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Abstract A comprehensive study on the spherical indenta-
tion of hyperelastic soft materials is carried out through com-
bined theoretical, computational, and experimental efforts.
Four widely used hyperelastic constitutive models are stud-
ied, including neo-Hookean, Mooney–Rivlin, Fung, and
Arruda–Boyce models. Through dimensional analysis and
finite element simulations, we establish the explicit relations
between the indentation loads at given indentation depths
and the constitutive parameters of materials. Based on the
obtained results, the applicability of Hertzian solution to the
measurement of the initial shear modulus of hyperelastic
materials is examined. Furthermore, from the viewpoint of
inverse problems, the possibility to measure some other prop-
erties of a hyperelastic material using spherical indentation
tests, e.g., locking stretch, is addressed by considering the
existence, uniqueness, and stability of the solution. Experi-
ments have been performed on polydimethylsiloxane to vali-
date the conclusions drawn from our theoretical analysis. The
results reported in this study should help identify the extent
to which the mechanical properties of hyperelastic materials
could be measured from spherical indentation tests.

Keywords Spherical indentation · Hyperelastic soft
materials · Dimensional analysis · Finite element method ·
Inverse problem

1 Introduction

Understanding the deformation behavior of soft materials
such as elastomeric materials and biological soft tissues has

M.-G. Zhang · Y.-P. Cao (B)· G.-Y. Li · X.-Q. Feng
AML, Department of Engineering Mechanics, Tsinghua University,
Beijing 100084, China
e-mail: caoyanping@tsinghua.edu.cn

received considerable attention during past years. Due to their
intrinsic features of low elastic moduli and high sensitivity to
external stimuli, soft materials often undergo large deforma-
tion and exhibit strong nonlinear responses. Determining the
mechanical properties of these materials is of great impor-
tance, for instance, for tissue engineering as well as for under-
standing growth-induced large deformation behavior of soft
tissues (Rodriguez et al. 1994; Taber 1995; Ben Amar and
Goriely 2005; Li et al. 2012) and the responses of cells or tis-
sues to various external stimuli (Humphrey 2003; Holzapfel
and Ogden 2006; Levental et al. 2007; Lee et al. 2010). To
date, however, it remains a challenging issue to measure the
hyperelastic properties of soft materials in a local area or
at small scales. Indentation proves to be a promising tool
for such a purpose. Using the commercial indenter, inden-
tation tests can be easily performed across different length
scales. A key issue in indentation tests is to extract mechani-
cal properties of materials from indentation responses, which
represents an inverse problem and relies on the correlation
between the material properties and indentation responses.
During the past two decades, much effort has been directed
toward developing robust methods to determine such prop-
erties as the elastic, elastoplastic, viscoelastic properties of
materials using indentation tests (Oliver and Pharr 1992;
Cheng and Cheng 2004; Fischer-Cripps 2011). This greatly
facilitates the use of depth-sensing instrumented indentation
for practical measurements.

In recent years, measuring the mechanical properties of
hyperelastic materials using indentation tests has attracted
considerable attention. For example, Lee et al. (2003) devel-
oped a spherical indentation approach to evaluate the material
property of rubber materials described by the Yeoh model.
Samani and Plewes (2004) proposed an inverse method
to interpret the nonlinear indentation force–displacement
response to measure the hyperelastic parameters of small
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ex vivo tissue samples. Giannakopoulos and Triantafyllou
(2007) addressed the spherical indentation of incompress-
ible rubbery materials through theoretical and experimental
efforts. Their theoretical analysis based on the Mooney–
Rivlin model led to an analytical solution for the indentation
load–depth curve with the ratio of the indentation depth to
the indenter radius smaller than 10 %. Lin et al. (2009) pro-
posed load–depth relations for a number of hyperelastic strain
energy functions and validated the solutions for the ratio of
the indentation depth to indenter radius smaller than 20 %
via finite element simulations. Despite these advances, sev-
eral fundamental issues as illustrated below regarding spher-
ical indentation of hyperelastic solids remain, which deserve
further effort.

First, indentation of hyperelastic solids usually involves
coupled material, geometric, and boundary nonlinearity.
Therefore, it is difficult to develop an analytical solution cor-
relating the indentation responses and the material properties.
Although several analytical solutions as aforementioned have
been presented in the literature based on elastic contact the-
ory for relatively small indentation depths (e.g., the ratio of
indentation depth to indenter radius, h/R < 0.2), exploring
the explicit expressions of the indentation load–depth curve
valid up to large ratios of h/R is still an important issue and
requires further investigation.

Second, extracting the hyperelastic properties of soft
materials from indentation responses represents an inverse
problem, which is usually ill-posed. According to Hadamard’s
definition (Hadamard 1923), an inverse problem is ill-posed
if one of the following properties is not respected: (i) there
exists a solution to the problem (existence), (ii) no more than
one solution exists (uniqueness), and (iii) the solution con-
tinuously depends on the data (stability). To examine the
extent to which the solution to an inverse problem can be
reliably determined, one needs to explore its above proper-
ties. For spherical indentation of hyperelastic soft materials,
however, there is no systematic investigation on the proper-
ties of the identified solution from the viewpoint of inverse
problems.

