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1 Extreme value of β1

1.1 No Volume Constraint

The equation of the first order perturbation (O(ε)) of the eigenvalue is

β1 =
∫ 1

η=0
Ĩ1 ṽ0

2
,η dη (1) {eq:beta1}

where Ĩ1 is the first order perturbation of the second moment of area Ĩ0 and ṽ0 is the unperturbed
eigenvector.

We want to get the maximum value of β1 for arbitrary Ĩ1 under the constraint that the L2 norm
of the perturbation of the profile is fixed:[∫ 1

0
(r0− r̃)2 dη

]1/2

= εC1 + ε
2C2 +O(ε3) (2)

The L2 norm of the perturbation, if ignoring the higher order term, is d = εC1.
Let r̃− r0 = ε r̃1 + ε2r̃2 +O(ε3), then∫ 1

0

(
ε

2r̃2
1 +2ε

3r̃1r̃2 + ε
4r̃2

2 +O(ε5)
)

dη = ε
2C2

1 +2ε
3C1C2 + ε

4C2
2 +O(ε5) (3)

Which is ∫ 1

0

(
r̃2

1 +2ε r̃1r̃2 + ε
2r̃2

2 +O(ε3)
)

dη =C2
1 +2εC1C2 + ε

2C2
2 +O(ε3) (4)

If we only take the first order term (limε → 0), we get∫ 1

0
r̃2

1dη =C2
1 (5)

The first order relation between Ĩ1 and r̃1 is that

Ĩ1 = πr3
0 r̃1 (6) {eq:I1r1}

The augmented functional of β1 is that

β1[r̃1] =
∫ 1

η=0
πr3

0 r̃1 ṽ0
2
,η dη +λ

[∫ 1

0
r̃2

1dη−C2
1

]
(7) {eq:aug_beta1}
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Do variation and let the first variation be zero

δβ1[r̃1] =
∫ 1

η=0
πr3

0 ṽ0
2
,η δ r̃1dη +2λ

∫ 1

0
r̃1δ r̃1dη = 0 (8)

We get the relation between λ and r̃1

r̃1 =−
πr3

0 ṽ0
2
,η

2λ
(9) {eq:r1}

Substitute eq. (55) to the constraint equation, we have

∫ 1

0

π2r6
0 ṽ0

4
,η

4λ 2 dη =C2
1 (10)

Then

λ =
π

2C1

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

(11) {eq:lambda}

The extreme value of β1 is that

β1 =
∫ 1

0
πr3

0 r̃1 ṽ0
2
,η dη

=−π2

2λ

∫ 1

0
r6

0 ṽ0
4
,η dη

=−πC1

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

(12)

The relative change of the eigenvalue is a linear function of the norm of the perturbation d:

β̃ −β0

β0
=

εβ1

β0

=−πεC1

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

=− π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

d

(13) {eq:slope_total}

Here β0, r0 and ṽ0 are the eigenvalue, radius and eigenvector of the unperturbed column respec-
tively.
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1.2 With Volume Constraint

In the last section, we loose the constraint on the perturbation to allow the volume change, which
is more practical and reasonable. However, it brings trouble in deriving the most insensitive profile
of column to perturbations. Here, in addition to the constraint of fixed norm of perturbation, we
also consider the constraint that the perturbation does not change the volume of the column, which
means ∫ 1

0
πr2

0dη =
∫ 1

0
π (r0 + ε r̃1)

2 dη =V0 (14)

This is essentially

2ε

∫ 1

0
r0r̃1dη + ε

2
∫ 1

0
r̃2

1dη = 0 (15)

Introducing an extra Lagrange multiplier λ2 into the equation (7)

β1[r̃1] =
∫ 1

0
πr3

0 r̃1 ṽ0
2
,η dη +λ1

[∫ 1

0
r̃2

1dη−C2
1

]
+λ2

[∫ 1

0
r0r̃1dη

]
(16) {eq:aug_beta1_CV}

Do variation and let the first variation be zero

δβ1[r̃1] =
∫ 1

0
πr3

0 ṽ0
2
,η δ r̃1dη +2λ1

∫ 1

0
r̃1δ r̃1dη +λ2

∫ 1

0
r0δ r̃1dη = 0 (17)

