

12 1 Notations

¹³ We introduce some necessary notations from the chapter *A Catalogue of Sturm-Liouville Differen-*

- ¹⁴ *[t](https://www.dropbox.com/s/zp0oneng1d2l6bs/%5BWerner_O._Amrein%2C_Andreas_M._Hinz%2C_David_B._Pears%28b-ok.org%29.pdf?dl=0)ial Equations* by W. Norrie Everitt [\[1\]](#page-6-0) in Page 275 of the book *[Sturm-Liouville Theory: Past and](https://www.dropbox.com/s/zp0oneng1d2l6bs/%5BWerner_O._Amrein%2C_Andreas_M._Hinz%2C_David_B._Pears%28b-ok.org%29.pdf?dl=0)* ¹⁵ *[Present](https://www.dropbox.com/s/zp0oneng1d2l6bs/%5BWerner_O._Amrein%2C_Andreas_M._Hinz%2C_David_B._Pears%28b-ok.org%29.pdf?dl=0)* [\[2\]](#page-6-1).
- ¹⁶ Lebesgue integration space of complex-valued functions defined on the interval *I* is denoted 17 as $L^1(I)$. The **local integration space** $L^1_{loc}(I)$ is the set of all complex-valued functions on *I* which 18 are Lebesgue integrable on all compact sub-intervals $[a, b] \subseteq I$.
- ¹⁹ Absolute continuity, with respect to Lebesgue measure, is denoted by *AC*; the space of all ²⁰ complex-valued functions defined on *I* which are absolutely continuous on all compact sub-intervals
- 21 of *I*, is denoted by $AC_{loc}(I)$.

²² 2 Boundary Value Problem

The governing equations of the Euler buckling problem for one half column is

$$
(\tilde{I}\tilde{v}')' + \beta \tilde{v} = 0, \quad \forall \eta \in (0,1), \tag{1a}
$$

$$
\tilde{I}\tilde{v}'|_{\eta=0} = 0,\tag{1b}
$$

$$
\tilde{v}|_{\eta=1} = 0. \tag{1c}
$$

where $\tilde{I}(\eta)$ is the non-dimensional second moment of inertia of the column, $\tilde{v} = \tilde{w}'$ is the non-²⁴ dimensional rotation angle of the column. Due to the symmetry of the problem, we only consider ²⁵ the half of the column. At the end $\eta = 0$, the beam is hinged so the bending moment $\tilde{I} \tilde{v}'$ vanishes.

²⁶ The end $\eta = 1$ is the middle point, *i.e.* the symmetry point, of the original beam. The coefficient *z* function $\tilde{I}(\eta)$ is non-zero at $\eta = 1$ and may vanish at $\eta = 0$.

If we change the variables $\tilde{I}(\eta)$, $\tilde{v}(\eta)$, η , β to $p(x)$, $y(x)$, x , λ , respectively, the above problem is equivalent to the abstract math problem as follows, $\{eq:AbstractBVP\}$

$$
-(p(x)y'(x))' = \lambda y(x), \quad \forall x \in (0,1), \tag{2a} \{eq:GE\}
$$

$$
p(0)y'(0) = 0, \t\t(2b) \{eq:bc1\}
$$

$$
y(1) = 0.\t(2c) \{eq:bc2\}
$$

28 The coefficient function $p(x)$ is continuous in [0,1], $p(x) > 0$ for $0 < x < 1$ and $p(0) > 0$.

²⁹ This is a special case of the general Sturm-Liouville differential equation

$$
M[y](x) \equiv -\left(p(x)y'(x)\right)' + q(x)y(x) = \lambda w(x)y(x), \quad \forall x \in (a, b),
$$
\n(3) {eq:generalSL}

30 where $\lambda \in \mathbb{C}$ is a complex-valued spectral parameter. The set of Sturm-Liouville coefficients $\{p,q,w\}$ has to satisfy the minimal conditions

- 32 (1) *p*, *q*, *w* : $(a,b) \to \mathbb{R}$,
- 33 (2) p^{-1} , q , $w \in L_{loc}^1(a,b)$,
- 34 (3) *w* is a weight function on (a, b) , which means that $w(x)$: $(a, b) \rightarrow \mathbb{R}$ is a Lebesgue measurable 35 function and $w(x) > 0$ for almost all $x \in (a, b)$.
- ³⁶ For the problem [\(2\)](#page-1-2), all of the above three minimal conditions are satisfied.

