which Ta. can control the shape of the spicules is limited. This is evident through defects

we observed, which include surface damage and step-like protrusions in a spicule’s shape (see

Figure 5.1). While the Clausen profile maximizes the buckling strength in our model for the

spicules, it is possible that small deviations from this shape could result in disproportionately large

decreases in buckling strength. That is, we have to make sure that the Clausen profile is not sensitive

to geometry imperfections. In an equivalent way, the Clausen column should be tolerant to shape

variations in order for the discussion in [18] to be solid.

We define a column’s tolerance to shape variations as the extent to which perturbations in its

profile decrease its buckling strength. A closely related concept to tolerance is sensitivity. We have
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Figure 5.1: Representative SEM images of a few Ta. spicules with geometric imperfections, such as (A) damage, (B)
steps, and (C),(D) protrusions. The scale bars in all subfigures are 25 𝜇m.

a logical quantitative measure of the column’s sensitivity to shape variations given in Section 5.3,

where a smaller value indicates a smaller sensitivity, namely a greater tolerance. We derived

the formulation of sensitivity for a given column through mathematical derivation that involves

asymptotic analysis and calculus of variation. In order to validate the derivation, I performed

numerical experiments using Rayleigh-Ritz method. The main result of our research is that the

column with Clausen profile is not only the strongest column against buckling, but also the most

tolerant column to shape variations. Both features of the Clausen profile make the structure-property

connection between the spicules’ shape and its ability to guard buckling instability more substantial.

The chapter is organized as follows: In §5.2 we introduce the mathematical setup of the buckling

problem and perform perturbation to the problem. In §5.3 we derive the expression of buckling

strength sensitivity through calculus of variation and apply to expression to both constant column and

Clausen column. §5.4 presents the comparison of the theoretical result and numerical experimental

result. §5.5 provides proof that Clausen column is the least sensitive column to shape variations The

final section includes some discussions of the main conclusions.
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Figure 5.2: Schematics of a pin-ended non-uniform cross-sectional column under compressive axial loading. (A) A
schematic of the profile of a tapered, circular cross-section column. We use the radius of the column’s cross section, 𝑟 (𝑥),
to denote the shape of the column, where 𝑥 ∈ [0, 𝐿] is the distance along the column’s length from its left end and 𝐿 is the
column’s length. (B) The pin-ended column under compressive axial force 𝑃 in reference configuration. Here 𝐸 and 𝐼 (𝑥)
are the column’s Young’s modulus and second moment of area, respectively. (C) The column is in buckled configuration.
Here 𝑤(𝑥) denote the column’s transverse deflection.

5.2 Problem setup

We model the Ta. spicules as pin-ended slender columns under compressive axial loading. The

failure mechanism of the spicules is governed by Euler buckling. However, unlike the usual Euler

buckling problem in which the column has uniform cross-section, we focus on the cases where the

column has variable radius along its neutral axis. It should be noted that Euler’s buckling theory

only applies for columns whose cross sections are either regular polygons or circular [43]. In our

problem, we consider circular cross-section column and denote the radius of the cross sections as

𝑟 (𝑥) where 𝑥 ∈ [0, 𝐿] is used to denote the coordinate along the column’s neutral axis and 𝐿 is the

total length of the column. We refer 𝑟 (·) as the column’s profile. As we mentioned, the Clausen

profile results in a column that is 33% stronger than a column with the same length and volume but

for which the cross-sectional radius is constant.

In the rest of the chapter, we refer to columns with Clausen profile as Clausen columns. Similarly,

we refer to columns with constant cross-sectional radius as constant columns.
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5.2.1 Boundary value problem of non-uniform cross-sectional beam buckling

As we mentioned in section 5.1, we model the Ta. spicules as end-loaded columns under compressive

axial loading. For a column whose profile is given by 𝑟 (·), the second moment of inertia of the

column is given by 𝐼 (𝑥) = 𝜋𝑟 (𝑥)4/4. As per Euler’s buckling theory, the transverse deflection, 𝑤(𝑥),

of the column’s neutral axis satisfies the equations

𝐸 [𝐼 (𝑥)𝑤′′(𝑥)]′′ + 𝑃𝑤′′(𝑥) = 0, (5.1a)

𝐼 (𝑥)𝑤′′(𝑥) |𝑥=0, 𝐿 = 0, (5.1b)

𝑤(𝑥) |𝑥=0, 𝐿 = 0, (5.1c)

where 𝐸 is the column’s Young’s modulus.

The buckling strength of a simply supported, end loaded column is the smallest force 𝑃 for which

there exists a solution to (5.1) other than 𝑤(𝑥) = 0 for all 𝑥 ∈ [0, 𝐿].

By integrating (5.1a) twice from 𝑥 = 0 to 𝑥 = 𝐿 and using boundary conditions (5.1b) and (5.1c),

we simplify the governing equations as

𝐸𝐼 (𝑥)𝑤′′(𝑥) + 𝑃𝑤(𝑥) = 0, (5.2a)

𝑤(0) = 0, (5.2b)

𝑤(𝐿) = 0. (5.2c)

In terms of the non-dimensional variables 𝜉 = 𝑥/𝐿, 𝜂 = 𝑤/𝐿, 𝛽 = 𝑃/(𝐸𝐿2), 𝐼 = 𝐼/𝐿4, and 𝜌 = 𝑟/𝐿,

we have

𝐼 (𝜉)𝜂′′(𝜉) + 𝛽𝜂(𝜉) = 0, (5.3a)

𝜂(0) = 0, (5.3b)

𝜂(1) = 0, (5.3c)

where

𝐼 (𝜉) = 𝜋

4
𝜌(𝜉)4. (5.4)
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5.2.2 Asymptotic expansion

When there are geometric variations on the spicules, the column’s dimensionless profile will be

changed to 𝜌(𝜉) from its original profile 𝜌0(𝜉). We assume that the imperfect column is also

axisymmetric, thus Euler’s buckling theory still applies. The imperfection may not need to isovolu-

metric, i.e., it could change the volume of the original column. We seek to understand the relation

between the perturbation in 𝜌(𝜉) and the resulting perturbation in 𝛽 using the perturbation theory.

Let’s assume that 𝜌(𝜉), 𝐼 (𝜉), 𝜂(𝜉) and 𝛽 have the following asymptotic expansions,

𝜌(𝜉; 𝜖) = 𝜌0(𝜉) + 𝜖 𝜌1(𝜉) +𝑂 (𝜖2), (5.5a)

𝐼 (𝜉; 𝜖) = 𝐼0(𝜉) + 𝜖 𝐼1(𝜉) +𝑂 (𝜖2), (5.5b)

𝜂(𝜉; 𝜖) = 𝜂0(𝜉) + 𝜖𝜂1(𝜉) +𝑂 (𝜖2), (5.5c)

𝛽(𝜖) = 𝛽0 + 𝜖 𝛽1 +𝑂 (𝜖2). (5.5d)

According to the relation (5.4), I have

𝐼0(𝜉) = 𝜋𝜌0(𝜉)4/4, (5.6a)

𝐼1(𝜉) = 𝜋𝜌0(𝜉)3𝜌1(𝜉). (5.6b)

5.2.3 Solution to the initial problem

I substitute (5.5b)-(5.5d) into the dimensionless governing equation (5.3a) and collect terms involving

𝜖 . The resulting governing equations of order O(1) is

𝐼0(𝜉)𝜂0(𝜉)′′ + 𝛽0𝜂0(𝜉) = 0, (5.7a)

𝜂0(0) = 0, (5.7b)

𝜂0(1) = 0. (5.7c)
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Since 𝐼0(𝜉) is nonzero in the interval (0, 1), I multiply (5.7a) by 1/𝐼0(𝜉) and arrive at

𝜂′′0 (𝜉) +
𝛽0

𝐼0(𝜉)
𝜂0(𝜉) = 0, (5.8)

I multiply equation (5.8) by 𝜂0(𝜉) and integrate it from 𝜉 = 0 to 𝜉 = 1. Using the normalization

condition ∫ 1

0
𝜂0(𝜉)2𝐼0(𝜉)−1𝑑𝜉 = 1, (5.9)

the buckling strength of unperturbed column can be expressed as

𝛽0 = −
∫ 1

0
𝜂0(𝜉)𝜂′′0 (𝜉)𝑑𝜉. (5.10)

5.2.4 Solution to the first-order problem

The resulting governing equations of order O(𝜖) is,

𝐼0(𝜉)𝜂1(𝜉)′′ + 𝛽0𝜂1(𝜉) = −𝐼1(𝜉)𝜂0(𝜉)′′ − 𝛽1𝜂0(𝜉), (5.11a)

𝜂1(0) = 0, (5.11b)

𝜂1(1) = 0. (5.11c)

The above boundary value problem is not in standard Sturm-Liouville form. To convert the governing

equation to be a Sturm-Liouville problem, I multiply (5.11a) by 1/𝐼0(𝜉) and arrive at

𝜂′′1 (𝜉) +
𝛽0

𝐼0(𝜉)
𝜂1(𝜉) = −

𝐼1(𝜉)
𝐼0(𝜉)

𝜂′′0 (𝜉) −
𝛽1

𝐼0(𝜉)
𝜂0(𝜉). (5.12)

According to Sturm-Liouville theorem, the right hand side of (5.12) must be orthogonal to 𝜂0(𝜉),

which is the corresponding eigenfunction to the eigenvalue 𝛽0. Thus I get the following condition

∫ 1

0

(
− 𝐼1(𝜉)
𝐼0(𝜉)

𝜂′′0 (𝜉) −
𝛽1

𝐼0(𝜉)
𝜂0(𝜉)

)
𝜂0(𝜉)𝑑𝜉 = 0. (5.13)
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Noting the normalization condition (5.9), the expression of 𝛽1 is obtained as

𝛽1 = −
∫ 1

0
𝐼1(𝜉)𝐼0(𝜉)−1𝜂0(𝜉)𝜂′′0 (𝜉)𝑑𝜉. (5.14)

Recalling that (5.6a) and (5.6b), I can write 𝛽1 as a functional of 𝜌1(·) (parameterized by 𝜌0(·)):

𝛽1 [𝜌1(·); 𝜌0(·)] = −4
∫ 1

0
𝜌0(𝜉)−1𝜌1(𝜉)𝜂0(𝜉)𝜂′′0 (𝜉)𝑑𝜉. (5.15)

For a given column, eigenfunction 𝜂0(𝜉) is fully determined by the column’s profile 𝜌0(𝜉).

The expression for 𝛽1 will be determined by 𝜌1(𝜉), which is the first order perturbation of the

column’s profile. Using the notation 𝜌1(𝜉) to describe the geometric imperfection of the spicule

already implies our assumption that all variations are axisymmetric with respect to the spicules

neutral axes. Although such assumption may sound restrictive in the field of biological material, it is

quite reasonable in mechanical manufacturing and processing where rotating/revolving machinery

are very common, especially when working on slender rod or column structures. For example, a

Clausen column can be made by cutting the excess material off from a cylindrical column using a

lathe machine. In practice, the lathed Clausen column specimen will deviate from the mathematical

Clausen column because of the limited precision of the lathe machine. The deviation will be

axisymmetric if it is not caused by eccentric turning of the lathe’s center axis.

5.3 Buckling strength sensitivity to arbitrary axisymmetric perturba-

tions

5.3.1 Admissible spaces

For a given column profile, in order to calculate the extreme value of the first order perturbation in

buckling strength, 𝛽1, the admissible spaces for 𝜌0(·) and 𝜌1(·) have to be clarified.

For the initial columns, I assume the volume of the columns to be a constant 𝑉0. Therefore, the
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space of admissible functions for 𝜌0(·) is

𝜌0(·) ∈ V0 :=

{
𝜌0(·) ∈ 𝐿2( [0, 1]) : 𝜌0(𝜉) > 0,∀𝜉 ∈ (0, 1);

∫ 1

0
𝜋𝜌0(𝜉)2𝑑𝜉 = 𝑉̂0,

lim
𝜉→0

𝜉3/8

𝜌0(𝜉)
= lim
𝜉→1

(𝜉 − 1)3/8
𝜌0(𝜉)

= 0

}
,

(5.16)

where 𝑉̂0 = 𝑉0/𝐿3. In the definition ofV0, the radius of the column’s cross section has to be positive

along the length of the column except for the both two ends. That is, the column can be tapered at

both ends. However, 𝜌0(𝜉) should converges to zero slower than 𝜉3/8 as 𝜉 → 0 from above. Same

constraint on the rate of 𝜌0(𝜉) approaching zero exists for the right end 𝜉 → 1 from below. In other

words, the two ends of the column cannot be too sharp in order to make the result (5.15) applicable.

The derivation of the constraint involves the application of singular Sturm-Liouville theory. Please

see Appendix B.1 for details. One immediate message we can get from the admissible space (5.16)

is that our analysis applies to columns with constant and Clausen profiles, but not ellipse profiles.

The space of admissible functions for 𝜌1(·) is related to 𝜌0(·). The underlying principle is that

the resulting column’s profile 𝜌(𝜉; 𝜖) = 𝜌0(𝜉) + 𝜖 𝜌1(𝜉) +𝑂 (𝜖2) should satisfy the same constraints

as 𝜌0(·). In addition, the norm of 𝜌1(·) is prescribed as

|𝜌1(·) | :=
(∫ 1

0
𝜌2

1 (𝜉)𝑑𝜉
)1/2

= 𝑑. (5.17)

Therefore, I have

𝜌1(·) ∈ V𝑑 (𝜌0(·)) :=

{
𝜌1(·) ∈ 𝐿2( [0, 1]) : 𝜌(𝜉; 𝜖) > 0,∀𝜉 ∈ (0, 1); |𝜌1(·) | = 𝑑,

lim
𝜉→0

𝜉3/8

𝜌(𝜉; 𝜖) = lim
𝜉→1

(𝜉 − 1)3/8
𝜌(𝜉; 𝜖) = 0, 𝜌(𝜉; 𝜖) = 𝜌0(𝜉) + 𝜖 𝜌1(𝜉) +𝑂 (𝜖2)

}
.

