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I Optimal taper for arbitrary axial loading

I.1 Variational Problem

Consider a straight beam-column of length L that in its undeformed state is orientated along the e3 direction.

We denote the axial and transverse displacements of the columns materials points with the fields u and w .

The column’s ends are suppored by a rolled-type and fixed pins, respectively. Therefore, w(0) = w(L) = 0

and u(L) = 0. The colum is a composed of a homogneous materials of Young’s modulus E . The column

has a variable cross-section which is represented by an axially varying second moment of inertia I (z). The

beam-column is subject to a an axial load ditribution of the form f(z) = f (z)e3. The total potential energy

functional corresponding of the colum is I , where,

I [w ,u] =
E

2

∫ L
0

A(u′2 +
w ′2

2

)2

+ Iw ′′2

 dz –

∫ L
0
fu dz . (1)

For the mechanics background of this functional see Dym, and Shames p. 500. The derivation of the above

potential energy functional is given in the file EBKinematics.nb.

On using the inextensibility condition

u′ = –
w ′2

2
(2)

the functional (1)simplifies to

I [w ,u] =
E

2

∫ L
0
Iw ′′2dz –

∫ L
0
fu dz (3)

Integrating the second term by parts we get



x
w(z)e2

u(z)e3

X
Reference configuration

Deformed configuration

P Pz

EI(z)

Figure 1

I [w ,u] =
E

2

∫ L
0
Iw2

,z dz – Fu|L0 +

∫ L
0
Fu,z dz (4)

where

F (z) :=

∫ z
0
f (y)dy . (5)

Eshelby inclusion For the specific case of far field tensile loading, modeling the spicule as an rigid

inclusion and using the Eshelby theory we have that

f (z) = 2
Pa
L

(
1

2
–
z

L

)
. (6)

The applied force Pa = σaπa
2, where σa is the far field applied uni-axial compression and a is the radius

of the central cross-section of the beam-column. And

F (z) = Pa

(
z

L
–
(z
L

)2
)

(7)

In terms of non-dimensional variables

F̂ (ζ) = ζ – ζ2.

From the essential boundary conditions of the problem u(L) = 0 and from the fact that F (0) = 0, the

second term in the eq. (4) vanishes. Thus the variational problem reads,



Π[w(·)] =
1

2

∫ L
0

(
EIw ′′2 –Fw ′2

)
dz , (8)

Note that the functional Π explicity depends only on w , and not on u. We have used the inextensibility

condition (2) to simplify the third term in (4) to arrive at (8). In terms of the non-dimensional variables

ζ = z/L, β = Pa/EL
2, ŵ = w/L, Π̂ =Π/(EL3), Î = I/L4, and F/EL2 = βF̂ , we get

Π̂[ŵ(·)] =
1

2

∫ 1

0

(
Î ŵ ′′2 –βF̂ ŵ ′2

)
dζ, (9)

The space of admissable functions is

V̂ :=
{
ŵ ∈ H2([0,1]) : ŵ(0) = ŵ(1) = 0

}
(10)

I.2 Boundary Value Problem

The strong form of the problem is

(̂I ŵ ′′)′′+β(F̂ ŵ ′)′ = 0 ∀ζ ∈ (0,1) (11)

Î ŵ ′′
∣∣
ζ=0, 1 = 0 (12)

ŵ |ζ=0, 1 = 0 (13)

II Simplification of using symmetry arguments

II.1 Variational problem

We assume that the problem is completely symmetric about the point z = L/2. Under this assumptions

the problem can be equivalently be stated as: Find

ṽ∗ = arg min { Π[ṽ ] : ṽ ∈ Ṽ }, (14a)

where,

Π̃[ṽ ] =

∫ 1

0
Ĩ ṽ ′2 –βF̃ ṽ2dη (15a)

Ṽ :=
{
ṽ ∈ H1([0,1]) : ṽ(1) = 0

}
(15b)

The function space Ṽ is called the admissible space of functions.