Third, the nanoindentation technique based on Atomic
Force Microscope (AFM) has been widely used to mea-
sure the mechanical properties of soft materials including
soft tissues and cells (Cross et al. 2007; Crichton et al.
2011). Hertzian solution has been utilized by many authors
to interpret the indentation data, which is based on the
small deformation assumption and requires that the inden-
tation depth should be much smaller than the tip radius. It
has been shown that shallow depth indentation usually suf-
fers from excessive noises which may preclude the accu-
racy of the measurement. Relatively larger indentation depth
can help eliminate the data noise caused by surface effects.
However, when the indented hyperelastic solid undergoes
finite deformation, the initial elastic modulus identified using

Hertzian elastic contact theory may contain significant errors
(Giannakopoulos and Triantafyllou 2007; Liu et al. 2010).
Liu et al. (2010) argued that the hyperelastic solution reported
by Giannakopoulos and Triantafyllou (2007) significantly
overestimated the indentation load. But the big discrepancy
between the Hertzian solution and the finite element results
reported in their study (Liu et al. 2010) has not been well
understood. In this sense, more systematic study is needed to
identify the extent to which the Hertzian solution is applica-
ble when the indented hyperelastic solid undergoes finite
deformation.

Bearing the above issues in mind, in this paper, we explore
the spherical indentation of hyperelastic solids through a
combined effort of theoretical analysis, finite element simu-
lations and experiments. The paper is organized as follows. In
Sect. 2, four widely used hyperelastic models, including neo-
Hookean, Mooney–Rivlin, Fung, and Arruda–Boyce model,
are described, which will be used in our study. Section 3 car-
ries out a dimensional analysis to characterize the relation-
ship between the indentation responses and the hyperelastic
properties of indented materials. Then, in Sect. 4, the closed-
form expressions of the indentation load as a function of
given indentation depths and the hyperelastic parameters are
achieved based on large-scale finite element computations. In
Sect. 5, the applicability of the Hertzian solution to the mea-
surement of initial shear modulus of hyperelastic materials is
examined. In Sect. 6, from the viewpoint of inverse problem,
the possibility to measure some other properties (e.g., lock-
ing stretch) of a hyperelastic material is addressed by explor-
ing the existence, uniqueness, and stability of the solution.
Section 7 discusses the effects of friction and compressibil-
ity of the indented solid. Section 8 represents experiments
conducted on polydimethylsiloxane (PDMS) to validate the
results and conclusions given by theoretical analysis. Section
9 gives the concluding remarks.

2 Material models

In this study, we investigate four hyperelastic models, includ-
ing neo-Hookean, Mooney–Rivlin, Fung, and Arruda–Boyce
models, which have been widely applied to model the non-
linear deformation behavior of rubber-like materials and bio-
logical soft tissues. These models are briefly introduced as
follows.

2.1 Mooney–Rivlin and neo-Hookean models

In the Mooney–Rivlin model, the strain energy function is
written as (Mooney 1940; Rivlin 1948)

� = C10
(
Ī1 − 3

) + C01
(
Ī2 − 3

) + 1

D
(J − 1)2 , (1)
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Spherical indentation method 3

where � is the strain energy density per unit volume in
the undeformed configuration, C10, C01, and D are material
parameters and J the volume ratio. Ī1 and Ī2 are the first and

second deviatoric strain invariants, with Ī1 = λ
2
1 + λ

2
2 + λ

2
3

and Ī2 = λ
−2
1 + λ

−2
2 + λ

−2
3 , where λi is the deviatoric prin-

cipal stretch which is related to the principal stretch λi by

λi = J− 1
3 λi . The initial bulk modulus K0 is related to D by

K0 = 2
D , where D = 0 for incompressible materials. When

C01 ≡ 0, Eq. (1) reduces to the strain energy density function
of the neo-Hookean model

� = C10
(
Ī1 − 3

) + 1

D
(J − 1)2 , (2)

The initial shear modulus μ0 is given by μ0 = 2(C10 +C01)

for Mooney–Rivlin model and μ0 = 2C10 for neo-Hookean
model. Poisson’s ratio is related to the bulk modulus and the
initial shear modulus by ν = 3K0−2μ0

6K0+2μ0
.

2.2 Arruda–Boyce model

Arruda–Boyce model (Arruda and Boyce 1993), also known
as the eight-chain model, is developed based on an eight-
chain representation of the underlying macromolecular net-
work structure of rubber and the non-Gaussian behavior of
the chains in the network. The strain energy density function
in this model is given by

� = μ

{
1

2

(
Ī1 − 3

) + 1

20λ2
m

(
Ī 2
1 − 9

)

+ 11

1050λ4
m

(
Ī 3
1 − 27

)
+ 19

7000λ6
m

(
Ī 4
1 − 81

)

+ 519

673750λ8
m

(
Ī 5
1 − 243

)}
+ 1

D

(
J 2 − 1

2
− ln J

)
,

(3)

This model captures the cooperative nature of network
deformation with only two material parameters, i.e., the shear
modulus μ and locking stretch λm . The two parameters are
linked to the physics of molecular chain orientations involved
in the deformation of rubbery materials and elastomers. In
this model, the initial shear modulus μ0 is related to the shear
modulus μ via the expression

μ0 = μ

(
1 + 3

5λ2
m

+ 99

175λ4
m

+ 513

875λ6
m

+ 42039

67375λ8
m

)
, (4)

where λm can be obtained by

λm =
√

1

3

(
λ2

lim + 2

λlim

)
. (5)

λlim is the limit chain representing the stretch at which the
stress starts to increase without limit.