37 3 Endpoints classification

³⁸ We introduce the endpoints classification from the chapter *A Catalogue of Sturm-Liouville Differ-*

- ³⁹ *[e](https://www.dropbox.com/s/zp0oneng1d2l6bs/%5BWerner_O._Amrein%2C_Andreas_M._Hinz%2C_David_B._Pears%28b-ok.org%29.pdf?dl=0)ntial Equations* by W. Norrie Everitt [\[1\]](#page-6-0) in Page 277 of the book *[Sturm-Liouville Theory: Past](https://www.dropbox.com/s/zp0oneng1d2l6bs/%5BWerner_O._Amrein%2C_Andreas_M._Hinz%2C_David_B._Pears%28b-ok.org%29.pdf?dl=0)* ⁴⁰ *[and Present](https://www.dropbox.com/s/zp0oneng1d2l6bs/%5BWerner_O._Amrein%2C_Andreas_M._Hinz%2C_David_B._Pears%28b-ok.org%29.pdf?dl=0)* [\[2\]](#page-6-1).
- 41 Suppose given the interval (a, b) and the set of coefficients $\{p, q, w\}$.

 42 (1) The endpoint *a* is **regular** if

43 (I) $a > -\infty$, and

44 (II) $p^{-1}, q, w \in L^1(a,c], \forall c \in (a,b).$

⁴⁵ (2) The endpoint *a* is singular if it is not regular, *i.e.*,

46 (I) either $a = -\infty$,

$$
\text{(II) or } a > -\infty \text{ but } \int_a^c [|p(x)|^{-1} + |q(x)| + |w(x)|] dx = +\infty, \ \forall \ c \in (a, b).
$$

⁴⁸ If *a* is a singular endpoint, there are two classification subcases as follows:

- 49 (1) It is **limit-point** if for some $\lambda \in \mathbb{C}$, at least one solution $y(\cdot,\lambda)$ of the differential equation [\(2\)](#page-1-2)
- ⁵⁰ satisfies

$$
\int_{a}^{c} w(x)|y(x,\lambda)|^{2}dx = +\infty, \forall c \in (a,b).
$$
 (4) {eq:LP}

51 [\(2\)](#page-1-2) It is **limit-circle** if for some $\lambda \in \mathbb{C}$, all solutions $y(\cdot,\lambda)$ of the differential equation (2) satisfy

$$
\int_{a}^{c} w(x)|y(x,\lambda)|^{2}dx < +\infty, \forall c \in (a,b).
$$
 (5) {eq:LC}

⁵² Remarks:

 $\frac{1}{53}$ (1) We stress the point made above that although the spectral parameter λ is involved in the end- $_{54}$ point classification, it can be shown that this classification is independent of λ and depends 55 only on the interval (a, b) and the set of coefficients $\{p, q, w\}$.

⁵⁶ (2) All the above remarks apply equally well, with change of notation, to the classification cases ⁵⁷ of endpoint *b*; note that the classification of *a* and of *b* are independent of each other.

58 According to above classification, for our problem (2) , $x = 1$ is a regular endpoint. The singu-59 larity of the endpoint $x = 0$ depends on the behavior of $1/p(x)$ as $x \to 0$. We do series expansion ⁶⁰ of $p(x)$ around $x = 0$ and take the leading order term x^α . We have the following discussion:

- 61 (1) If α < 0, which means $p(0) \neq 0$, the endpoint $x = 0$ is **regular**.
- 62 (2) If $0 < \alpha < 1$, which means $p(0) = 0$ but $\int_0^c 1/p(t)dt < +\infty$, $\forall c \in (0,1)$, the endpoint $x = 0$ ⁶³ is still regular.

