Mechanics of Continua and Structures
This is some new information
Begin["frame`"];
CreateWindow@PaletteNotebook[{Button["Refresh", vars = Framed[
Grid[
Select[With[{expr = ToExpression@#}, {Which[ListQ[expr], #,
NumericQ[expr], #, True, expr], Head[expr],
Which[
ListQ[expr], Dimensions[expr],
NumericQ[expr], expr,
StringQ[expr], StringLength[expr],
True, "-"]}] & /@
Names["Global`*"], (#[[2]] =!= Framed ) &],
Alignment -> Left], FrameStyle -> None, FrameMargins -> 5]],
Dynamic[vars]}, WindowElements -> {"VerticalScrollBar"},
WindowTitle -> "Global`*"];
End[];
Block[{\[Epsilon] = 0.1, \[Tau] = 0.9,
pmin = \[Tau] {-(l1/2), -(b1/2), -(h1/2)},
pmax = \[Tau] {l1/2, b1/2, h1/2}},
Graphics3D[{
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)N\), \(_\
\)]\) [[1]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(1\), \(0\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)N\), \(_\
\)]\) [[1]]],
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)N\), \(_\
\)]\) [[2]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(2\), \(0\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)N\), \(_\
\)]\) [[2]]],
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)N\), \(_\
\)]\) [[3]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(3\), \(0\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)N\), \(_\
\)]\) [[3]]],
\[Continuation]
\[Continuation]
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)N\), \(_\
\)]\) [[1]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(1\), \(1\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)N\), \(_\
\)]\) [[1]]],
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)N\), \(_\
\)]\) [[2]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(2\), \(1\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)N\), \(_\
\)]\) [[2]]],
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)N\), \(_\
\)]\) [[3]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(3\), \(1\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(1\)]\)N\), \(_\
\)]\) [[3]]],
\[Continuation]
\[Continuation]
\[Continuation]
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)N\), \(_\
\)]\) [[1]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(1\), \(2\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)N\), \(_\
\)]\) [[1]]],
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)N\), \(_\
\)]\) [[2]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(2\), \(2\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)N\), \(_\
\)]\) [[2]]],
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)N\), \(_\
\)]\) [[3]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(3\), \(2\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(2\)]\)N\), \(_\
\)]\) [[3]]],
\[Continuation]
\[Continuation]
\[Continuation]
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)N\), \(_\
\)]\) [[1]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(1\), \(3\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)N\), \(_\
\)]\) [[1]]],
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)N\), \(_\
\)]\) [[2]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(2\), \(3\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)N\), \(_\
\)]\) [[2]]],
Arrow[{
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)X\), \(_\
\)]\) ,
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)N\), \(_\
\)]\) [[3]]}],
Text["\!\(\*SubsuperscriptBox[\(N\), \(3\), \(3\)]\) ",
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)X\), \(_\
\)]\) + \[Epsilon]
\!\(\*UnderscriptBox[\(
\(\*SuperscriptBox[\(\[InvisiblePrefixScriptBase]\), \(3\)]\)N\), \(_\
\)]\) [[3]]],
{Opacity[0.5], Cuboid[pmin, pmax]}
}, Boxed -> False
]
]
CreatePalette[
Button["Duplicate Active Notebook",
NotebookPut[
NotebookGet[
InputNotebook[]] /. {Rule[DockedCells, _] :> Sequence[],
Rule[WindowMargins, _] :>
Rule[WindowMargins, { 0, 0 }],
Cell[x___] :> Cell[x, Evaluatable -> False]},
Background -> GrayLevel[0.95], Editable -> False,
"ClosingSaveDialog" -> False,
DockedCells ->
With[{sourcenb = InputNotebook[]},
Cell[BoxData[
ToBoxes[Button["Update",
SelectionMove[InputNotebook[], All, Notebook];
NotebookWrite[InputNotebook[],
NotebookGet[sourcenb] /.