We get the expression of r̃1 in terms of λ1 and λ2

r̃1 =−
r0λ2 +πr3

0 ṽ0
2
,η

2λ1
(18) {eq:r1_CV}

Here we can see λ1 determines the norm of r̃1. Through the norm constraint
∫ 1

0 r̃2
1dη =C2

1 and
the volume constraint

∫ 1
0 r̃0r̃1dη , λ1,λ2 can be determined as

λ1 =
π

2C1

[∫ 1

0
r6

0 ṽ0
4
,η dη− π

V0

(∫ 1

0
r4

0 ṽ0
2
,η dη

)2
]1/2

(19)

λ2 =−
π2

V0

∫ 1

0
r4

0 ṽ0
2
,η dη (20)

Plug them in equation (18), we get r̃1 as

r̃1 =C1

(
π

V0

∫ 1
0 r4

0 ṽ0
2
,η dη

)
r0− r3

0 ṽ0
2
,η[∫ 1

0 r6
0 ṽ0

4
,η dη− π

V0

(∫ 1
0 r4

0 ṽ0
2
,η dη

)2
]1/2 (21)

The extreme value of β1 is that

β1 =
∫ 1

0
πr3

0 r̃1 ṽ0
2
,η dη

=−πC1

[∫ 1

0
r6

0 ṽ0
4
,η dη− π

V0

(∫ 1

0
r4

0 ṽ0
2
,η dη

)2
]1/2 (22)
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The relative change of the eigenvalue is a linear function of the norm of the perturbation d:

β̃ −β0

β0
=

εβ1

β0

=−πεC1

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη− π

V0

(∫ 1

0
r4

0 ṽ0
2
,η dη

)2
]1/2

=− π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη− π

V0

(∫ 1

0
r4

0 ṽ0
2
,η dη

)2
]1/2

d

(23) {eq:slope_isovolume}
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1.2.1 Application for constant cross-section half column

For constant cross-section half column of constant radius r0

β0 = Ĩ0λ
2
0 =

π2

4
Ĩ0, ṽ0 ,η =− π√

2
sin

π

2
η , V0 = πr2

0 (24)

Then we can calculate the coefficient as

− π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη− π

V0

(∫ 1

0
r4

0 ṽ0
2
,η dη

)2
]1/2

=−2
√

2
r0

(25)

For r0 = 0.05, the slope is −56.569, which is less steeper than the slope without volume con-
straint −97.9796.

1.2.2 Application for Clausen column

For the Clausen column, the profile of the half column is given in terms of a parameter θ varying
from 0 to π/2:

r0(θ) = rc sinθ , (26)

η(θ) =
2
π

(
θ − 1

2
sin2θ

)
(27)

where rc =
√

4V0/(3πL). And we have

β0 =
1
4

π

3

(
V
L

)2

=
π

12
V 2

0 , ṽ0(θ) ,η =
dṽ0

dθ

dθ

dη
=

1
2

π csc(θ), V0 =
3πr2

c
4

(28)

Now let us rewrite the integral in parametric form∫ 1

0
r0(η(θ))6 ṽ0(η(θ))4

,η dη(θ) =
∫

π/2

0
r0(θ)

6 ṽ0(θ)
4
,η η

′(θ)dθ

=
3π4r6

c
64

(29)

Similarly,[∫ 1

0
r0(η(θ))4 ṽ0(η(θ))2

,η dη(θ)

]2

=

[∫
π/2

0
r0(θ)

4 ṽ0(θ)
2
,η η

′(θ)dθ

]2

=
9π4r8

c
256

(30)

Then we can calculate the coefficient as

− π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη− π

V0

(∫ 1

0
r4

0 ṽ0
2
,η dη

)2
]1/2

=− π

β0

(
3π4r6

c
64
− π

V0

9π4r8
c

256

)
= 0

(31)

Which means that the Clausen column is the most insensitive column to perturbation comparing to
all other shape of columns.
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1.3 The optimal shape for sensitivity with/without volume constraint

Recall that with volume constraint, the relative change of the eigenvalue from the worst perturba-
tions is given by (23).

β̃ −β0

β0
=− π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη− π

V0

(∫ 1

0
r4

0 ṽ0
2
,η dη

)2
]1/2

d (32)

The slope Ks[r0] (the subscript ’s’ means that the perturbations only change the shape of the col-
umn) caused by isovolumetric perturbations is

Ks[r0] =−
π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη− π

V0

(∫ 1

0
r4

0 ṽ0
2
,η dη

)2
]1/2

(33) {eq:Ks}

The slope Ks[r0] ≤ 0 obtains its maximum value 0 when r0 is the profile of Clausen column.
Therefore, Clausen profile is the optimal shape for imperfection sensitivity in asymptotic sense in
terms of isovolumetric perturbations. However, the uniqueness is not guaranteed.