(5.18)

5.3.2 Minimum value of the first order perturbation in buckling strength

In this section, I seek to calculate the extreme value of the first order reduction in buckling strength,

𝛽1, for a given column profile for arbitrary 𝜌1(·) ∈ V𝑑 (𝜌0(·)) given by (5.18). For columns with
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profile 𝜌0(·), I define the buckling strength sensitivity as

𝑆[𝜌0(·);V𝑑] = − lim
𝑑→0

(
min

𝜌1 ( ·) ∈V𝑑 (𝜌0 ( ·) )

𝛽1 [𝜌1(·); 𝜌0(·)]
𝛽0 [𝜌0(·)]𝑑

)
. (5.19)

The sensitivity definition makes sense only if the minimum value of 𝛽1 exists and the limit

operation converges. I will go ahead to derive the expression of the stationary point for which

𝜌∗1(𝜉) = arg min𝜌1 ( ·) ∈V𝑑 (𝜌0 ( ·) ) 𝛽1 [𝜌1(·); 𝜌0(·)]. Then I will prove that the stationary point 𝜌∗1(𝜉) I

obtained is actually a global minimizer (see Appendix B.2 for details). Therefore the existence of

minimum value of the first order perturbation in buckling strength, 𝛽∗1, is guaranteed. Similarly, the

existence of the limit as 𝑑 → 0 is evident when the expression 𝛽∗1/𝛽0 is obtained.

By introducing the constraint (5.17) as a Lagrange multiplier, the Lagrangian function of

𝛽1 [𝜌1(·); 𝜌0(·)] is augmented as

𝛽1 [𝜌1(·); 𝜌0(·)] =
∫ 1

0
−4𝜌0(𝜉)−1𝜌1(𝜉)𝜂0(𝜉)𝜂′′0 (𝜉)𝑑𝜉 + 𝜆

[∫ 1

0
𝜌1(𝜉)2𝑑𝜉 − 𝑑2

]
. (5.20)

Through variational method, for ∀ 𝛿𝜌1(𝜉) ∈ TV𝑑 ,

𝛿𝛽1 [𝜌1(·); 𝜌0(·)] =
∫ 1

0
−4𝜌0(𝜉)−1𝜂0(𝜉)𝜂′′0 (𝜉)𝛿𝜌1(𝜉)𝑑𝜉 + 2𝜆

∫ 1

0
𝜌1(𝜉)𝛿𝜌1(𝜉)𝑑𝜉. (5.21)

By enforcing 𝛿𝛽1 [𝜌1(·); 𝜌0(·)] = 0, I get the expression for a stationary point 𝜌∗1(𝜉) as

𝜌∗1(𝜉) =
2𝜌−1

0 (𝜉)𝜂0(𝜉)𝜂′′0 (𝜉)
𝜆

. (5.22)

I proved that the stationary point 𝜌∗1(𝜉) is actually a global minimizer. Please see Appendix B.2 for

details of the proof.

I substitute 𝜌∗1(𝜉) (5.22) into the constraint equation (5.17) and solve for 𝜆,

𝜆 =
2
𝑑

[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉

]1/2
. (5.23)
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The minimum value of 𝛽1 [𝜌1(·); 𝜌0(·)] is that

𝛽∗1 = −4𝑑
[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉

]1/2
. (5.24)

The relative change of the eigenvalue 𝛽∗1/𝛽0 is a linear function of the norm of the perturbation 𝑑,

𝛽∗1
𝛽0

= − 4
𝛽0

[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉

]1/2
𝑑. (5.25)

Here 𝛽0, 𝜌0(𝜉) and 𝜂0(𝜉) are the dimensionless buckling strength, profile and normalized eigen-

function of the initial column, respectively.

According to the definition (5.19), the sensitivity is given by

𝑆[𝜌0(·);V𝑑] =
4
𝛽0

[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉

]1/2
. (5.26)

5.3.3 Application to constant profile column

With the expression of 𝑆[𝜌0(·);V𝑑] given by (5.26), I can calculate the buckling strength sensitivity

of arbitrary column whose profile, 𝜌0(·), belongs toV0 (5.16). Let’s first consider a constant profile

column with dimensionless radius 𝜌𝑐 and fixed volume 𝑉̂0 = 𝜋𝜌2
𝑐. The second moment of inertia,

according to (5.6a), is 𝐼0(𝜉) = 𝜋𝜌4
𝑐/4. For the initial unperturbed column, 𝜂0(𝜉) is given as

𝜂0(𝜉) = 𝛼𝑐 sin(𝜋𝜉), (5.27)

where 𝛼𝑐 is an amplitude constant. Using the normalization condition (5.9), 𝛼𝑐 can be determined

as 𝛼𝑐 = 𝜌2
𝑐

√︁
𝜋/2. Using expression (5.26), I can calculate the sensitivity as

𝑆[𝜌Const
0 (·);V𝑑] =

2
√

6
𝜌𝑐

. (5.28)
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5.3.4 Application to Clausen column

For the Clausen column, the profile of the column is given in terms of a parameter 𝜃 varying from 0

to 𝜋:

𝜌0(𝜃) = 𝜌𝑎 sin 𝜃, (5.29a)

𝜉 (𝜃) = 1
𝜋

(
𝜃 − 1

2
sin 2𝜃

)
, (5.29b)

where 𝜌𝑎 =
√︁

4𝑉̂0/(3𝜋). It can be deduced that the variable 𝜌𝑎 =
√︁

4/3𝜌𝑐 if the Clausen column

has the same volume as the constant column.

The unperturbed eigenfunction is given by

𝜂0(𝜉) = 𝛼𝑎 sin3 𝜃. (5.30)

where 𝛼𝑎 is an amplitude constant. Using the normalization condition (5.9), 𝛼𝑎 can be determined

as 𝛼2
𝑎 = −16𝜋𝜌4

𝑎/9. Using expression (5.10), I calculate the unperturbed eigenvalue as

𝛽0 =
𝜋

12
𝑉̂2

0 . (5.31)

Finally, using expression (5.26), I calculate the sensitivity as

𝑆[𝜌Clausen
0 (·);V𝑑] =

8
√

3𝜌𝑎
. (5.32)

5.4 Comparison with numerical experiments

To verify the theoretical results, I obtained in Section 5.3.3 and 5.3.4, I performed numerical

experiments using Rayleigh-Ritz method and compared the numerical results with my theoretical

prediction.

Taking the numerical experiments for the constant column as examples, I computed the buckling

strengths of 106 different columns whose profiles are similar to the constant profile to quantify
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the constant column’s sensitivity to shape variations. I refer to these similar columns as perturbed

columns. I model the perturbation of the column’s profile, 𝜌1(·) using random piecewise-constant

functions. That is,

𝜌1(𝜉) = 𝑎𝑖 , for 𝜉 ∈ [ 𝑖 − 1
100

,
𝑖

100
), 𝑖 = 1, 2, . . . , 100. (5.33)

where 𝑎𝑖 are random constants. I put constraints on 𝑎𝑖 so that the resulting 𝜌1(𝜉) is admissible.

For example, the profile of the perturbed column cannot be negative anywhere along its length.

Therefore, at the two ends of the Clausen column where 𝜌0(·) is close to zero, 𝑎𝑖 can only be

positive. The profile of representative perturbed columns for constant/Clausen column are shown in

Figure 5.3(A)/(B) along with the profiles of the original columns.

For each perturbed column, I calculate the norm of 𝜌1(·) using equation (5.17). I then numerically

computed the buckling strength, 𝛽𝑐, using the Rayleigh-Ritz method (see Appendix B.3). I define

the relative change in buckling strength of the perturbed column as

𝛽𝑐 − 𝛽0

𝛽0
≈ 𝛽1

𝛽0
. (5.34)

The numerical point (𝑑, 𝛽1/𝛽0) is plotted in Figure 5.3(C) and (D). With 106 perturbed columns,

all points are plotted as point cloud.
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Figure 5.3: (A) Schematics of profiles of a constant column and a perturbed column. The radius of the column’s
cross-section is 𝜌𝑐 = 0.05. (B) Schematics of profiles of a Clausen column and a perturbed column. The Clausen column
shares the same volume as the constant column in (A). (C) Point clouds from numerical experiments for constant column
along with theoretical predictions of upper and lower bounds. The sensitivity to small-scale geometric perturbation is
𝑆[𝜌Const

0 (·);V𝑑] = 97.98. (D) Point clouds from numerical experiments for Clausen column along with theoretical
predictions of upper and lower bounds. The sensitivity to small-scale geometric perturbation is 𝑆[𝜌Clausen

0 (·);V𝑑] =
80.00.

I also plotted the upper and lower bounds from (5.28) and (5.32) in Figure 5.3(C) and (D) as

straight lines. It can be shown that the theoretical prediction of the upper and lower bounds for

𝛽1/𝛽0 match the numerical experimental results very well. Thus the sensitivity analysis is verified

to be highly accurate.

The following table summarizes the main results for the two different types of columns.

Table 5.1: Comparison of two types of columns

Profile Maximum radius Buckling strength Sensitivity
Constant 0.050 4.845 ×10−5 97.98
Clausen 0.058 6.467×10−5 80.00

From the above table, we can see that the Clausen column obtains the highest buckling strength.

In addition, its buckling strength has smaller sensitivity to perturbation compared to the constant
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column.

5.5 Optimal column profile that is least sensitive to shape variations

In Section 5.3, I derived the buckling strength sensitivity to shape variations for arbitrary column.

A natural question to ask in the next step would be: what is the optimal column profile that is least

sensitive to shape variations?

It has been shown that Clausen column is strongest against Euler buckling [114] and the re-

semblance of Ta. spicules to Clausen column implies a new structure-property connection created

by nature. However, since it is inevitable that all biological structures have shape variations, the

structure-property connection will be more substantial if Clausen column is least sensitive to shape

variations. Therefore, in this section, I will prove that Clausen profile is the optimal column profile

that is least sensitive to shape variations regarding Euler buckling.

The proof consists of three steps:

1. Derive the expression of sensitivity to isovolumetric perturbations for a given column profile;

2. Prove that the optimal column with most tolerance to arbitrary perturbations is same as the

optimal column with most tolerance to isovolumetric perturbations;

3. Prove that the Clausen column is the optimal column with most tolerance to isovolumetric

perturbations;

It follows from the above three steps that the Clausen column is indeed the optimal column with

most tolerance to arbitrary perturbations. I will present the three steps in details in the following

three subsections.

5.5.1 Sensitivity to isovolumetric axial-symmetric perturbations

In Section 5.3, I considered arbitrary perturbations that allow the volume change of the columns.

When I try to derive the most insensitive column profile to shape variations, such assumption brings
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difficulty. I will circumvent the difficulty by considering isovolumetric perturbations as a stepping

stone.

The isovolumetric perturbations satisfy

∫ 1

0
𝜋𝜌2(𝜉)𝑑𝜉 =

∫ 1

0
𝜋 (𝜌0(𝜉) + 𝜖 𝜌1(𝜉))2 𝑑𝜉 = 𝑉̂0. (5.35)

This is essentially

2𝜖
∫ 1

0
𝜌0(𝜉)𝜌1(𝜉)𝑑𝜉 + 𝜖2

∫ 1

0
𝜌2

1 (𝜉)𝑑𝜉 = 0. (5.36)

I only keep the first order equation, which is

∫ 1

0
𝜌0(𝜉)𝜌1(𝜉)𝑑𝜉 = 0. (5.37)

Therefore, the space of admissible space for 𝜌1(·) is

𝜌1(·) ∈ Vv
𝑑 (𝜌0(·)) :=

{
𝜌1(·) ∈ V𝑑 (𝜌0(·)) :

∫ 1

0
𝜌0(𝜉)𝜌1(𝜉)𝑑𝜉 = 0.

}
. (5.38)

By introducing an extra Lagrange multiplier 𝜆2 into the functional (5.20), we get

𝛽1 [𝜌1(·); 𝜌0(·)] =
∫ 1

0
−4𝜌−1

0 (𝜉)𝜌1(𝜉)𝜂0(𝜉)𝜂′′0 (𝜉)𝑑𝜉+𝜆1

[∫ 1

0
𝜌2

1 (𝜉)𝑑𝜉 − 𝑑
2
]
+𝜆2

[∫ 1

0
𝜌0(𝜉)𝜌1(𝜉)𝑑𝜉

]
.

(5.39)

Through variational method, for ∀ 𝛿𝜌1(𝜉) ∈ TVv
𝑑

,

𝛿𝛽1 [𝜌1(·); 𝜌0(·)] =
∫ 1

0
−4𝜌−1

0 (𝜉)𝜂0(𝜉)𝜂′′0 (𝜉)𝛿𝜌1(𝜉)𝑑𝜉 + 2𝜆1

∫ 1

0
𝜌1(𝜉)𝛿𝜌1(𝜉)𝑑𝜉

+ 𝜆2

∫ 1

0
𝜌0(𝜉)𝛿𝜌1(𝜉)𝑑𝜉.