2.3 Fung model

Fung et al. (1979) proposed a hyperelastic model to describe
the nonlinear deformation behavior of biological soft tissues,
in which the strain energy function reads

� = C

2b

(
eb( Ī1−3) − 1

)
+ 1

D

(
(J )2 − 1

2
− ln J

)

, (6)

where C and b are material parameters. In this model, the
initial shear modulus is given by μ0 = C .

3 Dimensional analysis

Dimensional analysis is a useful tool to analyze the indenta-
tion tests (Cheng and Cheng 1998, 2004; Dao et al. 2001). It
states that a physical law does not depend on the arbitrariness
in the choice of units of physical quantities. Consequently, the
functions expressing the physical law must process certain
mathematical property, called generalized homogeneity, i.e.,
each of the additive terms in the functions will have the same
dimensions or units. This concept often allows the number of
arguments in the mathematical expressions describing phys-
ical phenomena to be reduced. This basic idea leads to the
central theorem in dimensional analysis, i.e., the so-called
PI-theorem (or � theorem) (Barenblatt 1996). This theo-
rem describes how a physically meaningful equation involv-
ing k variables can be equivalently rewritten as an equation
of k-mdimensionless parameters, where m is the number of
variables with independent dimensions. Most importantly, it
provides a method for computing these dimensionless para-
meters from the given variables, even if the form of the equa-
tion is still unknown.

Scaling relations given by dimensional analysis not only
provide insight into the shape of indentation load–depth
curves, but also provide guidelines for finite element mod-
eling of indentation tests. Particularly, when only a few
geometric and physical parameters are involved (e.g., for the
constitutive models under study), the combination of dimen-
sional analysis with finite element simulations permits to
develop explicit expressions for the relationship between the
indentation responses and material properties (Cheng and
Cheng 2004).

In the present paper, the dimensional analysis method is
used to study the spherical indentation of incompressible or
weakly compressible hyperelastic materials with constitutive
relations described in Sect. 2. For the spherical indentation of
an incompressible neo-Hookean solid, the indentation load P
must be a function of the following independent parameters:

PnH = f (μ0, h, R) , (7)
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where μ0 is the shear modulus at ground state, h the inden-
tation depth, and R the indenter radius. Applying � theorem
to Eq. (7) gives

PnH = μ0
√

Rhh�nH

(
h

R

)
, (8)

where �nH is a dimensionless function, which can be deter-
mined by finite element simulations, as shown in the sequel.

Adopting dimensional analysis to the spherical indenta-
tion of a Mooney–Rivlin solid, the indentation load PMR

may be expressed as

PMR = μ0
√

Rhh�MR

(
�,

h

R

)
, (9)

where �MR is a dimensionless function and � = C01/

(C01 + C10).
Similarly, the indentation load–depth relations for the

Arruda–Boyce and Fung models are, respectively, given by

PAB = μ0
√

Rhh�AB

(
λm,

h

R

)
, (10)

PF = μ0
√

Rhh�F

(
b,

h

R

)
, (11)

where �AB and �F are dimensionless functions. At a given
ratio of indentation depth to indenter radius hg/R, Eqs.
(9)–(11) reduce to

PMR,g = μ0
√

Rhghg�MR (�) , (12a)

PAB,g = μ0
√

Rhghg�AB (λm) , (12b)

PF,g = μ0
√

Rhghg�F (b) . (12c)

Clearly, once the dimensionless functions are known, the cor-
relations between the indentation loads at the given indenta-
tion depths and material properties are determined. In next
section, we will identify the closed-form expressions of the
dimensionless functions in Eqs. (8) and (12) for the ratio of
hg/R varying in a wide range.

4 Closed-form relations between indentation responses
and material properties

To identify the closed-form expressions of the dimension-
less functions in Eqs. (8) and (12), nonlinear finite element
computations are carried out in this section using ABAQUS
(2009). We consider the material, geometric, and boundary
nonlinearity involved in the problem simultaneously. The
nonlinear finite element simulations also allow us to deter-
mine the dimensionless functions in Sect. 3 at large ratios of
h/R, (e.g., h/R = 1), which is difficult to derive by analyt-
ical methods. We implanted the Fung model into ABAQUS
via the user subroutine UHYPER. The other three hyperelas-
tic models introduced in Sect. 2 have already been included

Table 1 Material parameters used in the simulations

Model Parameters Range of parameters

Mooney–Rivlin � = C01
C10+C01

[0, 1]

Fung b [0.04, 1.00]

Arruda–Boyce λm [1, 10]

Fig. 1 Finite element mesh used in computational studies

in ABAQUS and can be used directly. The parameters
used in this study are taken according to the literature and
vary in wide ranges of practical interest, as listed in Table 1.
The value of the initial modulus μ0 can be taken arbitrarily
in the determination of the dimensionless functions in Sect.
3 and is taken as 1 MPa in our simulations.

