1	Proof that the results of regular Sturm-Liouville problem hold in our work
3	Wenqiang Fang
4	February 22, 2018
5	Contents
6	1 Notations
7	2 Boundary Value Problem
8	3 Endpoints classification
9	4 Boundary Conditions
10	5 Spectrum Properties
11	reference

12 1 Notations

¹³ We introduce some necessary notations from the chapter A Catalogue of Sturm-Liouville Differen-

- *tial Equations* by W. Norrie Everitt [1] in Page 275 of the book *Sturm-Liouville Theory: Past and Present* [2].
- Lebesgue integration space of complex-valued functions defined on the interval *I* is denoted as $L^1(I)$. The local integration space $L^1_{loc}(I)$ is the set of all complex-valued functions on *I* which are Lebesgue integrable on all compact sub-intervals $[a,b] \subseteq I$.
- Absolute continuity, with respect to Lebesgue measure, is denoted by AC; the space of all
- ²⁰ complex-valued functions defined on *I* which are absolutely continuous on all compact sub-intervals ²¹ of *I*, is denoted by $AC_{loc}(I)$.

22 Boundary Value Problem

The governing equations of the Euler buckling problem for one half column is

$$(\tilde{I}\tilde{v}')' + \beta\tilde{v} = 0, \quad \forall \eta \in (0,1), \tag{1a}$$

$$\tilde{I}\tilde{v}'\big|_{n=0} = 0, \tag{1b}$$

$$\tilde{\nu}\big|_{\eta=1} = 0. \tag{1c}$$

where $\tilde{I}(\eta)$ is the non-dimensional second moment of inertia of the column, $\tilde{v} = \tilde{w}'$ is the non-

- ²⁴ dimensional rotation angle of the column. Due to the symmetry of the problem, we only consider
- the half of the column. At the end $\eta = 0$, the beam is hinged so the bending moment $\tilde{I}\tilde{v}'$ vanishes.
- The end $\eta = 1$ is the middle point, *i.e.* the symmetry point, of the original beam. The coefficient
- ²⁷ function $\tilde{I}(\eta)$ is non-zero at $\eta = 1$ and may vanish at $\eta = 0$.

If we change the variables $\tilde{I}(\eta)$, $\tilde{v}(\eta)$, η , β to p(x), y(x), x, λ , respectively, the above problem is equivalent to the abstract math problem as follows,

{eq:AbstractBVP}

$$-\left(p(x)y'(x)\right)' = \lambda y(x), \quad \forall x \in (0,1), \tag{2a} \quad \{\texttt{eq:GE}\}$$

$$p(0)y'(0) = 0,$$
 (2b) {eq:bc1}

$$y(1) = 0.$$
 (2c) {eq:bc2}

The coefficient function p(x) is continuous in [0,1], p(x) > 0 for $0 < x \le 1$ and $p(0) \ge 0$.

²⁹ This is a special case of the general Sturm-Liouville differential equation

$$M[y](x) \equiv -\left(p(x)y'(x)\right)' + q(x)y(x) = \lambda w(x)y(x), \quad \forall x \in (a,b), \quad (3) \quad \{\texttt{eq:generalSL}\}$$

where $\lambda \in \mathbb{C}$ is a complex-valued spectral parameter. The set of Sturm-Liouville coefficients $\{p,q,w\}$ has to satisfy the minimal conditions

- 32 (1) $p, q, w : (a,b) \rightarrow \mathbb{R},$
- 33 (2) $p^{-1}, q, w \in L^1_{loc}(a,b),$
- (3) *w* is a weight function on (a,b), which means that $w(x): (a,b) \to \mathbb{R}$ is a Lebesgue measurable function and w(x) > 0 for almost all $x \in (a,b)$.
- ³⁶ For the problem (2), all of the above three minimal conditions are satisfied.

37 3 Endpoints classification

³⁸ We introduce the endpoints classification from the chapter A Catalogue of Sturm-Liouville Differ-

- ³⁹ *ential Equations* by W. Norrie Everitt [1] in Page 277 of the book *Sturm-Liouville Theory: Past* ⁴⁰ *and Present* [2].
- Suppose given the interval (a,b) and the set of coefficients $\{p,q,w\}$.