The relation between the new and old variables is: η = 2ζ, Ĩ (η) = Î (η/2), F̃ (η) = F̂ (η/2), w̃(η) = ŵ(η/2).

And ṽ = w̃ ′. I do not see that there is a problem with this. If ṽ , its anti-dervative, if t exists, will be equal to

w̃ . The constant in the anti-derivatie and be suitable chosen so as to enforce the condition that w̃(0) = 0.

(If I recall correctly, Π̃[ṽ ] = 2Π̂[ŵ ]) I think that we should nondimensionalize β, not F̂ so that F̃ = F̂ (η/2)

and β̃ = 2β. This way, F̃ and F̂ both have unit magnitude and the eigenvalue is what scales.

II.2 Boundary value problem

The EL equations corresponding to the above variational problem are,

(̃I ṽ ′)′+βF̃ ṽ = 0, ∀η ∈ (0,1), (16a)

Ĩ ṽ ′
∣∣
η=0 = 0, (16b)

ṽ |η= 1 = 0. (16c)

The above boundary value is special case of the Strum-Liouville problem. The problem consists of solving

the second order differential equation

(py ′)′ – qy +λry = 0, for all ζ in (0,1), (17a)

α1y(0) +α2y
′(0) = 0, (17b)

β1y(1) +β2y
′(1) = 0. (17c)

Please see Ch. 11 of the book by Boyce and Di Prima for Sturm-Liouville theory.

III Optimal taper: necessary condition

III.1 Kellar’s technique

Perturbation expansions Let Ĩ0 be the optimal profile and ṽ0 and β0 be the corresponding eigenfunction

and eigen-values of the above Sturn-liouville problem. So, we have that

(̃I0ṽ
′
0)′+β0F̃ ṽ0 = 0, ∀η ∈ (0,1), (18a)

Ĩ0ṽ
′
0

∣∣
η=0 = 0, (18b)

ṽ0|η= 1 = 0. (18c)

Let’s assume that the Ĩ , ṽ , and β allow the following expansions,

https://www.dropbox.com/s/edjp97knn9zd3dr/%5BWilliam_E._Boyce%2C_Richard_C._DiPrima%5D_Elementary_%28BookZZ.org%29-3.pdf?dl=0


Ĩ (η;ε) = Ĩ0(η) + εĨ1(η) +O(ε2), (19a)

ṽ(η;ε) = ṽ0(η) + εṽ1(η) +O(ε2), (19b)

β(η;ε) = β0 +O(ε2). (19c)

It can be noted from the above expansions that

Ĩ (η;ε)
∣∣
ε=0 = Ĩ0(η)

ṽ(η;ε)|ε=0 = ṽ0(η)

β(ε)|ε=0 = β0

Ĩ (η;ε)′
∣∣
ε=0 = Ĩ ′0(η)

ṽ(η;ε)′
∣∣
ε=0 = ṽ ′0(η)

β(ε)′
∣∣
ε=0 = 0

Ĩ (η;ε),ε
∣∣
ε=0 = Ĩ1(η)

ṽ(η;ε),ε|ε=0 = ṽ1(η)

β(ε),ε|ε=0 = 0

Substituting the peturbation expansions for Ĩ , ṽ , and β in the EL requations, differentiating w.r.t ε and

then setting ε= 0 we get that ṽ1 has to satisfy the following boundary value problem,

(̃I0ṽ
′
1)′+β0F̃ ṽ1 = –(̃I1ṽ

′
0)′, (20a)

I0v
′
1

∣∣
η=0 = 0, (20b)

ṽ1|η=1 = 0. (20c)

The differential equation and the second b.c. are arrived at in a straight forward manner. We discuss

how we arrived at the b.c. (20b). On substituting the perturbation expansions for Ĩ , ṽ , and β in the first

b.c., (16c), taking the derivative w.r.t. ε, and setting ε= 0 we get that

I1v
′
0 + I0v

′
1

∣∣
η=0 = 0. (21)

The equation (21) in fact implies the first b.c. (20b). If I0(0) 6= 0 then it follows from (18b), the b.c at