(5.40)

By enforcing 𝛿𝛽1 [𝜌1(·); 𝜌0(·)] = 0, I get the expression for the worst perturbation 𝜌∗1(𝜉) as

𝜌∗1(𝜉) =
4𝜌−1

0 (𝜉)𝜂0(𝜉)𝜂′′0 (𝜉) − 𝜌0(𝜉)𝜆2

2𝜆1
. (5.41)
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I substitute (5.41) into the constraint equations (5.17) and (5.37) and solve for 𝜆1 and 𝜆2 as,

𝜆1 =
2
𝑑

[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉 −

𝜋𝛽2
0

𝑉̂0

]1/2

, (5.42)

𝜆2 = −4𝜋𝛽0

𝑉̂0
. (5.43)

The minimum value of 𝛽1 [𝜌1(·); 𝜌0(·)] is obtained by inserting (5.42), (5.43) and (5.41) into (5.39)

𝛽∗1 = −4𝑑

[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉 −

𝜋𝛽2
0

𝑉̂0

]1/2

. (5.44)

The relative change of the eigenvalue 𝛽∗1/𝛽0 is a linear function of the norm of the perturbation 𝑑,

𝛽∗1
𝛽0

= − 4
𝛽0

[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉 −

𝜋𝛽2
0

𝑉̂0

]1/2

𝑑. (5.45)

The sensitivity 𝑆[𝜌0(·);Vv
𝑑
] caused by isovolumetric perturbations is

𝑆[𝜌0(·);Vv
𝑑 ] =

4
𝛽0

[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉 −

𝜋𝛽2
0

𝑉̂0

]1/2

. (5.46)

5.5.2 The equivalence of the optimal column with the most tolerance to isovolumetric

perturbations to that of arbitrary perturbations

We introduce any subset of axisymmetric perturbations, scaling perturbations, in this section. For

this type of perturbations, we impose 𝜌1(·) to be 𝜌1(·) = −𝛼𝜌0(·), which is a scaling transformation

of the original column’s profile. We refer to the set of scaling perturbations asVs
𝑑
(𝜌0(·))

𝜌1(·) ∈ Vs
𝑑 (𝜌0(·)) :=

{
𝜌1(·) ∈ 𝐿2( [0, 1]) : 𝜌1(·) = −𝛼𝜌0(·), 𝛼 ∈ R, |𝜌1(·) | = 𝑑

}
. (5.47)

The first order perturbation of the eigenvalue can be obtained from (5.15) as

𝛽1 [−𝛼𝜌0(·); 𝜌0(·)] = −4𝛼𝛽0. (5.48)
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Inserting 𝜌1(·) = −𝛼𝜌0(·) into (5.17), the norm of the perturbations is

𝑑 = 𝛼

√︄
𝑉̂0

𝜋
. (5.49)

The sensitivity 𝑆[𝜌0(·);Vs
𝑑
] caused by scaling perturbations is

𝑆[𝜌0(·);Vs
𝑑] = 4

√︂
𝜋

𝑉̂0
. (5.50)

Recall that we already derived the sensitivity to arbitrary perturbations, 𝑆[𝜌0(·);V𝑑] (5.26),

the sensitivity to isovolumetric perturbations, 𝑆[𝜌0(·);Vv
𝑑
] (5.46). The three sensitivities given

by (5.26), (5.46) and (5.50) are related by the following equation

𝑆[𝜌0(·);V𝑑]2 = 𝑆[𝜌0(·);Vv
𝑑 ]

2 + 𝑆[𝜌0(·);Vs
𝑑]

2. (5.51)

I take minimum operation on both sides of (5.51):

min
𝜌0 ( ·) ∈V0

𝑆[𝜌0(·);V𝑑]2 = min
𝜌0 ( ·) ∈V0

𝑆[𝜌0(·);Vv
𝑑 ]

2 + 16𝜋
𝑉̂0

, (5.52)

where the space of admissible functionsV0 is given in (5.16).

The equation (5.52) shows that the minimizer for 𝑆[𝜌0(·);V𝑑]2 is also the minimizer for

𝑆[𝜌0(·);Vv
𝑑
]2. Therefore, the optimal column with most tolerance to arbitrary perturbations is

same as the optimal column with most tolerance to isovolumetric perturbations.

5.5.3 Proof of Clausen column as the optimal column in terms of tolerance to shape

variations

For the Clausen column whose profile is given by (5.29), we already have the expressions for the

unperturbed eigenfunction (5.30) and unperturbed eigenvalue (5.31) in Section 5.3.4. The Clausen

column’s sensitivity to isovolumetric perturbations can be calculated by inserting (5.29), (5.30) and
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(5.31) into (5.46):

𝑆[𝜌Clausen
0 (·);Vv

𝑑 ] = 0. (5.53)

Since 𝑆[𝜌0(·);Vv
𝑑
]2 ≥ 0, ∀ 𝜌0(·) ∈ V0, 𝜌0(·) = 𝜌Clausen

0 (·) is a minimizer of 𝑆[𝜌0(·);Vv
𝑑
]2. That is

min
𝜌0 ( ·) ∈V0

𝑆[𝜌0(·);Vv
𝑑 ]

2 = 𝑆[𝜌Clausen
0 (·);Vv

𝑑 ]
2 = 0, (5.54a)

arg min
𝜌0 ( ·) ∈V0

𝑆[𝜌0(·);Vv
𝑑 ]

2 = 𝜌Clausen
0 (·). (5.54b)

However, the uniqueness is not guaranteed.

Recalling the relation between 𝑆[𝜌0(·);Vv
𝑑
]2 and 𝑆[𝜌0(·);V𝑑]2 given by (5.52), we have

min
𝜌0 ( ·) ∈V0

𝑆[𝜌0(·);V𝑑]2 =
16𝜋
𝑉̂0

, (5.55a)

arg min
𝜌0 ( ·) ∈V0

𝑆[𝜌0(·);V𝑑]2 = arg min
𝜌0 ( ·) ∈V0

𝑆[𝜌0(·);Vv
𝑑 ]

2 = 𝜌Clausen
0 (·), (5.55b)

which means that the Clausen column has least sensitivity to arbitrary perturbation comparing to

any other columns whose profiles are given inV0.

5.6 Concluding remarks

1. As can be noted from Table 5.1 and Figure 5.3, for the worst case scenario, geometric

imperfection of the same norm will cause different reduction in Clausen column and constant

column’s buckling strength. Clausen column is more tolerant to shape variations than constant

column. In Section 5.5, we further proved that the Clausen profile is actually optimal in terms

of tolerance to the shape variations. When the shape variations are isovolumetric, this result is

a natural derivative of the fact that Clausen column is optimal in buckling strength with given

length and volume. This reason is given as follows. According to calculus of variation, if

we consider the buckling strength as a functional of the column’s profile, the variation of the

functional value vanishes when the column profile is optimal, i.e. Clausen profile. Any small

variations of the column’s profile won’t make any change to the column’s buckling strength.
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This is equivalent to say that the Clausen column is tolerant to any small perturbations to shape

variations. However, the admissible space of variations has been restricted to be isovolumetric.

For arbitrary axisymmetric perturbations, we use the previously mentions result as a stepping

stone and consider shape scaling perturbations as well to finally prove the result.

2. We deliberately avoid to use the term “imperfection sensitivity” in this study. The research

object of “imperfection sensitivity” study is usually thin-walled shell structure. It is generally

believed that buckling loads of pressure vessel components under various loading condition can

be extremely sensitive to imperfection resulting in significant reduction of the load-carrying

capacity [119]. However, in our case the spicules are solid and their sensitivity to imperfection

is in general smaller than shell structures. Besides, the assumptions and approaches of this

study are quite different from those in the studies of shell structures’ imperfection sensitivity.

We put forward these differences so that the audience should not compare this study with

those imperfection sensitivity studies of shell structures.

3. As we have mentioned in Section 5.2.2, we assume that the norm of the geometric imperfections

are asymptotically small and axisymmetric along the column’s neutral axis. These two

assumptions put some limitations to the range of applicability of the results. However, the

results may hold even for larger perturbations as can be seen from 5.3 where the perturbations

are not “asymptotically small”. Besides, unlike thin-wall shell structures, solid columns

are not very sensitive to geometric imperfections. With relatively large perturbations, the

reduction in the buckling strength may still be small and linearly proportional to the norm of

perturbations. The assumption of axisymmetric imperfection is quite reasonable even beyond

the scope of spicules. For example, most of the columns or struts could be manufactured or

processed by a rotating/revolving machinery that mainly produce axisymmetric defects. We

hope our results can be useful in the buckling analysis of many artificial columns.

4. We proposed a admissible space for the column’s profile in order for the buckling problem to

be well-posed. For tapered column, this rate of the profile’s radius approaching zero must lie

in a specific range. The determination of the range involves singular Sturm-Liouville theory

(see Appendix B.1 for details). It should be noted that our conditions are sufficient but not

necessary. To the best of our knowledge, this is the first well-posedness discussion on tapered
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column’s buckling problem. One of the important insights that I got from the discussion

is that, not all tapered columns have a well-defined buckling strength. For some tapered

columns, e.g. ellipse-profile column and double-cone column, the buckling strength does not

exist mathematically. This is also consistent with what I observed when I tried to calculate

the buckling strength numerically for ellipse-profile column using Rayleigh-Ritz method. It is

found that the numerical solution of buckling strength does not converge to a constant value as

the number of basis function increases. However, without knowing the admissible space for

the tapered column’s profile, one may take a non-converged value from numerical computation

as a tapered column’s buckling strength by mistake, even when the buckling strength does

not exist for this tapered column. Since the discussion of admissible space for the column’s

profile is not the main focus of this study, we did not put much effort in this topic. Further

investigation on the well-posedness of buckling problem of tapered column is needed.

5. In our numerical experiments in Section 5.4, we model the perturbation of the column’s profile

using random piecewise-constant functions. Of course, the set of piecewise-constant functions

is only a subset of the set of 𝐿2 functions, which indicates that more points should be present

in Figure 5.3(C) and (D). However, we do not expect the any new data point from general 𝐿2

perturbations to lie outside the theoretical bounds. The fantastic match between the theoretical

prediction and numerical point clouds implies that the set of piecewise-constant functions is

a great representative of the set of 𝐿2 functions. In the future, we will use a different subset

of 𝐿2 functions to model the perturbation of the column’s profile to see if we will obtain a

equally good match between the numerical experiments and our theoretical computations.



Chapter 6

Conclusions and outlook

Fundamental understanding of the mechanics of 1D continua is important and desirable due to its

wide applications in many engineering and biological fields. In this dissertation, we investigated

several critical problems related to the mechanics of 1D continua with particular application in the

bio-inspired engineering. The main findings of this dissertation are summarized as follows:

1. In the three point bending experiments, if the stiffness of the specimen and the loading system is

comparable, and the surface of the specimen is rough, then there is a chance to observe sawtooth

patterns in the large deflection region of the force-deflection curve. A misinterpretation of

the sawtooth pattern could lead to incorrect structure-property connections in the case of

Ea. anchor spicules. Since three point bending test is prevalent in mechanical property

characterization, it is worth pointing out this intrinsic pathology and providing a model to

explain the underlying mechanism. The sawtooth pattern can be avoided by gluing the two

ends of the specimen onto the test’s supports as shown in Figure 2.2. In this case, the beam

becomes fixed-fixed setup and the stretching deformation can be important in the deformed

specimen.

2. We present an asymptotic analysis of bending stiffness of multilayered composite cylindrical

structures with curvilinear orthotropy. The effective bending stiffness of multilayered hollow

cylinders with alternatively arranged orthotropic materials and no slip interfacial conditions

exceeds the bending stiffness of monolithic structure made of either material. What we can
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learn from the result is that through alternatively oriented material arrangement, a multilayered

composite beam can behave stiffer under bending without using intrinsic stiff material. In

another example, the effective bending stiffness of multilayered hollow cylinders is reduced

by cutting into multiple layers and assuming no friction interfacial conditions. The result

provides an explanation about how lamellar architectures enhance the spicules’ anchoring

ability by reducing their effective bending stiffness.

3. Following classical kinematic hypothesis for plane beams and general three-dimensional

continuum theory, we develop a geometrically nonlinear shear deformable beam theory in a

rigorous and systematic way. The development of the beam theory utilizes Hellinger-Reissner

variational principle, which looses the constitutive constraint and expands the solution space. It

is also proved that under what conditions the solutions exist for the proposed beam model. We

also provided a numerical scheme to solve for numerical solutions when analytical solutions

are not available. Although the proposed model does not support our hypothesis for Ea.

spicules’ architecture, the development of the beam model itself is of significance. This work

builds up a variationally consistent framework which can be used to systematically develop

more complicated reduced-dimensional structural theories.

4. We investigated different axisymmetric beams’ buckling strength and their tolerance to geo-

metric variations. It is found that Clausen column is not only optimal in buckling strength

with given length and volume, also optimal in tolerance to axisymmetric geometric variations.

Our asymptotic analysis is consistent with numerical experiments based on Rayleigh-Ritz

method. The result further support the structure-property connection in Ta. spicules—The

tapered shape provides the Ta. spicules higher buckling strength against buckling failure and

improves that overall structural strength of Ta. sponges.