(1) The endpoint a is **regular** if

- 43 (I) $a > -\infty$, and
- 44 (II) $p^{-1}, q, w \in L^1(a, c], \forall c \in (a, b).$
- (2) The endpoint a is **singular** if it is not regular, *i.e.*,
- 46 (I) either $a = -\infty$,

47 (II) or
$$a > -\infty$$
 but $\int_a^c [|p(x)|^{-1} + |q(x)| + |w(x)|] dx = +\infty, \forall c \in (a,b).$

48 If a is a singular endpoint, there are two classification subcases as follows:

- (1) It is **limit-point** if for some $\lambda \in \mathbb{C}$, at least one solution $y(\cdot, \lambda)$ of the differential equation (2)
- 50 satisfies

$$\int_{a}^{c} w(x)|y(x,\lambda)|^{2} dx = +\infty, \ \forall \ c \in (a,b).$$
(4) {eq:LP}

(2) It is **limit-circle** if for some $\lambda \in \mathbb{C}$, all solutions $y(\cdot, \lambda)$ of the differential equation (2) satisfy

$$\int_{a}^{c} w(x) |y(x,\lambda)|^{2} dx < +\infty, \ \forall \ c \in (a,b).$$
(5) {eq:LC}

52 **Remarks:**

- (1) We stress the point made above that although the spectral parameter λ is involved in the endpoint classification, it can be shown that this classification is independent of λ and depends only on the interval (a,b) and the set of coefficients $\{p,q,w\}$.
- $_{56}$ (2) All the above remarks apply equally well, with change of notation, to the classification cases $_{57}$ of endpoint *b*; note that the classification of *a* and of *b* are independent of each other.

According to above classification, for our problem (2), x = 1 is a regular endpoint. The singularity of the endpoint x = 0 depends on the behavior of 1/p(x) as $x \to 0$. We do series expansion of p(x) around x = 0 and take the leading order term x^{α} . We have the following discussion:

- (1) If $\alpha \le 0$, which means $p(0) \ne 0$, the endpoint x = 0 is **regular**.
- (2) If $0 < \alpha < 1$, which means p(0) = 0 but $\int_0^c 1/p(t)dt < +\infty$, $\forall c \in (0,1)$, the endpoint x = 0 is still **regular**.

(3) If $\alpha \ge 1$, which means p(0) = 0 and $\int_0^c 1/p(t)dt = +\infty$, $\forall c \in (0,1)$, the endpoint x = 0 is singular.

Therefore, if the singularity of 1/p(x) is not bad ($0 < \alpha < 1$), the problem (2) is regular and all the results of regular Sturm-Liouville theory hold. (Please see Ch. 11 of *Elementary differential equations and boundary value problems* by Boyce and Di Prima [3] for results of regular Sturm-Liouville theory.) However, if the singularity of 1/p(x) is large ($\alpha \ge 1$), problem (2) becomes a singular Strum-Liouville problem. For example, for columns with **ellipse** or **Clausen** profile, the problem is singular. We are going to explore whether the following results hold in our problem:

- ⁷² (1) The self-adjoint relation holds.
- (2) The problem consists only a discrete set of eigenvalues.
- ⁷⁴ (3) All the eigenvalues are real.
- (4) The corresponding eigenfunctions form a complete, orthogonal set in the Hilbert function
 space.
- (5) The expansion of a given continuous function f in terms of a series of eigenfunctions is convergent.
- Taking $\lambda = 0$, the differential equation (2a) becomes -(p(x)y'(x))' = 0. Approximating p(x)by its leading order term x^{α} , $\alpha \ge 1$, we get the non-trivial solution of y(x) as

$$y(x) \sim C_1 \frac{x^{1-\alpha}}{1-\alpha} + C_2,$$
 (6)

⁸¹ where C_1 and C_2 are integration constants. We can estimate the L^2 norm of y(x). For $c \in (0,1)$

$$\int_{0}^{c} |y(x)|^{2} dx \sim \lim_{x \to 0} \left[\frac{C_{1}^{2}}{(1-\alpha)^{2}(3-2\alpha)} x^{3-2\alpha} + \frac{C_{1}C_{2}}{(1-\alpha)(2-\alpha)} x^{2-\alpha} + C_{2}^{2} x \right].$$
(7)

For $\alpha < \frac{3}{2}$, $\int_0^c |y(x)|^2 dx < +\infty$, the endpoint x = 0 is **limit-circle**; for $\alpha \ge \frac{3}{2}$, $\int_0^c |y(x)|^2 dx = +\infty$, the endpoint x = 0 is **limit-point**.