η = 0 of the b.v.p relating to (̃I0, ṽ0,β0) that ṽ ′0(0) = 0. If ṽ ′0(0) = 0 then (20b) follows from (21) . If

I0(0) = 0 then it again follows that I0(0)v ′1(0) = 0 . The b.v.p satisfied by ṽ1 is the non(in)-homogeneous

version of the b.v.p satisfied by ṽ0 . The in-homogeneity is the forcing term –(̃I1ṽ
′
0)′ that appears on the

r.h.s of (20a) . In order for the b.v.p involving ṽ1 to have a solution it is necessary that the forcing term

–(̃I1ṽ
′
0)′ be orthonormal to ṽ0. That is, it is necessary that,

∫ 1

0
ṽ0(̃I1ṽ

′
0)′dη = 0,

ṽ0(̃I1ṽ
′
0)
∣∣
η=1 – ṽ0(̃I1ṽ

′
0)
∣∣
η=0 –

∫ 1

0
Ĩ1ṽ
′2
0 = 0,∫ 1

0
Ĩ1ṽ
′2
0 = 0.

(22)

The second equation follows by evaluting the integral in the first equation by parts. The third equation

follows from the second equation by noting that the first two terms on the l.h.s of the second equation are



zero . This is because it follows from (21) and (20b) that Ĩ1ṽ
′
0

∣∣
η=0 = 0. Thus, the second term on the

l.h.s of the second equation vanishes. And it follows from (18c) that ṽ0|η=1 = 0, which implies that the

first term on the l.h.s on the second equation also vanishes.

III.1.1 Volume constraint

All admissible profiles have to satisfy the volume constraint that

√
4π

∫ 1

0
Ĩ 1/2dη = Ṽ , (23)

where L3Ṽ = V , the volume of the column. Using the perturbation expansion (19a) in (23), differentiating

by ε, and then setting ε= 0 we get that ∫ 1

0
Ĩ

–1/2
0 Ĩ1dη = 0. (24)

The optimality condition (22) is satisfied if

Ĩ
1/2
0 ṽ ′20 = c , (25)

where c is a real constant. This can be noted by writing the optimality condition (22) in the alternate form

∫ 1

0
Ĩ

–1/2
0 Ĩ1

(
Ĩ

1/2
0 ṽ ′20

)
= 0

and comparing it with the constraint condition (24).

III.1.2 Optimality condition

In summary the condition that characterizes the optimal profile Ĩ0 and the corresponding eigen function ṽ0
is (25). Interms of the bending moment m̃0 = Ĩ0ṽ

′
0, (25) reads

m̃2
0 = cĨ

3/2
0

m̃0 = c1/2 Ĩ
3/4
0

Ĩ0 = c–2/3m
4/3
0

(26)

where c is a real constant. Differentiating (18a) w.r.t η, then substituting ṽ0 as m̃0/Ĩ0, and then writing

m̃0 interms of Ĩ0 using the optimality condition (26), and simplifying we get that

F̃ Ĩ0 Ĩ
′′
0 – F̃ ′ Ĩ ′0(x )̃I0 –

1

4
F̃ Ĩ ′20 +

4

3
β0F̃

2 Ĩ0 = 0 (27a)

Ĩ0
∣∣
0 = 0 (27b)

Ĩ ′0
∣∣
1 = 0 (27c)



Given an β0, the optimal profile Ĩ0 can be determined by solving the above non-linear second order differential

equation. The volume corresponding to the optimal profile can be determined by relating β0 and Ṽ . The

solution is propotional to Ĩ ∝ Ṽ , in fact it appears that Ĩ0(η;β) = βJ̃0(η). Check this ansatz. Solve for J̃0
once and fit it to a curve and you are done. The calculations are in the file Nov30.nb

III.1.3 Solutions procedure

Say Ĩ0 = β0Ĩ0, where Ĩ0 is the solution of the following BVP

F̃ Ĩ0Ĩ ′′0 – F̃ ′Ĩ ′0(x)Ĩ0 –
1

4
F̃ Ĩ ′20 +

4

3
F̃ 2Ĩ0 = 0 (28)

Ĩ0(0) = 0 (29)