If we impose the perturbations to be r̃1 =−αr0, which keep the shape but change the volume
of the original column. The first order perturbation of the eigenvalue is

β1[r̃1 =−αr0] =−
∫ 1

η=0
παr4

0 ṽ0
2
,η dη (34)

The norm of the perturbations is

C1 =

(∫ 1

0
r̃2

1dη

)1/2

= α

(∫ 1

0
r2

0dη

)1/2

= α

√
V0

π
(35)

The slope Kv[r0] (the subscript ’v’ means that the perturbations only change volume of the column)
is

Kv[r0] =−
π

β0

√
π

V0

∫ 1

0
r4

0 ṽ0
2
,η dη (36) {eq:Kv}

Now let’s look at the relative change of the eigenvalue from the worst perturbations without
volume constraint given by (13).

β̃ −β0

β0
=− π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

d (37)

The slope Kb[r0] (the subscript ’b’ means that the perturbations change both the shape and the
volume of the column) is

Kb[r0] =−
π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

(38) {eq:Kb}

The three slopes (33), (36) and (38) are related by the following equation

Kb[r0]
2 = Ks[r0]

2 +Kv[r0]
2 (39)
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We can prove that Kv[r0] = −4
√

π/V0 is independent of the profile r0 of the column. The
details of the proof are described in subsection 1.3.1.

Thus the optimal profile r0 that minimize Ks[r0]
2 also minimize Kb[r0]

2

min
r0∈V

Kb[r0]
2 = min

r0∈V
Ks[r0]

2 +
16π

V0
(40)

where the space of admissible functions is

V =

{
r0 ∈ H2([0,1]) :

∫ 1

0
πr2

0 =V0

}
Therefore, the Clausen profile is not only optimal for imperfection sensitivity with volume

constraint, but also optimal for imperfection sensitivity without volume constraint.

1.3.1 Proof of Kv[r0] independent of the profile r0 of the column
{sec:proofKv}

We are going to prove that

Kv[r0] =−
π

β0

√
π

V0

∫ 1

0
r4

0 ṽ0
2
,η dη (41) {eq:Kv_independent}

is independent of r0.
Recall that the governing equation and boundary conditions for ṽ0,

(Ĩ0ṽ′0)
′+β0ṽ0 = 0, (42a) {eq:ZerothOrderBVP_EQ}

Ĩ0ṽ′0
∣∣
η=0 = 0, (42b) {eq:ZerothOrderBVP_BC1}

ṽ0|η= 1 = 0. (42c) {eq:ZerothOrderBVP_BC2}

Multiply (42a) by ṽ0 and integrate it from η = 0 to η = 1,∫ 1

0
(Ĩ0ṽ′0)

′ṽ0dη +β0

∫ 1

0
ṽ2

0dη = 0 (43)

Using the normalization condition of ṽ0 and integrating the first term by part, we get

β0 =− Ĩ0ṽ′0ṽ0
∣∣η=1
η=0 +

∫ 1

0
Ĩ0ṽ′20 dη

=
π

4

∫ 1

0
r4

0ṽ′20 dη

(44) {eq:beta0_integ}

Substituting the expression of β0 (44) into (41), we can simplify Kv as

Kv[r0] =−4
√

π

V0
(45)

where V0 is the constant volume of the original column.
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1.4 The existence of extreme value of β1

1.4.1 Method 1

Theorem. Suppose that f : C → R, is a strongly lower semicontinuous, convex function on a
strongly closed, convex, bounded subset C of a Hilbert space. Then f is bounded from below and
attains its infimum.

Consider the functional β1 : V̂ → R

β1[r̃1] =
∫ 1

η=0
πr3

0 r̃1 ṽ0
2
,η dη (46)

where the admissible function space of r̃1 is

V̂ :=
{

r̃1 ∈ L2([0,1] : R) :
∫ 1

0
r̃2

1dη ≤C2
1

}
(47) {SpaceOfAF}

This is a closed ball in a Hilbert space. Boundedness of the domain follows from the definition.

Now we prove the set V̂ is a strongly closed set. Denote D(x0,r) = V̂ as this closed ball,
where x0 is the origin and r = C1. We show that H \D is open. In other words, for every point
y ∈ H \D(x0,r) we need to find an open ball contained in H \D with center y.

