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1 Notations12

We introduce some necessary notations from the chapter A Catalogue of Sturm-Liouville Differen-13

tial Equations by W. Norrie Everitt [1] in Page 275 of the book Sturm-Liouville Theory: Past and14

Present [2].15

Lebesgue integration space of complex-valued functions defined on the interval I is denoted16

as L1(I). The local integration space L1
loc(I) is the set of all complex-valued functions on I which17

are Lebesgue integrable on all compact sub-intervals [a,b]⊆ I.18

Absolute continuity, with respect to Lebesgue measure, is denoted by AC; the space of all19

complex-valued functions defined on I which are absolutely continuous on all compact sub-intervals20

of I, is denoted by ACloc(I).21

2 Boundary Value Problem22

The governing equations of the Euler buckling problem for one half column is

(Ĩṽ′)′+β ṽ = 0, ∀η ∈ (0,1), (1a)

Ĩṽ′
∣∣
η=0 = 0, (1b)

ṽ|
η=1 = 0. (1c)

where Ĩ(η) is the non-dimensional second moment of inertia of the column, ṽ = w̃′ is the non-23

dimensional rotation angle of the column. Due to the symmetry of the problem, we only consider24

the half of the column. At the end η = 0, the beam is hinged so the bending moment Ĩṽ′ vanishes.25

The end η = 1 is the middle point, i.e. the symmetry point, of the original beam. The coefficient26

function Ĩ(η) is non-zero at η = 1 and may vanish at η = 0.27

If we change the variables Ĩ(η), ṽ(η), η , β to p(x), y(x), x, λ , respectively, the above problem
is equivalent to the abstract math problem as follows, {eq:AbstractBVP}

−
(

p(x)y′(x)
)′
= λy(x), ∀x ∈ (0,1), (2a) {eq:GE}

p(0)y′(0) = 0, (2b) {eq:bc1}
y(1) = 0. (2c) {eq:bc2}

The coefficient function p(x) is continuous in [0,1], p(x)> 0 for 0 < x≤ 1 and p(0)≥ 0.28

This is a special case of the general Sturm-Liouville differential equation29

M[y](x)≡−
(

p(x)y′(x)
)′
+q(x)y(x) = λw(x)y(x), ∀x ∈ (a,b), (3) {eq:generalSL}

where λ ∈ C is a complex-valued spectral parameter. The set of Sturm-Liouville coefficients30

{p,q,w} has to satisfy the minimal conditions31

(1) p, q, w : (a,b)→ R,32

(2) p−1, q, w ∈ L1
loc(a,b),33

(3) w is a weight function on (a,b), which means that w(x) : (a,b)→R is a Lebesgue measurable34

function and w(x)> 0 for almost all x ∈ (a,b).35

For the problem (2), all of the above three minimal conditions are satisfied.36
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3 Endpoints classification37

We introduce the endpoints classification from the chapter A Catalogue of Sturm-Liouville Differ-38

ential Equations by W. Norrie Everitt [1] in Page 277 of the book Sturm-Liouville Theory: Past39

and Present [2].40

Suppose given the interval (a,b) and the set of coefficients {p,q,w}.41

(1) The endpoint a is regular if42

(I) a >−∞, and43

(II) p−1, q, w ∈ L1(a,c], ∀ c ∈ (a,b).44

(2) The endpoint a is singular if it is not regular, i.e.,45

(I) either a =−∞,46

(II) or a >−∞ but
∫ c

a [|p(x)|−1 + |q(x)|+ |w(x)|]dx =+∞, ∀ c ∈ (a,b).47

If a is a singular endpoint, there are two classification subcases as follows:48

(1) It is limit-point if for some λ ∈C, at least one solution y(·,λ ) of the differential equation (2)49

satisfies50 ∫ c

a
w(x)|y(x,λ )|2dx =+∞, ∀ c ∈ (a,b). (4) {eq:LP}

(2) It is limit-circle if for some λ ∈C, all solutions y(·,λ ) of the differential equation (2) satisfy51 ∫ c

a
w(x)|y(x,λ )|2dx <+∞, ∀ c ∈ (a,b). (5) {eq:LC}

Remarks:52

(1) We stress the point made above that although the spectral parameter λ is involved in the end-53

point classification, it can be shown that this classification is independent of λ and depends54

only on the interval (a,b) and the set of coefficients {p,q,w}.55

(2) All the above remarks apply equally well, with change of notation, to the classification cases56

of endpoint b; note that the classification of a and of b are independent of each other.57