Ĩ ′0(1) = 0 (30)

For a given F̃ the above boundary value problem can be solved. Then given an Ṽ , we can compute β0 as

β0 =

(∫ 1

0
Ĩ1/2dη

)–2
Ṽ 2

4π
(31)

After computing β0 the profile is given as β0Ĩ0. The solution form the above BVP for the case F̃ =

1 matches perfectly with that reported by Kellar. The solution of the new equation Ĩ0 matches the

corresponding solution for Ĩ0.



IV Sensitivity to Imperfections

We begin with the Rayleigh quotient characterization of the eigen value.

β0 = min
ṽ∈Ṽ

∫ 1
0 Ĩ0ṽ

2
,ζ dζ∫ 1

0 F̃ ṽ
2dζ

(32)

For the case of the end point loads we have that F̃ (ζ) = 1. The bending moments functions can be thought

to be of unit norm without loss of generality. Thus, the variational problem can be written as,

β0 = min
ṽ∈Ṽ, ‖ṽ‖2=1

∫ 1

0
Ĩ0ṽ

2
,ζ dζ (33)

Now the question is that how does the eigen-value β0 when you change when δI . When Ĩ changes from Ĩ0
to Ĩ0 + εĨ1, then that lead to a corresponding change in the eigen-value changes β0 + εβ1, and ṽ0 + εṽ1.

IV.1 Method I (will not apply to the Clausen column)

If we simply substitute the the perturbation expansions for Ĩ , β, and ṽ into the governing equation we get

the zeroth order equation to be:

(34)

similarly the first order equation is: we get that the first order equation in ε is

(̃I0) ṽ1 ,ζ),ζ+β0ṽ1 + (̃I1 ṽ0 ,ζ),ζ+β1ṽ0 = 0 (35)

(̃I0) ṽ1 ,ζ),ζ+β0ṽ1 = –(̃I1 ṽ0 ,ζ),ζ –β1ṽ0 (36)

The steps so far are the same that for deriving the optimal column. However, in the expansion for β we

retained the first order term.

Idea I Now we really don’t know at this stage as what Ĩ1 is. However, one guess can be that Ĩ1 that

causes β1 to assume the largest possible value is the one for which ṽ1 = ṽ0. However, there is no proof for

this. I wold be good to get a numerical confirmation of this result before moving forward.

However, if this idea were to be pursured some of the beginning steps are as follows. If indeed ṽ1 = ṽ0 then

the first two terms in the above equation taken together vanish. Putting the last two terms in the above

equation gives us a chracterization of Ĩ1 and β1.

(̃I1 ṽ0 ,ζ),ζ+β1ṽ0 = 0 (37)

Multiplying both sides of the above equation with ṽ0 and integrating we get that

β1 =

∫ 1

ζ=0
Ĩ1 ṽ0

2
,ζ dζ (38)

In arriving at the above equation we have made use of the fact that ‖ṽ0‖= 1.



Idea II The other alternate idea is that for a solution to exist for ṽ1 it is necessary that in (36) the right

hand side be orthogonal to ṽ0. Thus multiplying both sides of (36) with ṽ0 and integrating we get that

IV.2 Volume constraint

However, the perturbed eigenvector is also normalized so we have that,∫ 1

0
ṽ2

0 dζ+ 2ε

∫ 1

0
ṽ0ṽ1dζ+o(ε) = 1 (39)

It appears that the normalization condition is not satisfied other than for the zeroth order. This has to

be reconciled later. Perhaps it is good idea to simply ignore the volume constraint until it is actually sure

that this constraint is actually necessary. Furthermore, when a spicule get’s chipped it is definitely loosing

volume. So, I think that it is critical to induce defects by keeping the volume constant.



A Notes and comments

1. Note that the relationship that Ĩ0ṽ
′2 = const. has been obtained by two different techniques. So, it

should be taken seriously.