Since y ∈ H \D(x0,r), it follows that d(y,x0) > r, so d(y,x0)− r > 0. Let r1 = d(y,x0)− r. I
claim that the open ball B(y,r1) is contained in H \D(x0,r). To prove this, consider any z∈B(y,r1).
Notice by the triangle inequality

d(x0,y)≤ d(x0,z)+d(z,y)⇒ d(z,x0)≥ d(x0,y)−d(z,y)> d(x0,y)− r1 = r (48)

This shows z ∈ H \D(x0,r), which completes the proof.

Now we verify that V̂ is convex, consider r̃ = ξ r̃1 +(1−ξ )r̃2 where r̃1, r̃2 ∈ V̂ and ξ ∈ [0,1].

‖r̃‖= ‖ξ r̃1 +(1−ξ )r̃2‖
≤ ‖ξ r̃1‖+‖(1−ξ )r̃2‖
≤ ξC1 +(1−ξ )C1

=C1

(49)

therefore r̃ ∈ V̂ . So that V̂ is convex.

Then we verify that β1[r̃1] is strongly lower semicontinuous. Actually, we can prove that
the functional is continuous, which is a sufficient condition of strongly lower semicontinuty(A
function is continuous at x0 if and only if it is upper and lower semi-continuous there). For any
real number ε > 0, there exists some number δ > 0 such that for all r̃1, r̃2 ∈ V̂ with ‖r̃1− r̃1‖< δ

|β1(r̃1)−β1(r̃2)|< ε (50)
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This comes from

|β1(r̃1)−β1(r̃2)|=
∣∣∣∣∫ 1

η=0
πr3

0 r̃1 ṽ0
2
,η dη−

∫ 1

η=0
πr3

0 r̃2 ṽ0
2
,η dη

∣∣∣∣
=

∣∣∣∣∫ 1

0
πr3

0 ṽ0
2
,η (r̃1− r̃2)dη

∣∣∣∣
≤
(∫ 1

0
(πr3

0 ṽ0
2
,η )

2dη

∫ 1

0
(r̃1− r̃2)

2dη

)1/2

= π‖r̃1− r̃1‖
(∫ 1

0
r6

0 ṽ0
4
,η dη

)1/2

< πδ

∫ 1

0
r6

0

(∫ 1

0
r6

0 ṽ0
4
,η dη

)1/2

(51)

So that we can choose δ = ε

π(
∫ 1

0 r6
0 ṽ0

4
,η dη)

1/2 to satisfy the condition of the definition. Therefore,

the functional is continuous, which implies that it is strongly lower semicontinuous.

In the last, let us prove that the functional β1[r̃1] is convex. Since this is a linear mapping, it
should be convex. The proof follows

β1[ξ r̃1 +(1−ξ )r̃2] =
∫ 1

0
πr3

0 ṽ0
2
,η [ξ r̃1 +(1−ξ )r̃2]dη

= ξ

∫ 1

0
πr3

0 ṽ0
2
,η r̃1dη +(1−ξ )

∫ 1

0
πr3

0 ṽ0
2
,η r̃2dη

= ξ β1[r̃1]+ (1−ξ )β1[r̃2], ∀ξ ∈ [0,1] and r̃1, r̃2 ∈ V̂

(52)

Therefore, the convexity is proved. And we can see from the above procedure that the functional
is not strictly convex.

All in all, we have proved that all the conditions of the above theorem is satisfied. Now we can
conclude that functional β1 is bounded from below and attains its infimum.

1.4.2 Method 2

On the other hand, according to Cauchy-Schwarz inequality(∫ 1

0
πr3

0 r̃1 ṽ0
2
,η dη

)2

≤
∫ 1

0

(
πr3

0 ṽ0
2
,η

)2
dη ·

∫ 1

0
r̃2

1dη (53)

which gives the accessible range of β1[r̃1]

−πC1

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

≤ β1[r̃1]≤ πC1

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

(54)

when

r̃1 =−
πr3

0 ṽ0
2
,η

2λ
(55) {eq:r1}

the minimal value is obtained. Thus we proved that we got the minimal value of β1[r̃1].
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2 The equivalence of β0 for full column and half column
Recall that for the full column, the governing equation is that

(Îŵ′′)′′+β f (F̂ŵ′)′ = 0 ∀ζ ∈ (0,1) (56) {eq:BVP_full}

Îŵ′′
∣∣
ζ=0, 1 = 0 (57)

ŵ|
ζ=0, 1 = 0 (58)

After following transformation

η = 2ζ , Ĩ(η) = 8Î(η/2), (59)

F̃(η) = 2F̂(η/2), w̃(η) = ŵ(η/2), ṽ = w̃′ (60)