It is important to note that the results in this dissertation is far from a confirmation that mechanical

optimization is the only factor contributing to the spicule’s design, including the lamellar architectures

in Ea. anchor spicules and the tapered shape of Ta. spicules. Actually, many biological skeletal

elements are inherently multi-functional and have evolved the ability to perform a variety of tasks

in addition to their mechanical ones. In particular, it has been shown that Ea. anchor spicules have
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exceptional fiber-optical properties [120, 121]. Currently, we cannot be certain that the Ea. spicule’s

internal architecture contributes solely to its mechanical function or whether it has additional (e.g.,

light transmission) benefits. In addition, it is also possible that the Ea. spicule’s internal architecture

is connected to a different metric of the spicule’s mechanical efficiency, or the same mechanical

metric through different mechanism. For example, the internal architectures in Ea. spicules are

proved to optimize the stress distribution over the spicules’ cross section [18]. This mechanism,

although different from the mechanism in 3, is also correlated with the enhancement of the overall

strength of each spicule. The two mechanisms can be combined together to better explain the

load-bearing capacity of the spicules that benefits from the lamellar internal architecture.

Another common question regarding the structure-property connections in spicules is whether

it is possible that the layered architecture is not for any mechanical benefits but just a result of

growth process? It is known that some architectural features of biological structures are merely a

consequence of the growth processes through which the structures are formed and have no obvious

functional implications, e.g., growth rings in fish scales [122]. Despite previous efforts [123],

knowledge regarding the detailed mechanisms underlying spicule formation is still incomplete and

therefore, at this stage, it cannot be ruled out whether other factors, such as growth processes, are also

responsible for the spicule’s shape and architecture. However, whether the spicule’s architecture is

a simple outcome of its growth process or is specifically optimized for multi-functionality, it clearly

offers the sponge skeleton an exceptional mechanical advantage. Therefore, even if the layered

architecture in Ea. spicules is just a result of growth process, that does not call off the mechanical

benefits in the spicules. And the structure-property connections have been supported independently

by our theoretical model, which means the mechanical benefits are indeed related to the spicule’s

architecture. Even though the mechanical benefits may not be the evolution goal of the sponge, the

theoretical model and the mechanics behind it is always effective and can be applied in engineering

design and manufacture.

Despite the achieved advances in this dissertation, there are several potential research topics that

could be explored in the future. Those topics include:

1. In order to further gauge the validity of applying the developed model to interpret the SS

experiments, it would be ideal if 𝜇(·), the variation of the coefficient of friction between the
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spicule and the trench when different cross-sections of the spicule are in contact with the

trench, could be measured directly and independently of the SS experiments. In the future,

we plan on characterizing 𝜇(·) using an Atomic Force Microscope [124, 60, 125]. Those

experiments will provide alternate estimates for 𝐴 and 𝜆, which can then be, respectively,

compared with the chosen values for them. That comparison would allow us to further gauge

the validity of applying our model to the SS experiments.

2. The nonlinear bending-sliding model not only uncovers the mechanism behind the sawtooth

patterns, but also provides a potential application of three point bending test: characterization

of the frictional coefficient between a surface and a fillet edge. A potential setup could be a

long, narrow plate-shape specimen slipping on a test stage with fillet supporting edges. The

specimen is loaded by a cantilever on its midpoint and force-deflection response is recorded.

Using the nonlinear bending-sliding model, the fractional coefficient between the specimen

and the edge could be deduced inversely from the force-deflection response.

3. In the asymptotic analysis of the effective bending stiffness of multilayered composite cylinders

with cylindrical orthotropy, we considered hollow cylinders and no slip/friction interfacial

conditions. In order to model the Ea. anchor spicules, a more realistic model would be a

multilayered cylinder with a solid core and elastic interfacial conditions. The change involves

modifications on the innermost boundary condition given by (3.13a).



Appendix A

Supplementary Material: Effective

bending stiffness of multilayered

composite cylinders with cylindrical

orthotropy

A.1 Material constants

The material constants 𝑚𝑖 , 𝑔𝑖 , 𝑄𝑖 ,𝑊𝑖 and 𝜇𝑖 are dependent on elastic constants. We calculate 𝑚𝑖 as

𝑚1 =

√︄
−𝑏 +

√︁
p (𝑏, 2) − 4𝑎𝑐

2𝑎
, (A.1a)

𝑚2 =

√︄
−𝑏 −

√︁
p (𝑏, 2) − 4𝑎𝑐

2𝑎
, (A.1b)

𝑚3 = −

√︄
−𝑏 +

√︁
p (𝑏, 2) − 4𝑎𝑐

2𝑎
, (A.1c)

𝑚4 = −

√︄
−𝑏 −

√︁
p (𝑏, 2) − 4𝑎𝑐

2𝑎
, (A.1d)
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where

𝑎 := 𝛽22𝛽44 − p (𝛽24, 2) , (A.1e)

𝑏 := 𝛽24(2𝛽14 + 𝛽24 + 2𝛽56) + p (𝛽14, 2)

− 𝛽44(𝛽11 + 2𝛽12 + 𝛽22 + 𝛽66) − 𝛽22𝛽55,

(A.1f)

𝑐 := 𝛽55(𝛽11 + 2𝛽12 + 𝛽22 + 𝛽66) − p (𝛽56, 2) , (A.1g)

and the reduced elastic constants 𝛽𝑖 𝑗 are defined in terms of 𝑠 (ℯ̂)
𝑖 𝑗

as

𝛽𝑖 𝑗 := 𝑠 (ℯ̂)
𝑖 𝑗
−
𝑠
(ℯ̂)
𝑖3 𝑠

(ℯ̂)
3 𝑗

𝑠
(ℯ̂)
33

, 𝑖, 𝑗 = 1, 2, . . . , 6. (A.2)

We calculate 𝑔𝑖 , 𝑄𝑖 ,𝑊𝑖 as

𝑔𝑖 =
𝛽24 p (𝑚𝑖 , 2) + (𝛽14 + 𝛽24)𝑚𝑖 − 𝛽56

𝛽44 p (𝑚𝑖 , 2) − 𝛽55
, (A.3a)

𝑄𝑖 =
1
𝑚𝑖
(𝛽12𝑚𝑖 + 𝛽22𝑚𝑖 (𝑚𝑖 + 1) − 𝛽24𝑔𝑖 p (𝑚𝑖 , 2)) , (A.3b)

𝑊𝑖 =
1
𝑚𝑖
(𝛽55𝑔𝑖 − 𝛽56) , (A.3c)

for 𝑖 ∈ L := (1, 2, 3, 4).

We calculate 𝑄5 and𝑊5 as

𝑄5 = 𝜇1(𝛽12 + 3𝛽22) − 2𝜇2𝛽24 +
𝑠
(ℯ̂)
23

𝑠
(ℯ̂)
33

, (A.4a)

𝑊5 =
1
2
(𝛽55𝜇2 − 𝛽56𝜇1), (A.4b)

where


𝜇1

𝜇2

 :=
1

𝑠
(ℯ̂)
33

Inv
©­­«

−2𝛽14 − 6𝛽24 + 𝛽56 4𝛽44 − 𝛽55

−𝛽11 − 2𝛽12 + 3𝛽22 − 𝛽66 2𝛽14 − 2𝛽24 + 𝛽56


ª®®¬


2𝑠 (ℯ̂)34

𝑠
(ℯ̂)
13 − 𝑠

(ℯ̂)
23

 . (A.4c)
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A.2 Expressions of 𝑃𝑖

The expressions of 𝑃𝑖 in Eqn. (3.16) are given by

𝑃1 = −1
𝑞
((𝑔2𝑔3(𝑚2 − 𝑚3) (𝑚4 − 2) + 𝑔2𝑔4(𝑚4 − 𝑚2) (𝑚3 − 2)

+𝑔3𝑔4(𝑚3 − 𝑚4) (𝑚2 − 2)) 𝜇1 + (𝑔2(𝑚3 − 𝑚4) (𝑚2 − 2)

+𝑔3(𝑚4 − 𝑚2) (𝑚3 − 2) + 𝑔4(𝑚2 − 𝑚3) (𝑚4 − 2)) 𝜇2) ,

(A.5a)

𝑃2 =
1
𝑞
((𝑔1𝑔3(𝑚1 − 𝑚3) (𝑚4 − 2) + 𝑔1𝑔4(𝑚4 − 𝑚1) (𝑚3 − 2)

+𝑔3𝑔4(𝑚3 − 𝑚4) (𝑚1 − 2)) 𝜇1 + (𝑔1(𝑚3 − 𝑚4) (𝑚1 − 2)

+𝑔3(𝑚4 − 𝑚1) (𝑚3 − 2) + 𝑔4(𝑚1 − 𝑚3) (𝑚4 − 2)) 𝜇2) ,

(A.5b)

𝑃3 = −1
𝑞
((𝑔1𝑔2(𝑚1 − 𝑚2) (𝑚4 − 2) + 𝑔1𝑔4(𝑚4 − 𝑚1) (𝑚2 − 2)

+ 𝑔2𝑔4(𝑚2 − 𝑚4) (𝑚1 − 2))𝜇1 + (𝑔1(𝑚2 − 𝑚4) (𝑚1 − 2)

+ 𝑔2(𝑚4 − 𝑚1) (𝑚2 − 2) + 𝑔4(𝑚1 − 𝑚2) (𝑚4 − 2))𝜇2),

(A.5c)

𝑃4 =
1
𝑞
((𝑔1𝑔2(𝑚1 − 𝑚2) (𝑚3 − 2) + 𝑔1𝑔3(𝑚3 − 𝑚1) (𝑚2 − 2)

+ 𝑔2𝑔3(𝑚2 − 𝑚3) (𝑚1 − 2))𝜇1 + (𝑔1(𝑚2 − 𝑚3) (𝑚1 − 2)

+ 𝑔2(𝑚3 − 𝑚1) (𝑚2 − 2) + 𝑔3(𝑚1 − 𝑚2) (𝑚3 − 2))𝜇2),

(A.5d)

where
𝑞 :=𝑔1(𝑔3 − 𝑔4) (𝑚1 − 𝑚3) (𝑚2 − 𝑚4)

+ 𝑔2(𝑔3 − 𝑔4) (𝑚2 − 𝑚3) (𝑚4 − 𝑚1)

− (𝑔1𝑔2 + 𝑔3𝑔4 − 𝑔1𝑔4 − 𝑔2𝑔4) (𝑚1 − 𝑚2) (𝑚3 − 𝑚4).

(A.6)
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A.3 Derivations in §3.3.3

A.3.1 Derivations of Eqn. (3.25)

To obtain Eqn. (3.25), let

𝑛Ã :=



1 1 1 1

𝑛𝑔1
𝑛𝑔2

𝑛𝑔3
𝑛𝑔4

𝑛𝑄1
𝑛𝑄2

𝑛𝑄3
𝑛𝑄4

𝑛𝑊1
𝑛𝑊2

𝑛𝑊3
𝑛𝑊4


, (A.7a)

𝑛B̃ :=



1 1 1 1

𝑛−1𝑔1
𝑛−1𝑔2

𝑛−1𝑔3
𝑛−1𝑔4

𝑛−1𝑄1
𝑛−1𝑄2

𝑛−1𝑄3
𝑛−1𝑄4

𝑛−1𝑊1
𝑛−1𝑊2

𝑛−1𝑊3
𝑛−1𝑊4


, (A.7b)

𝑛f(𝑟) :=



p (𝑟, 𝑛𝑚1) 0 0 0

0 p (𝑟, 𝑛𝑚2) 0 0

0 0 p (𝑟, 𝑛𝑚3) 0

0 0 0 p (𝑟, 𝑛𝑚4)


, (A.7c)

𝑛m̃ :=



𝑛𝑚1 0 0 0

0 𝑛𝑚2 0 0

0 0 𝑛𝑚3 0

0 0 0 𝑛𝑚4


. (A.7d)

It is noted that 𝑛Ã, 𝑛B̃, and 𝑛m̃ are constant matrices. The coefficient matrices 𝑛A and 𝑛B in

Eqn. (3.23a) can be written as

𝑛A = 𝑛Ã 𝑛f(𝑛−1𝑟), 𝑛B = 𝑛B̃ 𝑛−1f(𝑛−1𝑟). (A.8)
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Approximating 𝑛−1A and 𝑛−1B to the first order of Δ𝑟 around 𝑛−1𝑟 , we have

𝑛−1A = 𝑛B − 𝛿 𝑛BΔ𝑟 +𝑂 ( p (Δ𝑟, 2)), (A.9a)

𝑛−1B = 𝑛A − 𝛿 𝑛AΔ𝑟 +𝑂 ( p (Δ𝑟, 2)), (A.9b)

where

𝛿 𝑛A =
1
𝑛−1𝑟

𝑛A 𝑛m̃ =
1
𝑛−1𝑟

𝑛Ã 𝑛f(𝑛−1𝑟) 𝑛m̃, (A.9c)

𝛿 𝑛B =
1
𝑛−1𝑟

𝑛B 𝑛−1m̃ =
1
𝑛−1𝑟

𝑛B̃ 𝑛−1f(𝑛−1𝑟) 𝑛−1m̃. (A.9d)

Therefore, we derive the following relations by considering Eqns. (A.9) and approximating the

resulting expression to the first order of Δ𝑟 around 𝑛−1𝑟

𝑛B Inv
(
𝑛−1A

)
= I4×4 +

Δ𝑟

𝑛−1𝑟
𝑛B 𝑛−1m̃ Inv (𝑛B) +𝑂 ( p (Δ𝑟, 2)), (A.10a)

𝑛B Inv
(
𝑛−1A

)
𝑛−1B = 𝑛A + Δ𝑟

𝑛−1𝑟

(
𝑛B 𝑛−1m̃ Inv (𝑛B) 𝑛A − 𝑛A 𝑛m̃

)
+𝑂 ( p (Δ𝑟, 2)),

(A.10b)

𝑛B Inv
(
𝑛−1A

)
𝑛−1D + 𝑛D =

Δ𝑟

𝑛−1𝑟

(
2 𝑛D + 𝑛B 𝑛−1m̃ Inv (𝑛B) 𝑛−1D

)
+𝑂 ( p (Δ𝑟, 2)). (A.10c)

A.3.2 Derivation of ODE system given by (3.28) and (3.13)

Substituting Eqn. (3.27) into Eqn. (3.26), we obtain

2 𝑛−1𝑟
𝑑 𝑛K̄(𝑟)
𝑑𝑟

=

(
Inv (𝑛A) 𝑛B 𝑛−1m̃ Inv (𝑛B) 𝑛A − 𝑛m̃

)
𝑛K̄(𝑟)

+ Inv (𝑛A)
(
2 𝑛D + 𝑛B 𝑛−1m̃ Inv (𝑛B) 𝑛−1D

)
+𝑂 (Δ𝑟).