64 (3) If $\alpha \ge 1$, which means $p(0) = 0$ and $\int_0^c 1/p(t)dt = +\infty$, $\forall c \in (0,1)$, the endpoint $x = 0$ is ⁶⁵ singular.

66 Therefore, if the singularity of $1/p(x)$ is not bad $(0 < \alpha < 1)$, the problem [\(2\)](#page-1-2) is regular and all [t](https://www.dropbox.com/s/edjp97knn9zd3dr/%5BWilliam_E._Boyce%2C_Richard_C._DiPrima%5D_Elementary_%28BookZZ.org%29-3.pdf?dl=0)he results of regular Sturm-Liouville theory hold. (Please see Ch. 11 of *[Elementary differential](https://www.dropbox.com/s/edjp97knn9zd3dr/%5BWilliam_E._Boyce%2C_Richard_C._DiPrima%5D_Elementary_%28BookZZ.org%29-3.pdf?dl=0) [equations and boundary value problems](https://www.dropbox.com/s/edjp97knn9zd3dr/%5BWilliam_E._Boyce%2C_Richard_C._DiPrima%5D_Elementary_%28BookZZ.org%29-3.pdf?dl=0)* by Boyce and Di Prima [\[3\]](#page-6-2) for results of regular Sturm-69 Liouville theory.) However, if the singularity of $1/p(x)$ is large ($\alpha \ge 1$), problem [\(2\)](#page-1-2) becomes a singular Strum-Liouville problem. For example, for columns with ellipse or Clausen profile, the problem is singular. We are going to explore whether the following results hold in our problem:

- $72 \quad (1)$ The self-adjoint relation holds.
- ⁷³ (2) The problem consists only a discrete set of eigenvalues.
- ⁷⁴ (3) All the eigenvalues are real.
- ⁷⁵ (4) The corresponding eigenfunctions form a complete, orthogonal set in the Hilbert function ⁷⁶ space.
- 77 (5) The expansion of a given continuous function f in terms of a series of eigenfunctions is ⁷⁸ convergent.
- Taking $\lambda = 0$, the differential equation [\(2a\)](#page-1-3) becomes $-(p(x)y'(x))' = 0$. Approximating $p(x)$ by its leading order term x^{α} , $\alpha \ge 1$, we get the non-trivial solution of $y(x)$ as

$$
y(x) \sim C_1 \frac{x^{1-\alpha}}{1-\alpha} + C_2,\tag{6}
$$

 ϵ_{81} where C_1 and C_2 are integration constants. We can estimate the L^2 norm of $y(x)$. For $c \in (0,1)$

$$
\int_0^c |y(x)|^2 dx \sim \lim_{x \to 0} \left[\frac{C_1^2}{(1-\alpha)^2 (3-2\alpha)} x^{3-2\alpha} + \frac{C_1 C_2}{(1-\alpha)(2-\alpha)} x^{2-\alpha} + C_2^2 x \right].
$$
 (7)

For $\alpha < \frac{3}{2}$ $\frac{3}{2}$, $\int_0^c |y(x)|^2 dx < +\infty$, the endpoint $x = 0$ is **limit-circle**; for $\alpha \ge \frac{3}{2}$ \int_{a}^{b} For $\alpha < \frac{3}{2}$, $\int_{0}^{c} |y(x)|^2 dx < +\infty$, the endpoint $x = 0$ is **limit-circle**; for $\alpha \ge \frac{3}{2}$, $\int_{0}^{c} |y(x)|^2 dx = +\infty$, ⁸³ the endpoint $x = 0$ is **limit-point**.