The governing equation for the half column becomes that

(Ĩṽ′)′+βhF̃ ṽ = 0, ∀η ∈ (0,1), (61) {eq:BVP_half}
Ĩṽ′
∣∣
η=0 = 0, (62)

ṽ|
η=1 = 0. (63)

To be convenient, assume that Ĩ, Î, F̃ , F̂ are independent of η or ζ . Then the solution for the
full column eq. (56) is that

β f F̂
Î

= π
2, ŵ = Âsinπζ (64)

The solution for the half column eq. (61) is that

βhF̃
Ĩ

=
π2

4
, ṽ = Ãcos

π

2
η (65)

We can see from the above results that

βh =
π2Ĩ
4F̃

=
π28Î
8F̂

=
π2Î
F̂

= β f (66)
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3 Application for constant cross-section half column
3.1 The derivation of the slope

Let’s consider a constant cross-section half column with dimensionless radius r0. For the unper-
turbed half column, β , Ĩ0 and ṽ satisfy the following equation

(Ĩ0ṽ′)′+β F̃ ṽ = 0, ∀η ∈ (0,1), (67)

Ĩ0ṽ′
∣∣
η=0 = 0, (68)

ṽ|
η=1 = 0. (69)

The general solution is that
ṽ = c1 sinλη + c2 cosλη (70)

From the boundary, we know that c1 = 0 and cosλ = 0, thus the eigenvalues are given by

λn =

√
βnF̃
Ĩ0

= nπ +
π

2
(71)

For n = 0, note that F̃ = 1, we get β0 and normalized ṽ0:

β0 = Ĩ0λ
2
0 =

π2

4
Ĩ0, ṽ0 =

√
2cos

π

2
η (72)

Then we can calculate the coefficient as

− π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

=−
πr3

0
π2

4
π

4 r4
0

2
π2

4

[∫ 1

0

(
sin

π

2
η

)4
dη

]1/2

=−2
√

6
r0

≈−4.89898
r0

(73)

We consider r0 = 0.05, thus the slope is −97.9796.

Note: According to our previous transformation Ĩ(η) = 8Î(η/2) and Î = I/L4, we should have

Î =
π

4
r4

0, Ĩ = 2πr4
0 (74)

In the above derivation, we use Ĩ = π

4 r4
0, which is not precise. If we use Ĩ = 2πr4

0, the relative
change of the eigenvalue becomes

β̃ −β0

β0
=−8π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

d (75)

Put β0 =
π2

4 Ĩ0 = 8π2

4
π

4 r4
0 and ṽ0 =

√
2cos π

2 η into it, we get the same result

− 8π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

=−2
√

6
r0
≈−4.89898

r0
(76)
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3.2 Comparison with the numerical experiment

The above result matches well with the numerical data

Figure 1: The lower bound of the constant cross-section half column
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3.3 The relationship between ṽ1 and ṽ0

Substituting the perturbation expansions for Ĩ, ṽ, and β in the EL equations, differentiating w.r.t ε

and then setting ε = 0 we get that ṽ1 has to satisfy the following boundary value problem, {eq:FirstOrderBVP}

(Ĩ0ṽ′1)
′+β0ṽ1 =−(Ĩ1ṽ′0)

′−β1ṽ0 (77a) {eq:FirstOrderBVP_DE}
I0v′1

∣∣
η=0 = 0, (77b) {eq:FirstOrderBVP_BC1}

ṽ1|η=1 = 0. (77c) {eq:FirstOrderBVP_BC2}

3.3.1 For constant cross-section column

Now that we know for constant cross-section column

Ĩ0 =
π

4
r4

0, Ĩ1 = πr3
0 r̃1, β0 =

π2

4
Ĩ0, β1 =−πC1

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

(78)

λ =
π

2C1

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

, r̃1 =−
πr3

0 ṽ0
2
,η

2λ
, ṽ0 =

√
2cos

π

2
η (79)

Plugging all the known terms into the equation. It gives that the right hand side as

−(Ĩ1ṽ′0)
′−β1ṽ0 =−

√
3C1π

3r3
0 sin2 π

2
η cos

π

2
η +π

3r3
0C1

√
3

4
cos

π

2
η

=

√
3

4
π

3r3
0C1 cos

3π

2
η

(80)

which is orthogonal to ṽ0, since

∫ 1

0

(√
3

4
π

3r3
0C1 cos

3π

2
η

)(√
2cos

π

2
η

)
dη = 0 (81)

The governing equation becomes

ṽ′′1 +
π2

4
ṽ1 =

√
3π2C1

r0
cos

3π

2
η (82)

which can be easily solved as

ṽ1 =−
√

3C1

2r0
cos

3π

2
η (83)

It is obvious that ṽ1 is orthogonal to ṽ0.
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3.3.2 For arbitrary cross-section column

If we consider other column shapes where Ĩ0 is not a constant. We could still expect that ṽ1 is
orthogonal to ṽ0.