4 Boundary Conditions

For the **regular** endpoint x = a, a separated boundary condition should take the form, where $A_1, A_2 \in \mathbb{R}$ with $A_1^2 + A_2^2 > 0$,

$$A_1y(a) + A_2(py')(a) = 0.$$
 (8) {eq:reg_bc}

At endpoint x = 1, we take $A_1 = 1$ and $A_2 = 0$, which gives the boundary condition (2c). If x = 0 is

⁸⁸ also a **regular** endpoint, then the boundary condition (2b) is just a special form of (8) with $A_1 = 0$ ⁸⁹ and $A_2 = 1$.

For the **singular** endpoint x = a, if this is **limit-circle**, then a separated boundary condition should take the form,

$$A_1[y,u](a) + A_2[y,v](a) = 0, \qquad (9) \quad \{eq: LC_bc\}$$

92 where

93 (1)
$$A_1, A_2 \in \mathbb{R}$$
 with $A_1^2 + A_2^2 > 0$,

94 (2)
$$u, v: (a, b) \to \mathbb{R}$$
,

95 (3)
$$u, v \in D(T_1) = \{f \in D(M) : f, w^{-1}M[f] \in L^2((a,b);w)\}$$

96 (4) $[f,g](x) := f(x)p(\bar{g}')(x) - (pf')(x)\bar{g}(x),$

97 (5)
$$[u,v](a) \neq 0.$$

Such pair $\{u, v\}$ is always possible; if $\lambda \in \mathbb{R}$, then take $u(\cdot) = u(\cdot, \lambda)$ and $v(\cdot) = v(\cdot, \lambda)$ where $\{u(\cdot, \lambda), v(\cdot, \lambda)\}$ is a real, linearly independent basis of solutions of the differential equation (2a). We can take u(x) = 1 and $v(x) = \int_c^x 1/p(t)dt$ where $c \in (0, 1]$. They are solutions of (2a) as $\lambda = 0$. At the endpoint x = 0, it follows that

$$[u,v](0) = u(0)p(\bar{v}')(0) - (pu')(0)\bar{v}(x) = p(0)(1/p(0)) = 1 \neq 0.$$
⁽¹⁰⁾

We take $A_1 = 1$ and $A_2 = 0$, which gives the boundary condition

$$[y,u](0) = y(0)p(\bar{u}')(0) - (py')(0)\bar{u}(x) = -p(0)y'(0) = 0,$$
(11)

¹⁰³ which is same as the boundary condition (2b).

If the endpoint x = 0 is **limit-point**, no separated boundary condition at x = 0 is required nor allowed. In fact, there is a connection between the endpoint classification of *a* and the limit [f,g](a):

a is limit-point if and only if
$$[f,g](a) = 0, \forall f,g \in D(T_1).$$
 (12)

In summary, in our problem (2), the boundary conditions (2b) and (2c) are valid for all classification of endpoints x = 0 and x = 1.