An axisymmetric model is adopted here and a total of
41121 four-node bilinear axisymmetric reduced integration
elements are used to discretize the semi-infinite substrate of
the indented solid. The boundary conditions are that the outer
surface nodes are traction-free and the lower surface nodes
are fixed. The indenter is assumed to be rigid, with the radius
R = 2.5 mm. The maximum ratio of the indentation depth to
indenter radius is taken as h/R = 1. The spherical indenter
and the finite element model used in the present analysis are
schematically showed by Fig. 1. Friction is omitted here but
its effects will be examined in the sequel. Convergence of
the computation was guaranteed by comparing the present
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Spherical indentation method 5

Table 2 The coefficients corresponding to various hg/R for Mooney–Rivlin

hg/R 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

C1 5.317013 5.293920 5.276747 5.260480 5.236587 5.087467 4.936427 4.780693 4.534187

C2 0.072213 0.128747 0.164533 0.196693 0.240640 0.448587 0.625973 0.796747 1.068427

C3 −0.001238 −0.003277 −0.002632 −0.004346 −0.008800 −0.028320 −0.055893 −0.089173 −0.158827

Table 3 The coefficients corresponding to various hg/R for Fung

hg/R 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

D1 5.316960 5.293867 5.277067 5.260747 5.236640 5.086933 4.935733 4.779840 4.534187

D2 0.006720 0.018080 0.025707 0.036693 0.055360 0.183200 0.335893 0.519840 0.871360

D3 −0.000108 −0.000321 0.001763 0.001709 0.000721 −0.006400 −0.018827 −0.044373 −0.121920

Table 4 The coefficients corresponding to various hg/R for Arruda–Boyce

hg/R 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

A0 5.317013 5.293920 5.277067 5.260800 5.236960 5.087413 4.936640 4.784427 4.538613

A1 0.041120 0.039307 0.176960 0.112853 0.384107 0.866720 0.044907 1.097867 1.577920

B1 0.320670 0.321500 0.318160 0.319080 0.306880 0.328940 1.701070 0.410720 0.433900

A2 0.001092 0.164107 0.134240 0.322720 0.010827 0.028267 1.633973 1.097867 1.577920

B2 1.529220 0.321490 0.318170 0.319080 1.405770 1.587670 0.338240 0.410720 0.433900

A3 0.034347 0.002908 0.004629 0.006560 0.335733 1.051893 1.617120 1.097867 1.577920

B3 0.320670 1.566670 1.500330 1.502030 0.306890 0.328930 0.338230 0.410720 0.433900

results with those calculated using a refined mesh (71319
four-node bilinear axisymmetric elements).

Based on the computational results, the dimensionless
function �nH

( h
R

)
in Eq. (8) is determined as

�nH

(
h

R

)
= 16

3

(
1 − 0.15

h

R

)
, (13)

Equations (8) and (13) give an explicit expression of the
indentation load–depth curve for the spherical indentation
of neo-Hookean solid

PnH = 16

3
μ0

√
Rhh

(
1 − 0.15

h

R

)
, (14)

which is valid up to h/R = 1.
At a number of different ratios of indentation depth to

indenter radius (i.e., hg/R varies from 0.01 to 1), the closed-
form expressions of the dimensionless functions �MR,�F,
and �AB are obtained as

�MR(�) = C1 + C2� + C3�
2, (15a)

�F(b) = D1 + D2b + D3b2, (15b)

�AB(λm) = A0 +
3∑

i=1

Ai e
−λm/Bi , (15c)

respectively, where Ci and Di (i = 1, 2, 3) are constants
and given in Tables 2 and 3 for different ratios of hg/R.

A0, Ai , and Bi , (i = 1, 2, 3), are constants and given in
Table 4.

5 Applicability of Hertzian solution to determining the
initial shear modulus of hyperelastic solids

The closed-form solutions developed in Sect. 4 enable us to
examine the applicability of Hertzian solution to the deter-
mination of the initial shear modulus of hyperelastic solids.
When the indented solid is incompressible, Hertzian solution
gives the indentation load–depth relation as

PH = 16

3
μ0

√
Rhh, (16)

For a neo-Hookean solid, normalizing the indentation load
(Eq. 8) by Hertzian solution (Eq. 16) gives

PnH

PH
= 3�nH (h/R)

16
= 1 − 0.15

h

R
, (17)

Equation (17) shows that when h/R = 1, the difference
between PH and PnH is up to 15 %; when h/R ≤ 0.3, the
difference between PH and PnH is smaller than 5 %. At a
given indentation depth, it is known from Eqs. (12)–(16) that
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Fig. 2 Dependence of the dimensionless function �MR on the para-
meter � and ratios of h/R

PMR,g

PH
= 3

16
�MR (�) (Mooney−Rivlin model) , (18a)