The solution ṽ1 of the non-homogeneous problem (77) can be expressed as a series of the form

ṽ1(η) = φ(η) =
∞

∑
n=1

bnφn(η) (84)

where φ1,φ2, ...,φn, ... are the corresponding eigenfunctions of the homogeneous problem

(Ĩ0ṽ′)′+λ ṽ = 0 (85)

The fundamental eigenfunction φ1 actually is just ṽ0 and the fundamental eigenvalue λ1 is β0.

φ1 = ṽ0, λ1 = β0 (86)

According to Sturm-Liouville theorem, for a solution to exist for ṽ1, it is necessary that the
right hand side f (η) = −(Ĩ1ṽ′0)

′−β1ṽ0 be orthogonal to ṽ0. Actually this is also how we get the
functional of β1. Thus f (η) can be expanded as

f (η) =
∞

∑
n=1

cnφn(η) (87)

where c1 = 0 since the corresponding eigenfunction φ1 = ṽ0.
The coefficient of solution ṽ1 can be calculated by

bn =
cn

λn−β0
, n = 2,3,4..., b1 = 0 (88)

It is shown that ṽ1 is the linear combination of all the eigenfunctions except ṽ0. Because all the
eigenfunctions are orthogonal to each other, ṽ1 must be orthogonal to ṽ0.
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4 Application for elliptic cross-section half column
For the elliptic cross-section half column, ṽ0 can not be obtained analytically. We use the numerical
method to calculate that the slope is about−175.787.

The above result matches well with the numerical data, except that the numerical data points
have a small positive intercept. The intercept may come from numerical error.

Figure 2: The lower bound of the elliptic cross-section half column
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5 Application for Clausen column
For the Clausen column, the profile of the full column is given in terms of a parameter θ varying
from 0 to π:

r0(θ) = rc sinθ , (89)

ξ (θ) =
1
π

(
θ − 1

2
sin2θ

)
(90)

where rc =
√

4V/(3πL).

For the half column, let η = ξ/2 ∈ [0,1], the range of θ ∈ [0,π/2].

r0(θ) = rc sinθ , (91)

η(θ) =
2
π

(
θ − 1

2
sin2θ

)
(92)

The unperturbed eigenvalue for the half column is

β0 =
1
4

π

3

(
V
L

)2

=
π

12
V 2 (93)

The unperturbed eigenvector is w0(θ) =C sin3
θ .

ṽ0(θ) =
dw0(θ)

dη(θ)
=

dw0

dθ

dθ

dη
(94)

After normalization, we got

ṽ0(θ) =
4sin2(θ)cos(θ)

1− cos(2θ)
(95)

Then
ṽ0(θ) ,η =

dṽ0

dθ

dθ

dη
=

1
2

π csc(θ) (96)

Now let us rewrite the integrate in parametric form∫ 1

0
r0(η(θ))6 ṽ0(η(θ))4

,η dη(θ) =
∫

π/2

0
r0(θ)

6 ṽ0(θ)
4
,η η

′(θ)dθ

=
3π4r6

c
64

(97)

Then we can calculate the coefficient as

− π

β0

[∫ 1

0
r6

0 ṽ0
4
,η dη

]1/2

=− π

πV 2

12

[
3π4r6

c
64

]1/2

=−4
√

π

V

(98)
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Here V is the volume of the column which is the same for constant, ellipse and Clausen column.
V = πr2

const and we set rconst = 0.05 in this paper.

In the end, the slope of lower bound comes out to be −80 for Clausen half column. The
following table summarizes the results for the three kinds of columns.

Table 1: Comparison of three kinds of columns

Cross-section Maximum radius Eigenvalue Slope
Constant 0.0500 4.845E-05 -97.980
Ellipse 0.0612 5.458E-05 -175.787
Clausen 0.0577 6.467E-05 -80.000

From the above table, we can see that the Clausen column obtains the highest buckling strength.
In addition, its buckling strength has the least sensitivity to perturbation compared to the other two
kinds of columns.
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