2. The maximum stress is a constant in all optimized columns.

3. We arrive at the same optimality condition by reeversing the max min and min max.

4. Can we show that Ĩ0 should be proportinal to β0?.–Yes

5. When is the reversing of the min max and max min allowed?—Min Max theorem by Courant.

6. Is searching for the optimal profile well posed? Read Tadabacksh’s paper.

Clausen: To Do and Done

Rederived the original derivation of Keller based on the Fredlomn alternative.

Need to understand how the Rayleigh co-effcient ties into the current results.

Read Shames and Dym chapter on Buckling

Shames and Dym Chapter on Dynamics of Beams, p. 385, 389

Undersatnd the energy characterization of buckling

Derived the energy functional expressions in Shames and Dym through rigorous kinematic analysis.

I have read the introduction section of Zednec Bazant’s book.

There are two types of failuer material failure and structural failure. With the advent of new materials the

stability criteria have become very important because the design of structures using the new materials.

Give a quick

Proof that the solution is a global optima for arbitrary loading.

Clausen: some questions and throughs

What is the same mass ellipse corresponding to the Clausen column?

What is the imperefection sensitivity for the Clausen column?

A column embedded in an elastic matrix is equivalent to no matrix.

Is the Clausen column the global maxima?

If yes, then is it unique?



What is the complete elastica solution for the Clausen column

Need to add the result that optimizing for bening produces a cusp at the center

Why is the cross-section not triangular, if it were triangular probably the stress would not be uniform?

Spear’s made of metal

Trees are subject to body weight loading, so the clausen column results would not apply to trees

The old Javelins and arrows are const. cross-sections, where as the new Javelins are tapered.

The axial filaments are sometimes triangular or square in the spicules.

Can the theory of Joseph Keller be applied to arbitrary structures (Overton)

Is the strengthening of structures agaisnt buckling well understood?

A column embedded in an elastic matrix is equivalent to no matrix.

Need to add the result that optimizing for bening produces a cusp at the center

Why the cross-section not triangular, if it were triangular probably the stress would not be uniform?

The better shape of highlighted to us by the spicule applies not just to beam-column but also to other type

of frame structures. For example, a number of frame and truss type structuures are essentially assembly of

columns.

The incorporation of the optimal profile column in the construction of various trusses and frame type

strutures would increase the strength of those structures against buckling (structural instability failure) in

a similar fashion.

For example in Figure XX. we compare the buckling strength of two different structures. The material used

in both structures is the same. The nominal dimensions of both structures is also the same. However, the

links in the truss structure shown in the left incorporates the clausen colums where as that in the right

incorporate constant thickness links. The buckling strength increases by XX%. This proves that the

stability strength enhaning due to tapeing of columns is not limited to simple columns but for other more

general frame and truss type stuctures that are composed of column type links. We do not suggest that

the profile given by eq. XX enahnaces the buckling strength of the struture shown in Fig. XX and YY. But

only that tapering the columns will have a beneficial effect on the overall buckling strength of the strcuture.

Topology optimization has mainly been done for designing stuctures against material failure and not against

structural failure. The current methodology higligted by marine structures about optimizing against

buckling structures. As new materials with increased material strength are being introduced the design

agaisnt buckling becomes very important.

Stability notes

Discuss the concepts of materials and strutural failure. With the increased quality if material strength the

design against structural failure becomes important.



Material failure involves performing a static analysis and checking if the stresses are greater than the material

strength (yield criteria, plastic limit).

The design of strcutures against strutural instability is more complicated. Here the sudden change of

deformation causes the magnification of the applied forrces at certain critical points through a lever effect.

Material failure depends minimally on the geometric shape of the strucutre and more critically on the

material of the strucutre and the applied forces. Wheres as structural failure depends on the geometric

shape of the structures and less critically on the material and the applied forces. Since when the structural

instability does occur then the applied forces are magnified through a large amount. That is to such an

extent the structure would fail irrespective of what material it is composed of.
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