PAB,g

PH
= 3

16
�AB (λm) (Arruda−Boyce model) , (18b)

PF,g

PH
= 3

16
�F (b) (Fung model) , (18c)

Based on Eqs. (15), (17), and (18), the normalized indenta-
tion loads at different ratios of hg/R for the three hyperelas-
tic models are plotted in Figs. 2, 3 and 4. From the results
for Mooney–Rivlin, Fung, and Arruda–Boyce models, it can
be found that for a hyperelastic material with a small lock-
ing stretch (i.e., when λm in Arruda–Boyce model is small
or b in Fung model is large), the difference between the
Hertzian solution and the solutions developed based on non-
linear analysis is relatively small. When the locking stretch
of the material is large, the results based on Mooney–Rivlin,
Fung, and Arruda–Boyce models are quite similar to that
for the neo-Hookean model. In this case, our computational
results show that the difference between the Herzian solu-
tion and the hyperelastic indentation solutions is around 15 %
when h/R = 1.

It can be concluded from the above results that when the
ratio of the indentation depth to the indenter radius is smaller
than 0.2, Hertzian solution can be reliably adopted to deter-
mine the initial shear modulus of incompressible hyperelas-
tic solids. When indentation depth is large, e.g., h/R > 0.5,
Hertzian solution underestimates the initial shear modulus
of a hyperelastic solid, which can be modeled using neo-
Hookean, Mooney–Rivlin, Fung or Arruda–Boyce model.
The larger the locking stretch of an indented solid, the greater
the error in the initial shear modulus given by Hertzian solu-
tion. When the locking stretch is large, the hyperelastic solu-
tion developed in this study (e.g., Eq. 14) provides a more
accurate solution for evaluating the initial shear modulus.

Fig. 3 Dependence of the dimensionless function �F on the parameter
b and ratios of h/R

Fig. 4 Dependence of the dimensionless function �AB on the para-
meter λm and ratios of h/R

6 Determination of other hyperelastic parameters
of soft materials

The results in Sect. 5 show that the initial shear modulus can
be determined using spherical indentation tests with a good
accuracy. In this section, we explore whether the spherical
indentation method permits to determine other hyperelastic
properties of hyperelastic solids reliably, e.g., parameter �

in Mooney–Rivlin model, λm in Arruda–Boyce model, and
b in Fung model. Determining the properties of hyperelas-
tic solids represents an inverse problem. As aforementioned,
an inverse problem may be ill-posed. Therefore, we need to
explore the properties of the inverse problem under study,
i.e., the existence, uniqueness, and stability of the solution.
Since the initial shear modulus μ0 can be determined with a
good accuracy using data corresponding to a relatively small
h/R, we explore here whether other hyperelastic properties
can be determined from the indentation load–depth relations
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Spherical indentation method 7

given by Eq. (12). Existence and uniqueness of the solution
to an inverse problem are mainly determined by the proper-
ties of the operators. A careful examination on the properties
of the operators given by Eqs. (12) and (15) shows that the
existence and uniqueness of the solution can be guaranteed in
theory. However, it should be noted that the solution may not
exist provided that the input data are polluted by significant
errors. In practice, the condition of stability is most often
violated and deserves more attention. The lack of stability
can cause the computed solution to an inverse problem to
have nothing to do with the true solution. Careful attention
must therefore be paid to this aspect. It should be pointed out
that uniqueness and stability are two fundamentally different
concepts in the mathematic theory of inverse problems. The
former is determined by the property of the operator, i.e.,
the form of the dimensionless function in the present study,
whereas the latter relies on how the solution depends on the
input data. In this section, we focus on the stability of the
solution of the present problem by exploring its condition
number, which quantitatively measures the sensitivity of the
identified solution to data errors. For example, when the con-
dition number is 5, an error of 3 % in the input data will lead
to an error of 15 % in the identified solution. A problem is ill-
conditioned if the condition number is large and it is ill-posed
if the condition number is infinity (Hadamard 1923).

Based on Eq. (12), the condition numbers for the deter-
mination of the parameters �,λm , and b can be defined as
(Cao and Lu 2004a,b)

�MR = ��

�
/
��MR

�MR
= �MR

��′
MR (�)

, (19a)

�AB = �λm

λm
/
��AB

�AB
= �AB

λm�′
AB (λm)

, (19b)

�F = �b

b
/
��F

�F
= �F

b�′
F (b)

, (19c)

where �′
MR (�) = d�MR/d�,�′

AB (λm) = d�AB/dλm,

�′
F (b) = d�F/db. From Eqs. (12), (15) and (19), the closed-

form expressions of the condition numbers defined above can
be obtained. For the Mooney–Rivlin model, the condition
number is

�MR = �MR

��′
MR (�)

= C1 + C2� + C3�
2

C2� + 2C3�2 , (20)

The closed-form expression of the condition number for
Fung model is the same as Eq. (20), with the constants
Ci (i = 1, 2, 3) replaced by Di , and the variable � replaced
by b, respectively. According to Eqs. (12), (15), and (19c),
the condition number for the Arruda–Boyce model can be
expressed in the following closed-form:

�AB = �AB

λm�′
AB (λm)

= A0 + ∑3
i=1 Ai e−λm/Bi

λm
∑3

i=1

(−Ai
Bi

e−λm/Bi

) . (21)

Fig. 5 Condition numbers for the determination of � corresponding
to different ratios of h/R

Fig. 6 Condition numbers for the determination of the parameter b
using the data corresponding to different ratios of h/R

The explicit results derived here permit to quantitatively
examine the extent to which the parameters �, b, and λm

can be determined using spherical indentation tests. Figures
5, 6, and 7 illustrate the variation in the condition numbers
for the three hyperelastic models for various values of h/R.
We can obtain the following insightful information.