84 4 Boundary Conditions

⁸⁵ For the **regular** endpoint $x = a$, a separated boundary condition should take the form, where

 $A_1, A_2 \in \mathbb{R}$ with $A_1^2 + A_2^2 > 0$,

$$
A_1 y(a) + A_2 (py')(a) = 0.
$$
 (8) {eq:reg_bc}

87 At endpoint $x = 1$, we take $A_1 = 1$ and $A_2 = 0$, which gives the boundary condition [\(2c\)](#page-1-4). If $x = 0$ is

88 also a **regular** endpoint, then the boundary condition [\(2b\)](#page-1-5) is just a special form of [\(8\)](#page-4-1) with $A_1 = 0$ 89 and $A_2 = 1$.

90 For the **singular** endpoint $x = a$, if this is **limit-circle**, then a separated boundary condition ⁹¹ should take the form,

$$
A_1[y, u](a) + A_2[y, v](a) = 0,
$$
\n(9) {eq:LC_bc}

92 where

93 (1)
$$
A_1, A_2 \in \mathbb{R}
$$
 with $A_1^2 + A_2^2 > 0$,

$$
94 \qquad (2) \ \ u, v: (a, b) \to \mathbb{R},
$$

95 (3)
$$
u, v \in D(T_1) = \{ f \in D(M) : f, w^{-1}M[f] \in L^2((a, b); w) \}
$$

 $f(s) = f(x)p(\bar{g}')(x) - (pf')(x)\bar{g}(x),$

97 (5)
$$
[u, v](a) \neq 0
$$
.

98 Such pair $\{u, v\}$ is always possible; if $\lambda \in \mathbb{R}$, then take $u(\cdot) = u(\cdot, \lambda)$ and $v(\cdot) = v(\cdot, \lambda)$ where $\{u(\cdot,\lambda), v(\cdot,\lambda)\}\$ is a real, linearly independent basis of solutions of the differential equation [\(2a\)](#page-1-3). we can take $u(x) = 1$ and $v(x) = \int_c^x 1/p(t)dt$ where $c \in (0,1]$. They are solutions of [\(2a\)](#page-1-3) as $\lambda = 0$. 101 At the endpoint $x = 0$, it follows that

$$
[u, v](0) = u(0)p(\bar{v}')(0) - (pu')(0)\bar{v}(x) = p(0)(1/p(0)) = 1 \neq 0.
$$
 (10)

102 We take $A_1 = 1$ and $A_2 = 0$, which gives the boundary condition

$$
[y, u](0) = y(0)p(\bar{u}')(0) - (py')(0)\bar{u}(x) = -p(0)y'(0) = 0,
$$
\n(11)

103 which is same as the boundary condition $(2b)$.

104 If the endpoint $x = 0$ is **limit-point**, no separated boundary condition at $x = 0$ is required ¹⁰⁵ nor allowed. In fact, there is a connection between the endpoint classification of *a* and the limit 106 $[f,g](a)$:

a is limit-point if and only if
$$
[f,g](a) = 0, \forall f, g \in D(T_1)
$$
. (12)

 107 In summary, in our problem [\(2\)](#page-1-2), the boundary conditions [\(2b\)](#page-1-5) and [\(2c\)](#page-1-4) are valid for all classi-108 fication of endpoints $x = 0$ and $x = 1$.