(A.11)
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Taking the zero order of approximation of Eqn. (A.11) around 𝑛𝑟 and noting that

𝑛B 𝑛−1m̃ Inv (𝑛B) = 𝑛B̃ 𝑛−1m̃ Inv
(
𝑛B̃

)
, (A.12)

we have

2 𝑛𝑟
𝑑 𝑛K̄(𝑟)
𝑑𝑟

=

(
Inv (𝑛f(𝑛𝑟)) Inv

(
𝑛Ã

)
𝑛B̃ 𝑛−1m̃ Inv

(
𝑛B̃

)
Ã𝑛 𝑛f(𝑛𝑟) − 𝑛m̃

)
𝑛K̄(𝑟)

+ p (𝑛𝑟, 2) Inv (𝑛f(𝑛𝑟)) Inv
(
𝑛Ã

) (
−2I4×4 + 𝑛B̃ 𝑛−1m̃ Inv

(
𝑛B̃

) )
𝑛D̃ +𝑂 (Δ𝑟),

(A.13)

where 𝑛D̃ is a constant vector

𝑛D̃ :=



𝑛𝜇1 − 𝑛−1𝜇1

𝑛𝜇2 − 𝑛−1𝜇2

𝑛𝑄5 − 𝑛−1𝑄5

𝑛𝑊5 − 𝑛−1𝑊5


. (A.14)

Let

𝑛M̃ := Inv
(
𝑛Ã

)
𝑛B̃ 𝑛−1m̃ Inv

(
𝑛B̃

)
𝑛Ã, (A.15a)

𝑛F̃ := Inv
(
𝑛Ã

) (
−2I4×4 + 𝑛B̃ 𝑛−1m̃ Inv

(
𝑛B̃

) )
𝑛D̃, (A.15b)

We rewrite Eqn. (A.13) as

2 𝑛𝑟
𝑑 𝑛K̄(𝑟)
𝑑𝑟

=
(
Inv (𝑛f(𝑛𝑟)) 𝑛M̃ 𝑛f(𝑛𝑟) − 𝑛m̃

)
𝑛K̄(𝑟) + p (𝑛𝑟, 2) Inv (𝑛f(𝑛𝑟)) 𝑛F̃. (A.16)

For simplicity, we drop the left superscript in all variables in the following derivations when

there is no confusion. We can rewrite Eqn. (A.16) as

2𝑟
𝑑K̄(𝑟)
𝑑𝑟

=
(
Inv (f(𝑟)) M̃f(𝑟) − m̃

)
K̄(𝑟) + p (𝑟, 2) Inv (f(𝑟)) F̃. (A.17)

Then multiplying Eqn. (A.17) by f(𝑟) on both sides, we obtain a linear ODE system of K̄(𝑟)

2𝑟
𝑑

(
f(𝑟)K̄(𝑟)

)
𝑑𝑟

=
(
M̃ + m̃

) (
f(𝑟)K̄(𝑟)

)
+ p (𝑟, 2) F̃, (A.18)
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with boundary conditions given by (3.13).

A.3.3 Solution procedures of ODE system given by (3.28) and (3.13)

The ODE system of 𝑛K̄(𝑟) given by (3.28) and (3.13) is equivalent to

2𝑟
𝑑K̂(𝑟)
𝑑𝑟

= H̃K̂(𝑟) + p (𝑟, 2) F̃, (A.19)

where K̂(𝑟) := f(𝑟)K̄(𝑟) and H̃ := M̃ + m̃, with boundary conditions

∑︁
𝑖∈L

𝐾̂𝑖 (0𝑟) p
(

0𝑟,−2
)
= −𝜇1,

∑︁
𝑖∈L

𝐾̂𝑖 (0𝑟)𝑔𝑖 p
(

0𝑟,−2
)
= −𝜇2, (A.20a)∑︁

𝑖∈L
𝐾̂𝑖 (𝑁𝑟) p

(
𝑁𝑟,−2

)
= −𝜇1,

∑︁
𝑖∈L

𝐾̂𝑖 (𝑁𝑟)𝑔𝑖 p
(
𝑁𝑟,−2

)
= −𝜇2. (A.20b)

Recall that the material properties of the multilayered material is alternately arranged, the

constant coefficient matrix H̃ and F̃ are different for the odd and even layers. We denote H̃ and F̃ for

the odd layers as 𝐼 H̃ and 𝐼 F̃ (for even layers, 𝐼 𝐼 H̃ and 𝐼 𝐼 F̃). The continuous functions K̂(𝑟) for the

odd and even layers can be obtained by solving Eqn. (A.19) separately. We diagonalize the matrix H̃

as

H̃ = Inv
(
Q̃
)
Λ̃Q̃, (A.21)

where Λ̃ := diag(𝜆̃1, 𝜆̃2, 𝜆̃3, 𝜆̃4) and Q̃ are respectively the eigenvalue and eigenvector matrices

of H̃, 𝜆̃𝑖 are eigenvalues. We denote Λ = diag(𝜆1, 𝜆2, 𝜆3, 𝜆4), where 𝜆𝑖 = 𝜆̃𝑖/2 for 𝑖 ∈ L. Then it

follows that Λ := Λ̃/2. Let

Y := Q̃K̂(𝑟), L :=
1
2

Q̃F̃, (A.22)

then Eqn. (A.19) becomes

𝑟
𝑑Y
𝑑𝑟

= ΛY + p (𝑟, 2) L. (A.23)
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The solution of Eqn. (A.23) reads



𝑌1

𝑌2

𝑌3

𝑌4


=



𝐿1
2−𝜆1

𝐿2
2−𝜆2

𝐿3
2−𝜆3

𝐿4
2−𝜆4


p (𝑟, 2) +



𝑐1 p (𝑟, 𝜆1)

𝑐2 p (𝑟, 𝜆2)

𝑐3 p (𝑟, 𝜆3)

𝑐4 p (𝑟, 𝜆4)


, (A.24)

where 𝑐𝑖 are the integration constants.

Therefore, K̂(𝑟) are given by

K̂(𝑟) = Inv
(
Q̃
)

Y, (A.25)

where Y is given by Eqn. (A.24). The analytical expression of integration constants 𝑐𝑖 can be

obtained by solving the linear system given by inserting Eqns. (A.25) into the boundary conditions

Eqns. (A.20). For the conciseness of the manuscript, we will not report the explicit analytical

expression of 𝑐𝑖 here.

Finally, we obtain K̄(𝑟) given by

K̄(𝑟) = Inv (f(𝑟)) Inv
(
Q̃
)

Y. (A.26)

Substituting Eqns. (A.7c) and (A.24) into Eqn. (A.26), we obtain a general discrete expression of 𝑛K

in component form as

𝑛𝐾𝑖 = p (𝑛𝑟,−𝑛𝑚𝑖)
©­«𝑛𝐺𝑖0𝑛 p (𝑟, 2) +

∑︁
𝑗∈L

𝑛𝐺𝑖 𝑗 p
(
𝑛𝑟, 𝑛𝜆 𝑗

)ª®¬ , for 𝑖 ∈ L, (A.27)

where 𝑛𝐺𝑖 𝑗 are constants given by

𝑛𝐺𝑖0 :=
∑︁
𝑘∈L

Inv
(
𝑛Q̃

)
𝑖𝑘

𝑛𝐿𝑘

2 − 𝑛𝜆𝑘
, (A.28a)

𝑛𝐺𝑖 𝑗 := Inv
(
𝑛Q̃

)
𝑖 𝑗
𝑛𝑐 𝑗 , for 𝑗 ∈ L. (A.28b)



Appendix B

Supplementary Material: Asymptotic

analysis of sponge spicules’ tolerance to

geometric variations regarding buckling

instability

B.1 Admissible space for the initial column’s profile

In this section, I will explain the development of the admissible space V0 for the initial column’s

profle 𝜌0(·). The derivation involves singular Sturm-Liouville theory and will be explained in detail.

B.1.1 Definition and notation

In order to explain the singular Sturm-Liouville theory, I first introduce some necessary definitions

and notations from the chapter A Catalogue of Sturm-Liouville Differential Equations by W. Norrie

Everitt [126] of the book Sturm-Liouville Theory: Past and Present [127].

(1) 𝐿1(𝐼) : Lebesgue integration space of complex-valued functions defined on the interval 𝐼

(2) 𝐿1
loc(𝐼) : Local integration space, the set of all complex-valued functions on 𝐼 which are

137
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Lebesgue integrable on all compact sub-intervals [𝑎, 𝑏] ⊆ 𝐼.

(3) 𝐴𝐶 : Absolute continuity, with respect to Lebesgue measure

(4) 𝐴𝐶loc(𝐼) : The space of all complex-valued functions defined on 𝐼 which are absolutely

continuous on all compact sub-intervals of 𝐼

B.1.2 Sturm-Liouville differential equation

Consider the following boundary value problem

− (𝑝(𝑥)𝑦′(𝑥))′ = 𝜆𝑦(𝑥), ∀𝑥 ∈ (0, 1), (B.1.1a)

𝑝(0)𝑦′(0) = 0, (B.1.1b)

𝑦(1) = 0. (B.1.1c)

The coefficient function 𝑝(𝑥) is continuous in [0, 1], 𝑝(𝑥) > 0 for 0 < 𝑥 ≤ 1 and 𝑝(0) ≥ 0.

This is a special case of the general Sturm-Liouville differential equation

− (𝑝(𝑥)𝑦′(𝑥))′ + 𝑞(𝑥)𝑦(𝑥) = 𝜆𝑤(𝑥)𝑦(𝑥), ∀𝑥 ∈ (𝑎, 𝑏), (B.1.2)

where 𝜆 ∈ C is a complex-valued spectral parameter. The set of Sturm-Liouville coefficients

{𝑝, 𝑞, 𝑤} has to satisfy the minimal conditions

(1) 𝑝, 𝑞, 𝑤 : (𝑎, 𝑏) → R,

(2) 𝑝−1, 𝑞, 𝑤 ∈ 𝐿1
loc(𝑎, 𝑏),

(3) 𝑤 is a weight function on (𝑎, 𝑏), which means that𝑤(𝑥) : (𝑎, 𝑏) → R is a Lebesgue measurable

function and 𝑤(𝑥) > 0 for almost all 𝑥 ∈ (𝑎, 𝑏).

For the problem (B.1.1), all of the above three minimal conditions are satisfied.

B.1.3 Endpoints classification

I introduce the endpoints classification given in [126] by W. Norrie Everitt.
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Suppose given the interval (𝑎, 𝑏) and the set of coefficients {𝑝, 𝑞, 𝑤}.

(1) The endpoint 𝑎 is regular if

(I) 𝑎 > −∞, and

(II) 𝑝−1, 𝑞, 𝑤 ∈ 𝐿1(𝑎, 𝑐], ∀ 𝑐 ∈ (𝑎, 𝑏).

(2) The endpoint 𝑎 is singular if it is not regular, i.e.,

(I) either 𝑎 = −∞,

(II) or 𝑎 > −∞ but
∫ 𝑐
𝑎

(
|𝑝(𝑥) |−1 + |𝑞(𝑥) | + |𝑤(𝑥) |

)
𝑑𝑥 = +∞, ∀ 𝑐 ∈ (𝑎, 𝑏).

If 𝑎 is a singular endpoint, there are two classification subcases as follows:

(1) It is limit-point if for some 𝜆 ∈ C, at least one solution 𝑦(·, 𝜆) of the differential equa-

tion (B.1.1) satisfies ∫ 𝑐

𝑎

𝑤(𝑥) |𝑦(𝑥, 𝜆) |2𝑑𝑥 = +∞, ∀ 𝑐 ∈ (𝑎, 𝑏). (B.1.3)

(2) It is limit-circle if for some 𝜆 ∈ C, all solutions 𝑦(·, 𝜆) of the differential equation (B.1.1)

satisfy ∫ 𝑐

𝑎

𝑤(𝑥) |𝑦(𝑥, 𝜆) |2𝑑𝑥 < +∞, ∀ 𝑐 ∈ (𝑎, 𝑏). (B.1.4)

According to above classification, for our problem (B.1.1), 𝑥 = 1 is a regular endpoint. The

singularity of the endpoint 𝑥 = 0 depends on the behavior of 1/𝑝(𝑥) as 𝑥 → 0. Taking the leading

order term 𝑥𝛼 from the series expansion of 𝑝(𝑥), I have the following discussion:

(1) If 𝛼 ≤ 0, which means 𝑝(0) ≠ 0, the endpoint 𝑥 = 0 is regular.

(2) If 0 < 𝛼 < 1, which means 𝑝(0) = 0 but
∫ 𝑐

0 1/𝑝(𝑡)𝑑𝑡 < +∞, ∀ 𝑐 ∈ (0, 1), the endpoint 𝑥 = 0

is still regular.