According to above classification, for our problem (2), x = 1 is a regular endpoint. The singu-58

larity of the endpoint x = 0 depends on the behavior of 1/p(x) as x→ 0. We do series expansion59

of p(x) around x = 0 and take the leading order term xα . We have the following discussion:60

(1) If α ≤ 0, which means p(0) 6= 0, the endpoint x = 0 is regular.61

(2) If 0 < α < 1, which means p(0) = 0 but
∫ c

0 1/p(t)dt <+∞, ∀ c ∈ (0,1), the endpoint x = 062

is still regular.63

(3) If α ≥ 1, which means p(0) = 0 and
∫ c

0 1/p(t)dt = +∞, ∀ c ∈ (0,1), the endpoint x = 0 is64

singular.65
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Therefore, if the singularity of 1/p(x) is not bad (0 < α < 1), the problem (2) is regular and all66

the results of regular Sturm-Liouville theory hold. (Please see Ch. 11 of Elementary differential67

equations and boundary value problems by Boyce and Di Prima [3] for results of regular Sturm-68

Liouville theory.) However, if the singularity of 1/p(x) is large (α ≥ 1), problem (2) becomes a69

singular Strum-Liouville problem. For example, for columns with ellipse or Clausen profile, the70

problem is singular. We are going to explore whether the following results hold in our problem:71

(1) The self-adjoint relation holds.72

(2) The problem consists only a discrete set of eigenvalues.73

(3) All the eigenvalues are real.74

(4) The corresponding eigenfunctions form a complete, orthogonal set in the Hilbert function75

space.76

(5) The expansion of a given continuous function f in terms of a series of eigenfunctions is77

convergent.78

Taking λ = 0, the differential equation (2a) becomes −(p(x)y′(x))′ = 0. Approximating p(x)79

by its leading order term xα , α ≥ 1, we get the non-trivial solution of y(x) as80

y(x)∼C1
x1−α

1−α
+C2, (6)

where C1 and C2 are integration constants. We can estimate the L2 norm of y(x). For c ∈ (0,1)81 ∫ c

0
|y(x)|2dx∼ lim

x→0

[
C2

1
(1−α)2(3−2α)

x3−2α +
C1C2

(1−α)(2−α)
x2−α +C2

2x
]
. (7)

For α < 3
2 ,
∫ c

0 |y(x)|2dx < +∞, the endpoint x = 0 is limit-circle; for α ≥ 3
2 ,
∫ c

0 |y(x)|2dx = +∞,82

the endpoint x = 0 is limit-point.83
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4 Boundary Conditions84

For the regular endpoint x = a, a separated boundary condition should take the form, where85

A1,A2 ∈ R with A2
1 +A2

2 > 0,86

A1y(a)+A2(py′)(a) = 0. (8) {eq:reg_bc}

At endpoint x = 1, we take A1 = 1 and A2 = 0, which gives the boundary condition (2c). If x = 0 is87

also a regular endpoint, then the boundary condition (2b) is just a special form of (8) with A1 = 088

and A2 = 1.89

For the singular endpoint x = a, if this is limit-circle, then a separated boundary condition90

should take the form,91

A1[y,u](a)+A2[y,v](a) = 0, (9) {eq:LC_bc}

where92

(1) A1,A2 ∈ R with A2
1 +A2

2 > 0,93

(2) u,v : (a,b)→ R,94

(3) u,v ∈ D(T1) = { f ∈ D(M) : f ,w−1M[ f ] ∈ L2((a,b);w)},95

(4) [ f ,g](x) := f (x)p(ḡ′)(x)− (p f ′)(x)ḡ(x),96

(5) [u,v](a) 6= 0.97

Such pair {u,v} is always possible; if λ ∈ R, then take u(·) = u(·,λ ) and v(·) = v(·,λ ) where98