(i) At a given indentation depth, the condition numbers
decrease with the parameters �, b and increase with λm .
This indicates that for a hyperelastic material with a small
locking stretch, e.g., many biological soft tissues (Fung
1993), the aforementioned hyperelastic parameters may
be determined using spherical indentation.

(ii) For the determination of the parameters �, b and λm , the
condition numbers decrease with the indentation depth.
Therefore, application of the data corresponding to a
large ratio of h/R may provide more reliable evaluation
on these parameters. But it is pointed out that a large ratio
of h/R corresponds to a high strain level, and in this case,
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Fig. 7 Condition numbers for the determination of the parameter λm
using the data corresponding to different ratios of h/R

indentation may cause the damage of the indented solid
in the measurements of some fragile materials. Caution
should be paid to this aspect in the practical use of the
method proposed here.

7 Effects of friction and compressibility of the indented
substrate

The above analysis assumes that the indenter/substrate inter-
face is frictionless and the indented hyperelastic solid is
incompressible. In this section, we explore the effects of fric-
tion and compressibility of the indented solid on the conclu-
sions drawn in Sects. 5 and 6. Arruda–Boyce model is taken
as an example.

The computational model is the same as that described in
Sect. 4. We simulate the frictional contact of the indenter with
the indented solid by taking the friction coefficient as 0.1.
Figure 8 shows the comparison of the indentation load–depth
curve with that in the frictionless contact case for several
representative locking stretches λm . Hertzian solution is also
included in the figure for comparison. It can be seen from
the results that friction does not have significant influence on
the indentation load–depth curve of a hyperelastic material,
and the difference between the results of the frictional and
frictionless contact is smaller than 2 %.

We further explore the case in which the indented solid is
weakly compressible. The Poisson’s ratio ν is taken as 0.48,
and the parameter D in the hyperelastic models is related
to the Poisson’s ratio by D = 3(1−2ν)

μ0(1+ν)
. Since ν is taken as

constant, the results given by dimensional analysis, i.e., Eqs.
(9) and (12), remain valid. The dimensionless functions are
determined from the computational results. The indentation
loads at a number of given indentation depths are compared
with the Hertzian solution in Fig. 9. The results are quite sim-

Fig. 8 Effects of friction on the indentation responses

Fig. 9 Effects of compressibility of the indented material on the
computational results, Poisson’s ratio is taken as 0.48

ilar to those for the incompressible substrate, and therefore
the conclusions drawn in Sects. 5 and 6 for incompressible
indented solid are still valid for weakly compressible sub-
strates.

8 Experiments

In this section, experiments are carried out to validate the con-
clusions given by theoretical analysis and the computational
studies. Polydimethylsiloxane (PDMS) is prepared by mix-
ing a degassed elastomer base and a crosslinker at a ratio of
20:1 w/w. The pre-polymerized mixture is filled in a cylindri-
cal mold and cured at 60 ◦C for 8 h. When the PDMS becomes
a solid, it is taken out to prepare experimental specimens
for both tension and indentation tests. The ElectroForce�
3100 test instrument (Bose, Fig. 10) is used for the measure-
ments. The machine can reach a maximum load of 22 N. The
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Fig. 10 The ElectroForce� 3100 test instrument used in our experiments
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Fig. 11 Stress–strain curves given by tensile tests

displacement resolution is 1 µm and the load resolution is
0.5 mN.

Tensile tests are first performed. The specimen has a width
of 2.48 mm and a thickness of 2.46 mm. The gauge lengths of
the specimens vary from 4.76 to 9.62 mm. Displacement con-
trolled loading procedure is applied and the measurements
conducted at ambient temperature (23 ◦C) with the humidity
of around 50 %. The loading rate is taken as 2 mm/s, which is
sufficiently large to ensure that the effect of viscosity of the
material was negligible. The nominal stress–strain curves are
given in Fig. 11. The initial shear modulus directly given by
the nominal stress–strain curves is 0.31 ± 0.02 MPa. Fitting
the nominal stress–strain curve with Arruda–Boyce model
gives the initial shear modulus μ0 = 0.29 MPa and the lock-
ing stretch λm = 2.1.
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Fig. 12 Indentation loading curves measured at six different positions
of the sample