(3) If 𝛼 ≥ 1, which means 𝑝(0) = 0 and
∫ 𝑐

0 1/𝑝(𝑡)𝑑𝑡 = +∞, ∀ 𝑐 ∈ (0, 1), the endpoint 𝑥 = 0 is

singular.

Therefore, if the singularity of 1/𝑝(𝑥) is moderate (0 < 𝛼 < 1), the problem (B.1.1) is regular

and all the results of regular Sturm-Liouville theory hold (see [128] by Boyce and Di Prima).
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However, if the singularity of 1/𝑝(𝑥) is substantial (𝛼 ≥ 1), problem (B.1.1) becomes a singular

Strum-Liouville problem. For example, in the context of Euler buckling, the problem is singular if

the column has ellipse or Clausen profile (see Section B.1.5). I will further explore whether the

following results still hold in a singular Strum-Liouville problem:

(1) The self-adjoint relation holds.

(2) The problem consists only a discrete set of eigenvalues.

(3) All the eigenvalues are real.

(4) The corresponding eigenfunctions form a complete, orthogonal set in the Hilbert function

space.

(5) The expansion of a given continuous function 𝑓 in terms of a series of eigenfunctions is

convergent.

Taking 𝜆 = 0, the differential equation (B.1.1a) becomes − (𝑝(𝑥)𝑦′(𝑥))′ = 0. Approximating

𝑝(𝑥) by its leading order term 𝑥𝛼, 𝛼 ≥ 1, I get the non-trivial solution of 𝑦(𝑥) as

𝑦(𝑥) ∼ 𝐶1
𝑥1−𝛼

1 − 𝛼 + 𝐶2, (B.1.5)

where 𝐶1 and 𝐶2 are integration constants. For 𝑐 ∈ (0, 1), the 𝐿2 norm of 𝑦(𝑥) can be estimated

∫ 𝑐

0
|𝑦(𝑥) |2𝑑𝑥 ∼ lim

𝑥→0

[
𝐶2

1
(1 − 𝛼)2(3 − 2𝛼)

𝑥3−2𝛼 + 𝐶1𝐶2

(1 − 𝛼) (2 − 𝛼) 𝑥
2−𝛼 + 𝐶2

2𝑥

]
. (B.1.6)

For 𝛼 < 3
2 ,

∫ 𝑐
0 |𝑦(𝑥) |

2𝑑𝑥 < +∞, the endpoint 𝑥 = 0 is limit-circle; for 𝛼 ≥ 3
2 ,

∫ 𝑐
0 |𝑦(𝑥) |

2𝑑𝑥 = +∞,

the endpoint 𝑥 = 0 is limit-point.

B.1.4 Spectrum properties

Since the endpoint 𝑥 = 1 is regular, the spectrum property of the problem (B.1.1) depends on the

classification of endpoint 𝑥 = 0. For the spectrum properties of endpoints in different classification,

we have the following discussion (see [129] by Bailey et al. for reference)
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(1) If 𝑥 = 0 is regular or limit-circle, then the spectrum is always discrete, simple and bounded

below.

(2) If 𝑥 = 0 is limit-point, then the spectrum is always simple but may or may not be discrete,

and may or may not be bounded below.

Thus, to make sure that the buckling problem given by (B.1.1) to be valid, the endpoint 𝑥 = 0

must be regular or limit-circle. That is, for 𝑝(𝑥) ∼ 𝑥𝛼, 𝛼 < 3
2 must be satisfied. This condition is

sufficient but not necessary.

B.1.5 Application to buckling of constant, Clausen, ellipsoidal columns

For arbitrary axisymmetric pin-ended, non-uniform cross-section column, one can identify a critical

point in the buckled configuration where the tangential angle at that point is zero. If the geometry

of the column is symmetric with respect to the midpoint of the column, the critical point is the

midpoint of the column. In general, the critical point will divide the column into two pieces with

uneven length. We focus on one of the pieces. By introducing 𝜁 (𝜉) = 𝜂′(𝜉) as the tangential angle

of the column’s neutral axis, we have the governing equations of the Euler buckling problem for a

non-uniform column with hinged left end and built-in right end given by

(𝐼 (𝜉)𝜁 ′(𝜉))′ + 𝛽𝜁 (𝜉) = 0, ∀𝜉 ∈ (0, 1), (B.1.7a)

𝐼 (𝜉)𝜁 ′(𝜉)
��
𝜉=0 = 0, (B.1.7b)

𝜁 (𝜉) | 𝜉=1 = 0. (B.1.7c)

At the end 𝜉 = 0, the beam is hinged so the bending moment 𝐼 (0)𝜁 ′(0) vanishes. The end 𝜉 = 1

is the critical point of the original column where no rotation is observed. The coefficient function

𝐼 (𝜉) is non-zero at 𝜉 = 1 and may vanish at 𝜉 = 0. If we replace the variables 𝐼 (𝜉), 𝜁 (𝜉), 𝜉, 𝛽

by 𝑝(𝑥), 𝑦(𝑥), 𝑥, 𝜆, respectively, the above problem is equivalent to the standard Sturm-Liouville

problem as given by (B.1.1).

I apply the results in the above sections to constant, ellipsoidal and Clausen column profiles.
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The mathematical description for the three types of columns’ profiles are given by

𝜌⊏⊐ (𝜉) = 𝜌0, (B.1.8a)

𝜌⃝(𝜉) = 𝐶1𝜉
1/2(1 − 𝜉)1/2, (B.1.8b)

𝜌Clausen(𝜃) = 𝐶2 sin 𝜃, 𝜉 (𝜃) = 1
𝜋

(
𝜃 − 1

2
sin 2𝜃

)
. (B.1.8c)

Noting that 𝑝(𝑥) ∼ 𝐼 (𝜉) ∼ 𝜌(𝜉)4, it is straightforward that for the constant profile, 𝑝(𝑥) ∼ 𝑥0,

and for the ellipse profile, 𝑝(𝑥) ∼ 𝑥2 at the endpoint 𝑥 = 0. For the Clausen profile, using series

expansion I found that 𝑝(𝑥) ∼ 𝑥4/3. For columns with constant (𝛼 = 0) and Clausen profile (𝛼 = 4/3),

the endpoint 𝑥 = 0 is regular and limit-circle, respectively. For columns with ellipse profile (𝛼 = 2),

the endpoint 𝑥 = 0 is limit-point. Therefore, the buckling analysis applies for constant and Clausen

profile columns, but may not apply for ellipsoidal columns.

B.2 Proof that the stationary point is a global minimizer

In this section, I provide a simple proof that the stationary point that I obtained in Section 5.3.2 is a

global minimizer for the following problem:

min
𝜌1 ( ·) ∈V1 (𝜌0 ( ·) )

𝛽1 [𝜌1(·); 𝜌0(·)], (B.2.1)

where

𝛽1 [𝜌1(·); 𝜌0(·)] = −4
∫ 1

0
𝜌0(𝜉)−1𝜌1(𝜉)𝜂0(𝜉)𝜂′′0 (𝜉)𝑑𝜉. (B.2.2)

According to Cauchy-Schwarz inequality

(∫ 1

0
−4𝜌−1

0 (𝜉)𝜌1(𝜉)𝜂0(𝜉)𝜂′′0 (𝜉)𝑑𝜉
)2

≤
∫ 1

0

(
−4𝜌−1

0 (𝜉)𝜂0(𝜉)𝜂′′0 (𝜉)𝑑𝜉
)2
𝑑𝜉 ·

∫ 1

0
𝜌2

1 (𝜉)𝑑𝜉,

(B.2.3)



143

which gives the range for 𝛽1 [𝜌1(·); 𝜌0(·)]:

−4𝑑
[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉

]1/2
≤ 𝛽1 [𝜌1(·); 𝜌0(·)] ≤ 4𝑑

[∫ 1

0
𝜌−2

0 (𝜉)𝜂
2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉

]1/2
.

(B.2.4)

When I take 𝜌∗1(𝜉) given by (5.22) as 𝜌1(𝜉), the minimum value−4𝑑
[∫ 1

0 𝜌−2
0 (𝜉)𝜂

2
0 (𝜉)𝜂

′′2
0 (𝜉)𝑑𝜉

]1/2

is arrived. Thus I proved that the stationary point that I obtained in Section 5.3.2 is indeed a global

minimizer.

B.3 Computation of the critical buckling load for perturbed columns

using Rayleigh-Ritz method

Consider the boundary value problem (BVP) in (5.1a). In terms of the non-dimensional variables,

we have

(𝐼 (𝜉)𝜂′′(𝜉))′′ + 𝛽𝜂′′(𝜉) = 0, (B.3.1a)

𝐼 (𝜉)𝜂′′(𝜉)
��
𝜉=0, 1 = 0, (B.3.1b)

𝜂(𝜉) | 𝜉=0, 1 = 0, (B.3.1c)

where 𝐼 (𝜉) is given by (5.4). In order to find the buckling strength numerically, I cast the above BVP

in the form of a variational problem. It can be shown that the BVP, Eqns. (B.3.1a), is equivalent to

the following variational problem. Find 𝜂(𝜉) ∈ V𝜂 , where

V𝜂 =
{
𝜂 ∈ 𝐶2(0, 1) | 𝜂(0) = 𝜂(1) = 0.

}
so that the functional

Π [𝜂(·)] = 1
2

∫ 1

0

[
𝐼 (𝜉)𝜂′′(𝜉)2 − 𝛽𝜂′(𝜉)2

]
𝑑𝜉, (B.3.2)

attains its minimum value.

We use the Rayleigh-Ritz method [130] to find an approximate solution to this variational

problem. The approximation to the minimizer 𝜂∗(·) is 𝜂ℎ∗ (·), which is the minimizer of Π̂ over the
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finite dimensional spaceVℎ
𝜂 , where

Vℎ
𝜂 =

{
𝑁max∑︁
𝑖=1

𝐵𝑖𝜙𝑖 (·) : 𝐵𝑖 ∈ R and 𝜙𝑖 (·) ∈ 𝐶2(0, 1) for 𝑖 = 1, 2, . . . , 𝑁max, 𝜙𝑖 (0) = 𝜙𝑖 (1) = 0.

}
,

(B.3.3)

𝜂ℎ (·) =
𝑁max∑︁
𝑖=1

𝐵𝑖𝜙𝑖 (·), (𝜂ℎ)′(·) =
𝑁max∑︁
𝑖=1

𝐵𝑖𝜙
′
𝑖 (·), (𝜂ℎ)′′(·) =

𝑁max∑︁
𝑖=1

𝐵𝑖𝜙
′′
𝑖 (·), (B.3.4)

Using the above expansions in Eqn. (B.3.2), we get

Π [𝜂ℎ (·)] = 1
2

∫ 1

0

𝐼 (𝜉)
(
𝑁max∑︁
𝑖=1

𝐵𝑖𝜙
′′
𝑖 (𝜉)

)2

− 𝛽
(
𝑁max∑︁
𝑖=1

𝐵𝑖𝜙
′
𝑖 (𝜉)

)2 𝑑𝜉. (B.3.5)

Setting 𝜕Π/𝜕𝐵 𝑗 = 0 we get that

𝑁max∑︁
𝑗=1

𝐾𝑀𝑖 𝑗 𝐵 𝑗 = 𝛽

𝑁max∑︁
𝑗=1

𝐾𝐺𝑖 𝑗 𝐵 𝑗 , (B.3.6)

where

𝐾𝑀𝑖 𝑗 =

∫ 1

0
𝐼 (𝜉)𝜙′′𝑖 (𝜉)𝜙′′𝑗 (𝜉) 𝑑𝜉, (B.3.7)

𝐾𝐺𝑖 𝑗 =

∫ 1

0
𝜙′𝑖 (𝜉)𝜙′𝑗 (𝜉) 𝑑𝜉. (B.3.8)

In matrix notion, it reads

(
KG

)−1
KMB = 𝛽B. (B.3.9)

In the numerical experiments, I choose 𝜙𝑖 = sin(𝑖𝜋𝜁) with 𝑁max = 50. Thus, the dimensionless

buckling strength, 𝛽𝑐, is the lowest eigenvalue of the matrix K =
(
KG)−1 KM.



Bibliography

[1] A. H. Nayfeh and P. F. Pai. Linear and nonlinear structural mechanics. Wiley series in

nonlinear science. Wiley-Interscience, Hoboken, N.J, 2004.

[2] S. Timoshenko. On the correction for shear of the differential equation for transverse vibrations

of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science, 41(245):744–746, May 1921.

[3] S. Timoshenko. X. On the transverse vibrations of bars of uniform cross-section. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(253):125–131,

January 1922.

[4] A. A. V. KRISHN. Vibrations of short beams. AIAA Journal, 8(1):34–38, 1970.

[5] P. R. Heyliger and J. N. Reddy. A higher order beam finite element for bending and vibration

problems. Journal of Sound and Vibration, 126(2):309–326, October 1988.

[6] A. E. H. Love. A treatise on the mathematical theory of elasticity. Dover classics of science

and mathematics. Dover Publ, New York, 4. ed., unabridged and unaltered republ. of the 4.

(1927) ed edition, 1990.

[7] S. Timoshenko and J. M. Gere. Theory of elastic stability. Dover Publications, Mineola,

2009.

[8] E. Reissner. On one-dimensional finite-strain beam theory: The plane problem. Zeitschrift

für angewandte Mathematik und Physik ZAMP, 23(5):795–804, September 1972.