{u(·,λ ),v(·,λ )} is a real, linearly independent basis of solutions of the differential equation (2a).99

We can take u(x) = 1 and v(x) =
∫ x

c 1/p(t)dt where c ∈ (0,1]. They are solutions of (2a) as λ = 0.100

At the endpoint x = 0, it follows that101

[u,v](0) = u(0)p(v̄′)(0)− (pu′)(0)v̄(x) = p(0)(1/p(0)) = 1 6= 0. (10)

We take A1 = 1 and A2 = 0, which gives the boundary condition102

[y,u](0) = y(0)p(ū′)(0)− (py′)(0)ū(x) =−p(0)y′(0) = 0, (11)

which is same as the boundary condition (2b).103

If the endpoint x = 0 is limit-point, no separated boundary condition at x = 0 is required104

nor allowed. In fact, there is a connection between the endpoint classification of a and the limit105

[ f ,g](a):106

a is limit-point if and only if [ f ,g](a) = 0, ∀ f ,g ∈ D(T1). (12)

In summary, in our problem (2), the boundary conditions (2b) and (2c) are valid for all classi-107

fication of endpoints x = 0 and x = 1.108
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5 Spectrum Properties109

Please see section 8 in the paper Algorithm 810: The SLEIGN2 Sturm-Liouville Code by Bailey et110

al. [4] for reference.111

The endpoint x = 1 is regular. The spectrum property of the problem (2) depends on the112

classification of endpoint x = 0.113

(1) If x = 0 is regular or limit-circle, then:114

(I) The spectrum is always discrete, simple and bounded below.115

(II) The eigenvalues are indexed as {λn : n ∈ N0 = {0,1,2, ...}}, with λn < λn+1 for all116

n ∈ N0 and limn→∞ λn =+∞.117

(2) If x = 0 is limit-point, then:118

(I) The spectrum is always simple but may or may not be discrete, and may or may not be119

bounded below.120

(II) If the spectrum is discrete and bounded below then the eigenvalues are indexed as121

{λn : n ∈ N0 = {0,1,2, ...}}, with λn < λn+1 for all n ∈ N0 and limn→∞ λn = +∞; the122

nth eigenfunction has exactly n zeros in the open interval (0,1).123

(III) If the continuous (essential) spectrum is bounded below, say by σ , then:124

(A) There may be no eigenvalues below.125

(B) There may be a finite number of eigenvalues below σ , indexed as {λn : n∈{0,1,2, ...,N}}126

with N ≥ 0, and λn < λn+1 ≤ σ for n = 0,1, ...,N−1; every eigenfunction belong-127

ing to n has exactly n zeros in the open interval (0,1).128

(C) There may be a countable infinity of eigenvalues below σ , indexed as {λn : n∈N0}129

with λn < λn+1 < σ for limn→∞ λn = σ ; every eigenfunction belonging to n has130

exactly n zeros in the open interval (0,1).131

(IV) There may be a countable infinity of eigenvalues below σ such that for which the spec-132

trum is discrete but unbounded above and below, say {λn : n∈Z0 = {...,−2,−1,0,1,2, ...}}133

with limn→±∞ λn =±∞; in such cases all eigenfunctions have infinitely many zeros.134

Thus, to guarantee that our buckling problem and perturbation analysis to be valid, the endpoint135

x = 0 must be regular or limit-circle. That is, for p(x) ∼ xα , α < 3
2 must be satisfied. This136

condition is sufficient but not necessary.137

For columns with constant (α = 0) and Clausen profile (α = 4/3), the endpoint x = 0 is regular138

and limit-circle, respectively. For columns with ellipse profile (α = 2), the endpoint x = 0 is139

limit-point. Therefore, the perturbation analysis may not apply for ellipse columns.140
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