109 **5** Spectrum Properties

¹¹⁰ Please see section 8 in the paper *[Algorithm 810: The SLEIGN2 Sturm-Liouville Code](https://www.dropbox.com/s/giixv3cdw8w66i3/Bailey%20et%20al.%20-%202001%20-%20Algorithm%20810%20The%20SLEIGN2%20Sturm-Liouville%20Code.pdf?dl=0)* by Bailey *et* 111 *al.* [\[4\]](#page-6-3) for reference. 112 The endpoint $x = 1$ is **regular**. The spectrum property of the problem [\(2\)](#page-1-2) depends on the 113 classification of endpoint $x = 0$. $_{114}$ (1) If $x = 0$ is **regular** or **limit-circle**, then: ¹¹⁵ (I) The spectrum is always *discrete*, *simple* and *bounded below*. 116 (II) The eigenvalues are indexed as $\{\lambda_n : n \in \mathbb{N}_0 = \{0, 1, 2, ...\} \}$, with $\lambda_n < \lambda_{n+1}$ for all 117 $n \in \mathbb{N}_0$ and $\lim_{n \to \infty} \lambda_n = +\infty$. $_{118}$ (2) If $x = 0$ is **limit-point**, then: ¹¹⁹ (I) The spectrum is always *simple* but may or may not be *discrete*, and may or may not be ¹²⁰ *bounded below*. ¹²¹ (II) If the spectrum is discrete and bounded below then the eigenvalues are indexed as 122 $\{\lambda_n : n \in \mathbb{N}_0 = \{0, 1, 2, ...\} \}$, with $\lambda_n < \lambda_{n+1}$ for all $n \in \mathbb{N}_0$ and $\lim_{n \to \infty} \lambda_n = +\infty$; the n th eigenfunction has exactly *n* zeros in the open interval $(0,1)$. 124 (III) If the continuous (essential) spectrum is bounded below, say by σ , then: $_{125}$ (A) There may be no eigenvalues below. 126 (B) There may be a finite number of eigenvalues below σ , indexed as $\{\lambda_n : n \in \{0, 1, 2, ..., N\}\}\$ with $N \ge 0$, and $\lambda_n < \lambda_{n+1} \le \sigma$ for $n = 0, 1, ..., N-1$; every eigenfunction belong- $\frac{1}{28}$ ing to *n* has exactly *n* zeros in the open interval $(0,1)$. 129 (C) There may be a countable infinity of eigenvalues below σ , indexed as $\{\lambda_n : n \in \mathbb{N}_0\}$ 130 with $\lambda_n < \lambda_{n+1} < \sigma$ for $\lim_{n \to \infty} \lambda_n = \sigma$; every eigenfunction belonging to *n* has $_{131}$ exactly *n* zeros in the open interval $(0,1)$. 132 (IV) There may be a countable infinity of eigenvalues below σ such that for which the spectrum is discrete but unbounded above and below, say $\{\lambda_n : n \in \mathbb{Z}_0 = \{\ldots, -2, -1, 0, 1, 2, \ldots\}\}\$ with $\lim_{n\to\pm\infty}\lambda_n=\pm\infty$; in such cases all eigenfunctions have infinitely many zeros. ¹³⁵ Thus, to guarantee that our buckling problem and perturbation analysis to be valid, the endpoint 136 $x = 0$ must be **regular** or **limit-circle**. That is, for $p(x) \sim x^{\alpha}$, $\alpha < \frac{3}{2}$ must be satisfied. This ¹³⁷ condition is sufficient but not necessary. 138 For columns with constant ($\alpha = 0$) and Clausen profile ($\alpha = 4/3$), the endpoint $x = 0$ is regular

139 and limit-circle, respectively. For columns with ellipse profile ($\alpha = 2$), the endpoint $x = 0$ is ¹⁴⁰ limit-point. Therefore, the perturbation analysis may not apply for ellipse columns.

reference

- [1] W. Norrie Everitt. A catalogue of sturm-liouville differential equations. In *Sturm-Liouville*
- *Theory*, pages 271–331. Birkhäuser Basel, 2005.
- [2] Werner O. Amrein, Andreas M. Hinz, and David P. Pearson, editors. *Sturm-Liouville theory:*
- ¹⁴⁶ *past and present*. Birkhäuser, Basel; Boston, 2005.
- [3] William E. Boyce and Richard C. DiPrima. *Elementary differential equations and boundary*
- *value problems*. Wiley, Hoboken, NJ, tenth edition edition, 2012.
- [4] P. B. Bailey, W. N. Everitt, and A. Zettl. Algorithm 810: The sleign2 sturm-liouville code.
- *ACM Trans. Math. Softw.*, 27(2):143–192, June 2001.