145



146

[9] J. C. Simo. A finite strain beam formulation. The three-dimensional dynamic problem. Part

I. Computer Methods in Applied Mechanics and Engineering, 49(1):55–70, May 1985.

[10] L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes (ap-

pendix, de curvis elasticis). Lausanne und Genf, 1744, 1774.

[11] F. Engesser. Ober die knickfestigkeit gerader stabe (on the buckling strength of straight struts)

zeitschrift fur architektur und ingenieurwesen, 1889.

[12] F. Engesser. Über knickfragen. Schweizerische Bauzeitung, 26(4):24, 1895.

[13] F. Shanley. The column paradox. Journal of the Aeronautical Sciences, 13(12):678–678,

1946.

[14] S. Leelavanichkul and A. Cherkaev. Why the grain in tree trunks spirals: a mechanical

perspective. Structural and Multidisciplinary Optimization, 28(2):127–135, 2004.

[15] U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie. Bioinspired structural

materials. Nature Materials, 14(1):23–36, January 2015.

[16] J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, and P. Fratzl.

Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale.

Science, 309(5732):275–278, 2005.

[17] A. P. Jackson, J. F. V. Vincent, and R. M. Turner. The mechanical design of nacre. Proc. R.

Soc. Lond. B, 234(1277):415–440, September 1988.

[18] M. A. Monn, J. C. Weaver, T. Zhang, J. Aizenberg, and H. Kesari. New functional insights

into the internal architecture of the laminated anchor spicules of Euplectella aspergillum.

Proceedings of the National Academy of Sciences, 112(16):4976–4981, April 2015.

[19] J. D. Currey. Mechanical properties of mother of pearl in tension. Proceedings of the Royal

Society B: Biological Sciences, 196:443–463, 1977.

[20] M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki. Biological materials: Structure and

mechanical properties. Progress in Materials Science, 53(1):1–206, 2008.



147

[21] H. D. Espinosa, A. L. Juster, F. J. Latourte, O. Y. Loh, D. Gregoire, and P. D. Zavattieri.

Tablet-level origin of toughening in abalone shells and translation to synthetic composite

materials. Nature Communications, 2:173, 2011.

[22] T. Zhang, Y. Ma, K. Chen, M. Kunz, N. Tamura, M. Qiang, J. Xu, and L. Qi. Structure

and mechanical properties of a pteropod shell consisting of interlocked helical aragonite

nanofibers. Angewandte Chemie, 123(44):10545–10549, 2011.

[23] L. Li, J. C. Weaver, and C. Ortiz. Hierarchical structural design for fracture resistance in the

shell of the pteropod Clio pyramidata. Nature Communications, 6:1–10, 2015.

[24] O. Kolednik, J. Predan, F. D. Fischer, and P. Fratzl. Bioinspired design criteria for damage-

resistant materials with periodically varying microstructure. Advanced Functional Materials,

21(19):3634–3641, 2011.

[25] J. C. Weaver, J. Aizenberg, G. E. Fantner, D. Kisailus, A. Woesz, P. Allen, K. Fields, M. J.

Porter, F. W. Zok, P. K. Hansma, P. Fratzl, and D. E. Morse. Hierarchical assembly of

the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of

Structural Biology, 158(1):93–106, April 2007.

[26] G. Mayer. Rigid biological systems as models for synthetic composites. Science,

310(5751):1144–1147, 2005.

[27] G. Mayer. New toughening concepts for ceramic composites from rigid natural materials.

Journal of the mechanical behavior of biomedical materials, 4(5):670–681, 2011.

[28] S. Walter, B. Flinn, and G. Mayer. Mechanisms of toughening of a natural rigid composite.

Materials Science and Engineering: C, 27(3):570–574, 2007.

[29] M. A. Monn and H. Kesari. Enhanced bending failure strain in biological glass fibers due to

internal lamellar architecture. Journal of the Mechanical Behavior of Biomedical Materials,

76:69–75, December 2017.

[30] M. A. Monn, K. Vijaykumar, S. Kochiyama, and H. Kesari. Lamellar architectures in stiff

biomaterials may not always be templates for enhancing toughness in composites. Nature

Communications, 11:373, 2020.



148

[31] S. Kochiyama, W. Fang, M. A. Monn, and H. Kesari. Sawtooth patterns in flexural force curves

of structural biological materials are not signatures of toughness enhancement. Journal of the

Mechanical Behavior of Biomedical Materials, page 104362, 2021.

[32] J. C. Weaver, G. W. Milliron, P. Allen, A. Miserez, A. Rawal, J. Garay, P. J. Thurner, J. Seto,

B. Mayzel, L. J. Friesen, B. F. Chmelka, P. Fratzl, J. Aizenberg, Y. Dauphin, D. Kisailus, and

D. E. Morse. Unifying Design Strategies in Demosponge and Hexactinellid Skeletal Systems.

The Journal of Adhesion, 86(1):72–95, January 2010.

[33] J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, and P. Fratzl.

Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale.

Science, 309(5732):275–278, July 2005.

[34] M. Sarikaya, H. Fong, N. Sunderland, B. Flinn, G. Mayer, A. Mescher, and E. Gaino.

Biomimetic model of a sponge-spicular optical fiber—mechanical properties and structure.

Journal of Materials Research, 16:1420–1428, 2001.

[35] C. Levi, J. Barton, C. Guillemet, E. Le Bras, and P. Lehuede. A remarkably strong natural

glassy rod: the anchoring spicule of the Monorhaphis sponge. Journal of Materials Science

Letters, 8:337–339, 1989.

[36] R. Rabiei, S. Bekah, and F. Barthelat. Nacre from mollusk shells: inspiration for high-

performance nanocomposites. Natural Polymers, 2:113–149, 2012.

[37] W. Clegg, K. Kendall, N. M. Alford, T. Button, and J. Birchall. A simple way to make tough

ceramics. Nature, 347:455–457, 1990.

[38] M. A. Monn, J. Ferreira, J. Yang, and H. Kesari. A millimeter scale flexural testing system for

measuring the mechanical properties of marine sponge spicules. J. of Visualized Experiments,

page e56571, 2017.

[39] M. A. Monn and H. Kesari. A new structure-property connection in the skeletal elements of

the marine sponge Tethya aurantia that guards against buckling instability. Scientific Reports,

7, January 2017.



149

[40] C. Jolicoeur and A. Cardou. Analytical solution for bending of coaxial orthotropic cylinders.

Journal of Engineering Mechanics, 120(12):2556–2574, 1994.

[41] M. Nickel, E. Bullinger, and F. Beckmann. Functional morphology of tethya species (porifera):

2. three-dimensional morphometrics on spicules and skeleton superstructures of t. minuta.

Zoomorphology, 125(4):225–239, 2006.

[42] G. Bavestrello, B. Calcinai, L. Ceccati, C. Cerrano, and M. Sarà. Skeletal development in two

species of tethya (porifera, demospongiae). Italian Journal of Zoology, 67(3):241–244, 2000.

[43] B. K. Lee and S. J. Oh. Elastica and buckling load of simple tapered columns with constant

volume. International Journal of Solids and Structures, 37(18):2507–2518, 2000.

[44] M. Sarikaya. An introduction to biomimetics: a structural viewpoint. Microscopy Research

and Technique, 27(5):360–375, 1994.

[45] R. Menig, M. Meyers, M. Meyers, and K. Vecchio. Quasi-static and dynamic mechanical

response of Haliotis rufescens (abalone) shells. Acta Materialia, 48(9):2383–2398, 2000.

[46] K. J. Koester, J. Ager, and R. Ritchie. The true toughness of human cortical bone measured

with realistically short cracks. Nature Materials, 7(8):672–677, 2008.

[47] Cook J., Gordon J. E., Evans C. C., Gordon J. E., Marsh D. M., and Bowden Frank Philip.

A mechanism for the control of crack propagation in all-brittle systems. Proceedings of the

Royal Society of London A, 282:508–520, 1964.

[48] H. Ming-Yuan and J. W. Hutchinson. Crack deflection at an interface between dissimilar

elastic materials. International Journal of Solids and Structures, 25(9):1053–1067, 1989.

[49] M. M. Rahaman, W. Fang, A. L. Fawzi, Y. Wan, and H. Kesari. An accelerometer-only

algorithm for determining the acceleration field of a rigid body, with application in studying

the mechanics of mild traumatic brain injury. Journal of the Mechanics and Physics of Solids,

page 104014, 2020.



150

[50] W. Deng and H. Kesari. Angle-independent optimal adhesion in plane peeling of thin

elastic films at large surface roughnesses. Journal of the Mechanics and Physics of Solids,

148:104270, 2021.

[51] A. R. Forsyth. Lectures on the differential geometry of curves and surfaces. University Press,

1912.

[52] L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive

solutio problematis isoperimetrici latissimo sensu accepti, volume 1. Springer Science &

Business Media, 1952.

[53] V. L. Popov. Coulomb’s law of friction. In Contact Mechanics and Friction, pages 151–172.

Springer, 2017.

[54] S. Goldstein. Modern developments in fluid dynamics: an account of theory and experiment

relating to boundary layers, turbulent motion and wakes. Number V.1 in Modern Develop-

ments in Fluid Dynamics. Clarendon Press, 1938.

[55] M. S. Klamkin. On the transformation of a class of boundary value problems into initial value

problems for ordinary differential equations. SIAM Review, 4(1):43–47, 1962.

[56] L. Euler. De novo genere oscillationum. Commentarii Academiæ Scientiarum Petropolitanæ,

pages 128–149, 1750.

[57] E. T. Whittaker. A treatise on the analytical dynamics of particles and rigid bodies. CUP

Archive, 1937.

[58] A. Beléndez, C. Pascual, D. Méndez, T. Beléndez, and C. Neipp. Exact solution for the

nonlinear pendulum. Revista Brasileira de Ensino de Física, 29(4):645–648, 2007.

[59] W. Deng and H. Kesari. Effect of machine stiffness on interpreting contact force–indentation

depth curves in adhesive elastic contact experiments. Journal of the Mechanics and Physics

of Solids, 131:404–423, 2019.

[60] H. Kesari and A. J. Lew. Effective macroscopic adhesive contact behavior induced by small

surface roughness. Journal of the Mechanics and Physics of Solids, 12:2488–2510, 2011.



151

[61] G. Tomlinson. CVI. A molecular theory of friction. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 7(46):905–939, 1929.

[62] W. Beare and F. P. Bowden. Physical properties of surfaces i-kinetic friction. Philosophical

Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,

234(741):329–354, 1935.

[63] E. A. Deulin, V. Mikhailov, Y. V. Panfilov, and R. Nevshupa. Mechanics and physics of

precise vacuum mechanisms, volume 91. Springer, 2010.

[64] A. Marsal, F. Ansart, V. Turq, J.-P. Bonino, J.-M. Sobrino, Y. M. Chen, and J. Garcia.

Mechanical properties and tribological behavior of a silica or/and alumina coating prepared

by sol-gel route on stainless steel. Surface and Coatings Technology, 237:234–240, 2013.

[65] E. Rabinowicz and R. Tanner. Friction and wear of materials. Journal of Applied Mechanics,

33(2):479, 1966.

[66] P. Mora and D. Place. Simulation of the frictional stick-slip instability. Pure and Applied

Geophysics, 143(1):61–87, 1994.

[67] A. D. Berman, W. A. Ducker, and J. N. Israelachvili. Origin and characterization of different

stick-slip friction mechanisms. Langmuir, 12(19):4559–4563, 1996.

[68] H. Gao. Application of fracture mechanics concepts to hierarchical biomechanics of bone

and bone-like materials. International Journal of Fracture, 138(1-4):101–137, 2006.

[69] B. Ji and H. Gao. Mechanical principles of biological nanocomposites. Annual Review of

Materials Research, 40:77–100, 2010.

[70] K. Bertoldi, D. Bigoni, and W. Drugan. Nacre: an orthotropic and bimodular elastic material.

Composites Science and Technology, 68(6):1363–1375, 2008.

[71] J. E. Rim, P. Zavattieri, A. Juster, and H. D. Espinosa. Dimensional analysis and parametric

studies for designing artificial nacre. Journal of the Mechanical Behavior of Biomedical

Materials, 4(2):190–211, February 2011.



152

[72] M. R. Begley, N. R. Philips, B. G. Compton, D. V. Wilbrink, R. O. Ritchie, and M. Utz.

Micromechanical models to guide the development of synthetic ‘brick and mortar’composites.

Journal of the Mechanics and Physics of Solids, 60(8):1545–1560, 2012.

[73] Y. Shao, H.-P. Zhao, X.-Q. Feng, and H. Gao. Discontinuous crack-bridging model for fracture

toughness analysis of nacre. Journal of the Mechanics and Physics of Solids, 60(8):1400–1419,

2012.

[74] M. C. Kingsley and M. A. Ramsay. The spiral in the tusk of the narwhal. Arctic, pages

236–238, 1988.

[75] T. C. Gasser, R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with

distributed collagen fibre orientations. Journal of the Royal Society Interface, 3(6):15–35,

2006.

[76] P. Fratzl and R. Weinkamer. Nature’s hierarchical materials. Progress in Materials Science,

52(8):1263 – 1334, 2007.

[77] J. Buckwalter, M. Glimcher, R. Cooper, and R. Recker. Bone biology. Part I: Structure, blood

supply, cells, matrix, and mineralization. Journal of Bone and Joint Surgery - Series A,

77(8):1256–1275, 1995.

[78] J. L. Delgado, M. Á. Herranz, and N. Martin. The nano-forms of carbon. Journal of Materials

Chemistry, 18(13):1417–1426, 2008.