109 5 Spectrum Properties

110	Please see section 8 in the paper Algorithm 810: The SLEIGN2 Sturm-Liouville Code by Bailey et
111	al. [4] for reference.
112	The endpoint $x = 1$ is regular . The spectrum property of the problem (2) depends on the
113	classification of endpoint $x = 0$.
114	(1) If $x = 0$ is regular or limit-circle , then:
115	(I) The spectrum is always <i>discrete</i> , <i>simple</i> and <i>bounded below</i> .
116	(II) The eigenvalues are indexed as $\{\lambda_n : n \in \mathbb{N}_0 = \{0, 1, 2,\}\}$, with $\lambda_n < \lambda_{n+1}$ for all
117	$n \in \mathbb{N}_0$ and $\lim_{n \to \infty} \lambda_n = +\infty$.
118	(2) If $x = 0$ is limit-point , then:
119	(I) The spectrum is always <i>simple</i> but may or may not be <i>discrete</i> , and may or may not be
120	bounded below.
121	(II) If the spectrum is discrete and bounded below then the eigenvalues are indexed as $\{\lambda_n : n \in \mathbb{N}_0 = \{0, 1, 2,\}\}$, with $\lambda_n < \lambda_{n+1}$ for all $n \in \mathbb{N}_0$ and $\lim_{n \to \infty} \lambda_n = +\infty$; the
122	$\{\lambda_n : n \in \mathbb{N}_0 - \{0, 1, 2,\}\}$, with $\lambda_n < \lambda_{n+1}$ for an $n \in \mathbb{N}_0$ and $\lim_{n \to \infty} \lambda_n = +\infty$, the <i>n</i> th eigenfunction has exactly <i>n</i> zeros in the open interval $(0, 1)$.
123	
124	(III) If the continuous (essential) spectrum is bounded below, say by σ , then:
125	(A) There may be no eigenvalues below.
126	(B) There may be a finite number of eigenvalues below σ , indexed as $\{\lambda_n : n \in \{0, 1, 2,, N\}\}$
127	with $N \ge 0$, and $\lambda_n < \lambda_{n+1} \le \sigma$ for $n = 0, 1,, N - 1$; every eigenfunction belong-
128	ing to <i>n</i> has exactly <i>n</i> zeros in the open interval $(0, 1)$.
129	(C) There may be a countable infinity of eigenvalues below σ , indexed as $\{\lambda_n : n \in \mathbb{N}_0\}$
130	with $\lambda_n < \lambda_{n+1} < \sigma$ for $\lim_{n \to \infty} \lambda_n = \sigma$; every eigenfunction belonging to <i>n</i> has
131	exactly <i>n</i> zeros in the open interval $(0,1)$.
120	(IV) There may be a countable infinity of eigenvalues below σ such that for which the spec-
132	trum is discrete but unbounded above and below, say $\{\lambda_n : n \in \mathbb{Z}_0 = \{, -2, -1, 0, 1, 2,\}\}$
133	with $\lim_{n\to\pm\infty} \lambda_n = \pm\infty$; in such cases all eigenfunctions have infinitely many zeros.
134	with $\lim_{n\to\pm\infty} n_n = \pm\infty$, in such cases an eigenfunctions have mininery many zeros.
135	Thus, to guarantee that our buckling problem and perturbation analysis to be valid, the endpoint
136	$x = 0$ must be regular or limit-circle . That is, for $p(x) \sim x^{\alpha}$, $\alpha < \frac{3}{2}$ must be satisfied. This
137	condition is sufficient but not necessary.
138	For columns with constant ($\alpha = 0$) and Clausen profile ($\alpha = 4/3$), the endpoint $x = 0$ is regular

For columns with constant ($\alpha = 0$) and Clausen profile ($\alpha = 4/3$), the endpoint x = 0 is regular and limit-circle, respectively. For columns with ellipse profile ($\alpha = 2$), the endpoint x = 0 is limit-point. Therefore, the perturbation analysis may not apply for ellipse columns.

141 reference

142

- ¹⁴³ [1] W. Norrie Everitt. A catalogue of sturm-liouville differential equations. In *Sturm-Liouville*
- *Theory*, pages 271–331. Birkhäuser Basel, 2005.
- ¹⁴⁵ [2] Werner O. Amrein, Andreas M. Hinz, and David P. Pearson, editors. *Sturm-Liouville theory:*
- past and present. Birkhäuser, Basel ; Boston, 2005.
- ¹⁴⁷ [3] William E. Boyce and Richard C. DiPrima. *Elementary differential equations and boundary*
- value problems. Wiley, Hoboken, NJ, tenth edition edition, 2012.
- ¹⁴⁹ [4] P. B. Bailey, W. N. Everitt, and A. Zettl. Algorithm 810: The sleign2 sturm-liouville code.
- ¹⁵⁰ ACM Trans. Math. Softw., 27(2):143–192, June 2001.