The ElectroForce� 3100 test instrument is also used for
the indentation tests. A spherical indenter with a radius of
3 mm was adopted. The measurements are also performed
at room temperature (23 ◦C) and a humidity of about 50 %.
Displacement controlled loading procedure is applied. The
loading rate is set as 2 mm/s and the maximum indentation
depth is 3 mm. The sample has a diameter of 55 mm and
a height of 31 mm. Six measurements at different positions
of the sample are conducted, and the indentation load–depth
curves are given in Fig. 12. The initial shear modulus is deter-
mined by fitting the load curves up to different ratios of h/R
using Hertzian solution and the hyperelastic solution (Eq.
14), respectively, the values are given in Table 5.
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Table 5 The initial shear modulus obtained by fitting the indentation
loading curve up to different ratios of hm/R using Hertzian solution and
the hyperelastic solution (Eq. 14), where hm is the maximum indentation
depth taken in data analysis

hm/R μ0(MPa) given by
Hertzian solution

μ0(MPa)
given by Eq. (14)

0.2 0.303 0.311

0.4 0.273 0.288

0.6 0.255 0.276

0.8 0.249 0.273

1.0 0.246 0.271

Comparing the initial shear moduli determined from ten-
sion and indentation tests, we find that when the inden-
tation depth is large, the Hertzian solution underestimates
the initial shear modulus of a hyperelastic solid, as pre-
dicted by our theoretical analysis. The initial shear moduli
inversely determined by using the hyperelastic solution are
slightly depth-dependent, but clearly they are closer to those
given by tensile tests. Using the experimental data and Eqs.
(12b) and (15c), we do not successfully identify a reason-
able locking stretch of the indented material, which is around
2 according to the tensile tests. This is mainly due to that
the experimental errors cannot be avoided, and the identi-
fied locking stretch is very sensitive to data noise when it
is not close to 1 as revealed by our theoretical result shown
in Fig. 7.

9 Concluding remarks

In this paper, we have explored the spherical indentation of
hyperelastic soft materials via dimensional analysis method,
finite element simulations and experiments. The key results
of this study are summarized as follows.

First, for four widely used hyperelastic models, i.e., neo-
Hookean, Mooney–Rivlin, Fung, and Arruda–Boyce model,
we have proposed a general method based on dimensional
analysis method and finite element simulations to estab-
lish explicit expressions of the relationship between mate-
rial properties and indentation responses. Such a method is
applicable when the indentation depth is comparable to or
even greater than the indenter radius.

Second, based on the obtained explicit results, we have
addressed the applicability of Hertzian solution to determine
the initial shear modulus of a hyperelastic solid. Our results
show that the initial shear modulus could be reliably deter-
mined using Hertzian solution provided that the ratio of the
indentation depth to indenter radius is smaller than 0.2. The
larger the locking stretch, the greater the error in the identified
results using Hertzian solution. When the locking stretch of

the indented material is large, the error in the identified results
based on Hertzian solution can be up to 15 % for h/R = 1; in
this case, the solution developed in this study (Eq. 14) could
give more accurate results.

Third, the possibility to determine other hyperelastic prop-
erties besides the initial shear modulus has been studied by
exploring the properties of the inverse problems, i.e., the exis-
tence, uniqueness, and stability of the solution. To this end,
the condition numbers for the determination of such parame-
ters as �, b, and λm in Mooney–Rivlin, Fung, and Arruda–
Boyce models, respectively, have been defined and their
explicit forms have been derived. It can be drawn from our
theoretical analysis that only when the parameters� and b are
large or λm is small (e.g., most biological soft tissues), they
may be determined using spherical indentation responses at
large ratios of h/R. Otherwise, these hyperelastic parameters
given by spherical indentation tests are very sensitive to data
errors. A reliable determination of these parameters usually
requires that the indented solid undergoes sufficiently large
deformation in indentation tests. Toward this end, profiting
the effects of a rigid substrate to induce large deformation in
the indented sample appears to be a promising route, which
has received attention recently (Chen and Diebels 2012). But
in this case, correlations between the indentation responses
and material properties in explicit form have not been estab-
lished and require more effort. Besides, only one or two
material parameters are involved in the present inverse prob-
lems, when more mechanical parameters are involved, the
problem will be more complicated and the inverse proce-
dure may not only suffer from the stability issue but also
the existence and uniqueness issues. Effects of friction and
compressibility of the indented substrate are also discussed.
It is found that the above conclusions apply to the case where
the friction is in presence and the indented solid is weakly
compressible.

Finally, experiments have been conducted on PDMS
(1:20). The results reveal an underestimation of the ini-
tial shear modulus when Hertzian solution is used to fit
the indentation loading curve up to a large ratio of inden-
tation depth to indenter radius. Instead, the initial shear
modulus evaluated by fitting the load–depth curve using
the hyperelastic solution is more accurate. This is basi-
cally consistent with our theoretical analysis. It is empha-
sized here that we proposed the results for four commonly
used hyperelastic models. When using the methods devel-
oped here to analyze the indentation response of a hypere-
lastic solid, one needs first to choose a suitable constitutive
model.

Acknowledgments Supports from the National Natural Science
Foundation of China (Grant Nos. 11172155, 10972112), Tsinghua Uni-
versity (2012Z02103 and 20121087991) and 973 Program of MOST
(2010CB631005) are acknowledged.