[79] S. G. Lekhnitskii. Theory of the elasticity of anisotropic bodies. Mir Publishers, 1981.

[80] T. C. T. Ting. Anisotropic elasticity : theory and applications. Oxford University Press, USA,

1996.

[81] L. Kollár and G. S. Springer. Stress analysis of anisotropic laminated cylinders and cylindrical

segments. International Journal of Solids and Structures, 29(12):1499–1517, 1992.

[82] L. Kollár, J. M. Patterson, and G. S. Springer. Composite cylinders subjected to hygrothermal

and mechanical loads. International Journal of Solids and Structures, 29(12):1519–1534,

1992.



153

[83] T. Ting. Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically

anisotropic material. Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 452(1954):2397–2421, 1996.

[84] T. Chen, C.-T. Chung, and W.-L. Lin. A revisit of a cylindrically anisotropic tube subjected

to pressuring, shearing, torsion, extension and a uniform temperature change. International

Journal of Solids and Structures, 37(37):5143–5159, 2000.

[85] J.-Q. Tarn and Y.-M. Wang. Laminated composite tubes under extension, torsion, bending,

shearing and pressuring: a state space approach. International Journal of Solids and Structures,

38(50):9053–9075, 2001.

[86] C. Huang and S. Dong. Analysis of laminated circular cylinders of materials with the most

general form of cylindrical anisotropy.: I. Axially symmetric deformations. International

Journal of Solids and Structures, 38(34):6163–6182, 2001.

[87] M. Xia, H. Takayanagi, and K. Kemmochi. Bending behavior of filament-wound fiber-

reinforced sandwich pipes. Composite Structures, 56(2):201–210, 2002.

[88] J. Crossley, A. Spencer, and A. England. Analytical solutions for bending and flexure of

helically reinforced cylinders. International Journal of Solids and Structures, 40(4):777–806,

2003.

[89] I. Tsukrov and B. Drach. Elastic deformation of composite cylinders with cylindrically

orthotropic layers. International Journal of Solids and Structures, 47(1):25–33, 2010.

[90] D. Gnoli, S. Babamohammadi, and N. Fantuzzi. Homogenization and equivalent beam model

for fiber-reinforced tubular profiles. Materials, 13(9):2069, 2020.

[91] G. Chatzigeorgiou, N. Charalambakis, and F. Murat. Homogenization problems of a hollow

cylinder made of elastic materials with discontinuous properties. International Journal of

Solids and Structures, 45(18):5165–5180, 2008.

[92] G. Chatzigeorgiou, Y. Efendiev, N. Charalambakis, and D. C. Lagoudas. Effective thermoelas-

tic properties of composites with periodicity in cylindrical coordinates. International Journal

of Solids and Structures, 49(18):2590–2603, 2012.



154

[93] X. Sun, Y. Chen, V. Tan, R. Jaiman, and T. Tay. Homogenization and stress analysis of multi-

layered composite offshore production risers. Journal of Applied Mechanics, 81(3):031003,

2014.

[94] X. Sun, V. Tan, Y. Chen, L. Tan, R. Jaiman, and T. Tay. Stress analysis of multi-layered

hollow anisotropic composite cylindrical structures using the homogenization method. Acta

Mechanica, 225(6):1649–1672, 2014.

[95] M. M. Rahaman, W. Fang, A. L. Fawzi, Y. Wan, and H. Kesari. An accelerometer-only

algorithm for determining the acceleration field of a rigid body, with application in studying

the mechanics of mild traumatic brain injury. Journal of the Mechanics and Physics of Solids,

143:104014, 2020.

[96] W. Deng and H. Kesari. Angle-independent optimal adhesion in plane peeling of thin

elastic films at large surface roughnesses. Journal of the Mechanics and Physics of Solids,

148:104270, 2021.

[97] J. C. Simo, K. D. Hjelmstad, and R. L. Taylor. Numerical formulations of elasto-viscoplastic

response of beams accounting for the effect of shear. Computer Methods in Applied Mechanics

and Engineering, 42(3):301–330, March 1984.

[98] J. C. Simo and L. Vu-Quoc. A three-dimensional finite-strain rod model. part II: Compu-

tational aspects. Computer Methods in Applied Mechanics and Engineering, 58(1):79–116,

October 1986.

[99] G. Yoshiaki, Y. Tomoo, and O. Makoto. Elliptic integral solutions of plane elastica with

axial and shear deformations. International Journal of Solids and Structures, 26(4):375–390,

January 1990.

[100] E. Reissner. On One-Dimensional Large-Displacement Finite-Strain Beam Theory. Studies

in Applied Mathematics, 52(2):87–95, June 1973.

[101] T. Iwakuma and S. Kuranishi. How much contribution does the shear deformation have in a

beam theory? Doboku Gakkai Ronbunshu, (344):141–151, 1984.



155

[102] T. Chaisomphob, F. Nishino, A. Hasegawa, and A.-S. Alygamalaly. An elastic finite dis-

placement analysis of plane beams with and without shear deformation. Doboku Gakkai

Ronbunshu, (368):169–177, 1986.

[103] L. Liu and N. Lu. Variational formulations, instabilities and critical loadings of space curved

beams. International Journal of Solids and Structures, 87:48–60, June 2016.

[104] C. L. Dym and I. H. Shames. Solid Mechanics. Springer New York, New York, NY, 2013.

[105] E. Reissner. On a Variational Theorem in Elasticity. Journal of Mathematics and Physics,

29(1-4):90–95, April 1950.

[106] P. G. Ciarlet. Mathematical elasticity. Number v. 20, 27, 29 in Studies in mathematics and its

applications. North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science

Pub. Co, Amsterdam ; New York : New York, N.Y., U.S.A, 1988.

[107] B. Dacorogna. Direct methods in the calculus of variations. Number v. 78 in Applied

mathematical sciences. Springer, New York, NY, 2nd ed edition, 2008.

[108] L. C. Evans. Partial differential equations. Number v. 19 in Graduate studies in mathematics.

American Mathematical Society, 2nd ed edition, 2010.

[109] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element

Analysis. Courier Corporation, May 2012.

[110] K. F. Riley, M. P. Hobson, and S. J. Bence. Mathematical methods for physics and engineering.

Cambridge Univ. Press, Cambridge, 2006.

[111] P. E. Gill, W. Murray, and M. H. Wright. Practical optimization. Elsevier Acad. Press,

Amsterdam, 14. print edition, 2004.

[112] J. Nocedal and S. J. Wright. Numerical optimization. Springer series in operations research.

Springer, New York, 2nd ed edition, 2006.

[113] M. Sarà and E. Manara. Cortical structure and adaptation in the genus tethya (porifera,

demospongiae). In Fossil and recent sponges, pages 306–312. Springer, 1991.



156

[114] M. A. Monn and H. Kesari. A new structure-property connection in the skeletal elements of

the marine sponge tethya aurantia that guards against buckling instability. Scientific reports,

7(1):1–10, 2017.

[115] M. Launey, E. Munch, D. Alsem, H. Barth, E. Saiz, A. Tomsia, and R. Ritchie. Designing

highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta

Materialia, 57(10):2919–2932, 2009.

[116] M. Mirkhalaf, A. K. Dastjerdi, and F. Barthelat. Overcoming the brittleness of glass through

bio-inspiration and micro-architecture. Nature Communications, 5, 2014.

[117] T. Clausen. Über die form architektonischer säulen. Bull cl, Physico Math Acad St Pétersbourg,

9:369–380, 1851.

[118] I. Tadjbakhsh and J. Keller. Strongest columns and isoperimetric inequalities for eigenvalues.

Journal of Applied Mechanics, 29(1):159–164, 1962.

[119] W. Wunderlich and U. Albertin. Analysis and load carrying behaviour of imperfection sensitive

shells. International journal for numerical methods in engineering, 47(1-3):255–273, 2000.

[120] V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, and J. Aizenberg. Fibre-optical features of

a glass sponge. Nature, 424(6951):899–900, 2003.

[121] J. Aizenberg, V. C. Sundar, A. D. Yablon, J. C. Weaver, and G. Chen. Biological glass fibers:

Correlation between optical and structural properties. Proceedings of the National Academy

of Sciences, 101(10):3358–3363, March 2004.

[122] D. Thompson. On Growth and Form., chapter On form and mechanical efficiency, pages

976–982. Cambridge Univ. Press, 1942.

[123] S. Leys. Comparative study of spiculogenesis in demosponge and hexactinellid larvae.

Microscopy Research and Technique, 62(4):300–311, November 2003.

[124] H. Kesari, J. C. Doll, B. L. Pruitt, W. Cai, and A. J. Lew. Role of surface roughness in hysteresis

during adhesive elastic contact. Philosophical Magazine & Philosophical Magazine Letters,

90(12):891–902, 2010.



157

[125] W. Deng and H. Kesari. Depth-dependent hysteresis in adhesive elastic contacts at large

surface roughness. Scientific Reports, 9:1–12, 2019.

[126] W. N. Everitt. A catalogue of sturm-liouville differential equations. In Sturm-Liouville

Theory, pages 271–331. Birkhäuser Basel, 2005.

[127] W. O. Amrein, A. M. Hinz, and D. P. Pearson, editors. Sturm-Liouville theory: past and

present. Birkhäuser, Basel ; Boston, 2005.

[128] W. E. Boyce and R. C. DiPrima. Elementary differential equations and boundary value

problems. Wiley, Hoboken, NJ, tenth edition edition, 2012.

[129] P. B. Bailey, W. N. Everitt, and A. Zettl. Algorithm 810: The sleign2 sturm-liouville code.

ACM Trans. Math. Softw., 27(2):143–192, June 2001.

[130] K. D. Hjelmstad. Fundamentals of structural mechanics, chapter The planar buckling of

beams, pages 415–417. Springer Science & Business Media, 2007.


	List of Tables
	List of Illustrations
	Introduction
	Structural biological materials serve as templates for bio-inspiration
	Does lamellar architecture in Ea. spicules contribute to toughness enhancement?
	New hypothesis about the beneficial properties of the lamellar architectures in Ea. anchor spicules
	Exploring the shear effect of the lamellar architectures in Ea. anchor spicules

	Theoretical analysis of Clausen column's buckling behavior inspired by tapered spicules in Tethya aurantia

	Sawtooth patterns in flexural force curves of structural biological materials are not signatures of toughness enhancement
	Introduction
	Mathematical preliminaries
	A brief review of the simply supported, three-point bending experiments
	Theory
	Equations governing the spicule's equilibrium configurations
	Equilibrium force-displacement curves
	Force-displacement curves that will be measured in the simply-supported experiments

	Comparing theoretical predictions for the force-displacement curves with their experimental measurements
	Concluding remarks

	Effective bending stiffness of multilayered composite cylinders with cylindrical orthotropy
	Introduction
	Pure bending of multilayered composite cylinders with cylindrical orthotropy
	Transformation of constitutive law
	Bending stiffness formula by Jolicoeur and Cardou

	Effective bending stiffness
	Homogeneous material and freely slipping interface
	Heterogeneous material and freely slipping interface
	Heterogeneous material and no slipping interface

	Numerical examples and discussions
	Conclusions

	A geometrically nonlinear shear deformable beam theory
	Introduction
	A variationally consistent formulation of shear deformable beams
	Kinematics
	Hellinger-Reissner variational principle
	Reduction to Elastica theory and Timoshenko beam theory

	Comparison with Reissner's theory in conjunction with Saint Venant-Kirchhoff constitutive model
	Ill-posedness of Reissner's theory in conjunction with Saint Venant-Kirchhoff constitutive model
	Proof of the existence of solutions for the proposed beam model

	Finite element formulation
	Weak form
	Discretization
	Linearization and modified Newton-Raphson method

	Numerical Examples
	Compressive buckling problem
	Multiple loops example

	Discussion and conclusion

	Asymptotic analysis of sponge spicules' tolerance to geometric variations regarding buckling instability
	Introduction
	Structure-property connection of Ta. spicules by Monn and Kesari
	Tolerance of the Clausen profile

	Problem setup
	Boundary value problem of non-uniform cross-sectional beam buckling
	Asymptotic expansion
	Solution to the initial problem
	Solution to the first-order problem

	Buckling strength sensitivity to arbitrary axisymmetric perturbations
	Admissible spaces
	Minimum value of the first order perturbation in buckling strength
	Application to constant profile column
	Application to Clausen column

	Comparison with numerical experiments
	Optimal column profile that is least sensitive to shape variations
	Sensitivity to isovolumetric axial-symmetric perturbations
	The equivalence of the optimal column with the most tolerance to isovolumetric perturbations to that of arbitrary perturbations
	Proof of Clausen column as the optimal column in terms of tolerance to shape variations

	Concluding remarks

	Conclusions and outlook
	Supplementary Material: Effective bending stiffness of multilayered composite cylinders with cylindrical orthotropy
	Material constants
	Expressions of Pi
	Derivations in §3.3.3
	Derivations of Eqn. (3.25)
	Derivation of ODE system given by (3.28) and (3.13)
	Solution procedures of ODE system given by (3.28) and (3.13)


	Supplementary Material: Asymptotic analysis of sponge spicules' tolerance to geometric variations regarding buckling instability
	Admissible space for the initial column’s profile
	Definition and notation
	Sturm-Liouville differential equation
	Endpoints classification
	Spectrum properties
	Application to buckling of constant, Clausen, ellipsoidal columns

	Proof that the stationary point is a global minimizer
	Computation of the critical buckling load for perturbed columns using Rayleigh-Ritz method

	Bibliography