123



Spherical indentation method 11

References

ABAQUS (2009) ABAQUS user’s manual, version 6.9
Arruda EM, Boyce MC (1993) A three-dimensional constitutive model

for the large stretch behavior of rubber elastic materials. J Mech Phys
Solids 41:389–412

Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymp-
totics. Cambridge University Press, Cambridge, MA

Ben Amar M, Goriely A (2005) Growth and instability in elastic tissues.
J Mech Phys Solids 53:2284–2319

Cao YP, Lu J (2004a) Depth-sensing instrumented indentation with dual
sharp indenters: stability analysis and corresponding regularization
schemes. Acta Mater 52:1143–1153

Cao YP, Lu J (2004b) A new method to extract the plastic properties of
metal materials from an instrumented spherical indentation loading
curve. Acta Mater 52:4023–4032

Cheng YT, Cheng CM (1998) Relationships between hardness, elastic
modulus, and the work of indentation. Appl Phys Lett 73:614–616

Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and inden-
tation measurements. Mater Sci Eng R-Rep 44:91–149

Chen ZY, Diebels S (2012) Nanoindentation of hyperelastic polymer
layers at finite deformation and parameter re-identification. Arch
Appl Mech 82:1041–1056

Crichton ML, Donose BC, Chen X, Raphael AP, Huang H, Kendall
MAF (2011) The viscoelastic, hyperelastic and scale dependent
behaviour of freshly excised individual skin layers. Biomaterials
32:4670–4681

Cross SE, Jin YS, Rao JY, Gimzewski JK (2007) Nanomechanical
analysis of cells from cancer patients. Nat Nanotech 2:780–783

Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S (2001)
Computational modeling of the forward and reverse problems in
instrumented sharp indentation. Acta Mater 49:3899–3918

Fischer-Cripps AC (2011) Nanoindentation. Springer, New York
Fung YC (1993) Biomechanics: mechanical properties of living tissues.

Springer, New York
Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and

the choice of its mathematical expression. Am J Physiol-Heart C
237:H620–H631

Giannakopoulos AE, Triantafyllou A (2007) Spherical indentation of
incompressible rubber-like materials. J Mech Phys Solids 55:1196–
1211

Hadamard J (1923) Lectures on Cauchy’s problems in linear partial
differential equations. Yale University Press, New Haven, CT

Holzapfel GA, Ogden RW (2006) Mechanics of biological tissue.
Springer, Berlin

Humphrey JD (2003) Continuum biomechanics of soft biological tis-
sues. Proc R Soc A 459:3–46

Lee B, Han L, Frank EH, Chubinskaya S, Ortiz C, Grodzinsky AJ (2010)
Dynamic mechanical properties of the tissue-engineered matrix asso-
ciated with individual chondrocytes. J Biomech 43:469–476

Lee H, Pharr GM, Nahm SH (2003) Material property evaluation of
hyper-elastic rubber by micro-indentation. In: Proceedings of the
SEM annual conference and exposition on experimental and applied
mechanics

Levental I, Georges PC, Janmey PA (2007) Soft biological materials
and their impact on cell function. Soft Matter 3:299–306

Li B, Cao YP, Feng XQ, Gao H (2012) Mechanics of morphological
instabilities and surface wrinkling in soft materials: a review. Soft
Matter 8:5728–5745

Lin D, Shreiber D, Dimitriadis E, Horkay F (2009) Spherical indentation
of soft matter beyond the Hertzian regime: numerical and exper-
imental validation of hyperelastic models. Biomech Model Mech
8:345–358

Liu D, Zhang Z, Sun L (2010) Nonlinear elastic load-displacement
relation for spherical indentation on rubberlike materials. J Mater
Res 25:2197–2202

Mooney M (1940) A theory of large elastic deformation. J Appl Phys
11:582–592

Oliver WC, Pharr GM (1992) Improved technique for determining hard-
ness and elastic modulus using load and displacement sensing inden-
tation experiments. J Mater Res 7:1564–1583

Rivlin RS (1948) Large elastic deformations of isotropic materials. IV.
Further developments of the general theory. Philos Trans R Soc Lond
Ser A Math Phys Sci 241:379–397

Rodriguez EK, Hoger A, McCulloch A (1994) Stress-dependent finite
growth in soft elastic tissue. J Biomech 27:455–467

Samani A, Plewes D (2004) A method to measure the hyperelastic
parameters of ex vivo breast tissue samples. Phys Med Biol 49:4395–
4405

Taber LA (1995) Biomechanics of growth, remodeling, and morpho-
genesis. Appl Mech Rev 48:487–545

123


	Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials
	Abstract 
	1 Introduction
	2 Material models
	2.1 Mooney--Rivlin and neo-Hookean models
	2.2 Arruda--Boyce model
	2.3 Fung model

	3 Dimensional analysis
	4 Closed-form relations between indentation responses and material properties
	5 Applicability of Hertzian solution to determining the initial shear modulus of hyperelastic solids
	6 Determination of other hyperelastic parameters  of soft materials
	7 Effects of friction and compressibility of the indented substrate
	8 Experiments
	9 Concluding remarks
	Acknowledgments
	References