Cell[x___] :> Cell[x, Evaluatable -> False]]]]],
"DockedCell", CellContext -> Cell]],
WindowTitle ->
"Duplicate of " <>
AbsoluteOptions[InputNotebook[], WindowTitle][[1, 2]]];
SetSelectedNotebook[InputNotebook[]]], WindowTitle -> "Duplicate"];
Get["Notation`"];
Symbolize[ParsedBoxWrapper[SubscriptBox["a_", "i_"]]];
Symbolize[ParsedBoxWrapper[OverscriptBox["a_", "."]]];
Symbolize[ParsedBoxWrapper[SuperscriptBox["e", "a_"]]];
Symbolize[ParsedBoxWrapper[UnderscriptBox["a_", "_"]]];
Symbolize[ParsedBoxWrapper[UnderscriptBox["a_", "_"]]];
Symbolize[ParsedBoxWrapper[SubscriptBox[
RowBox[{"(", RowBox[{"a_", RowBox[{"(", "points", ")"}]}], ")"}],
RowBox[{RowBox[{"vertces", "=", "1"}], ",", "2", ",", "\[Ellipsis]"}]]]];
Symbolize[ParsedBoxWrapper[SubscriptBox[
RowBox[{"(", RowBox[{"a_", RowBox[{"(", "t", ")"}]}], ")"}],
RowBox[{RowBox[{"t", "=", "0"}], ",", "\[CapitalDelta]t", ",", "\[Ellipsis]"}]]]];
Symbolize[ParsedBoxWrapper[SubscriptBox[RowBox[{"(", "a_", ")"}],
RowBox[{RowBox[{"t", "=", "0"}], ",", "\[CapitalDelta]t", ",", "\[Ellipsis]"}]]]];
Symbolize[ParsedBoxWrapper[SubscriptBox[
RowBox[{"(", RowBox[{"a_", RowBox[{"(", "t", ")"}]}], ")"}],
RowBox[{"t", "=", "0"}]]]];
Notation[ParsedBoxWrapper[RowBox[{"\[LeftDoubleBracketingBar]", "a_", "\[RightDoubleBracketingBar]"}]] \[DoubleLongLeftRightArrow]
ParsedBoxWrapper[RowBox[{"Norm", "[", "a_", "]"}]]];
nb = EvaluationNotebook[]
NotebookDelete@Cells[nb, CellStyle -> "Output" || "Print" || "Echo"]
CustomRuleSimplify[expr_, rule_, n_: 1] :=
If[n > 1,
NormSimplify[((expr /. rule) // Simplify), rule,
n - 1], (expr /. rule) // Simplify]
<< Utilities`CleanSlate`
CleanSlate[]
SetHKNotebookOptions[nb_] := Module[{},
SetOptions[nb, DockedCells -> {}, WindowFloating -> False];
(*NotebookDelete@Cells[nb,CellStyle\[Rule]"Output" || "Print" ||
"Echo"];*)
SetOptions[NotebookFind[nb, #, All, CellStyle],
CellChangeTimes -> {}, ShowCellLabel -> True,
ShowCellTags -> False, ShowGroupOpener -> False] & /@ {"Input",
"Subsubsection"};
NotebookDelete@Cells[nb, CellStyle -> "Output" || "Print" || "Echo"]
];
Usage: Set the options of two different notebooks to be the same before using NotebookDiff
nb1 = NotebookOpen[
"/Users/hkesari/Downloads/Nov20_8noded_quads_parallel_energy_\
EnergyBugFixed_KVPosted.nb"];
nb2 = NotebookOpen[
"/Users/hkesari/WebsitesHK/Curvilinear/OldFiles/Nov20_8noded_quads_\
parallel_energy_EnergyBugFixed_copy.nb"];
SetHKNotebookOptions[nb1]
SetHKNotebookOptions[nb2]
The below Mathematica code snippet open the tools to do NotebookDiff.
<<AuthorTools`
OpenAuthorTool[]
nb=NotebookOpen@CloudObject["Calander18.nb"]
NotebookEvaluate[nb,InsertResults->True]
NotebookFind[nb,"Output",All,CellStyle]
FrontEndExecute[FrontEndToken[nb,"SelectionCloseUnselectedCells"]]
NotebookSave[nb] (*save notebook,identified by the notebook object "nb"*)
NotebookClose[nb] (*close notebook,identified by the notebook object "nb"*)
Plot[Sin[x],{x,-1,1}]
NotebookEvaluate[nb, InsertResults -> True]
NotebookFind[nb, "Output" , All, CellStyle]
FrontEndExecute[FrontEndToken[nb, "SelectionCloseUnselectedCells"]]
Mathematica Documentation Reference
/Users/Haneesh/Library/Mathematica/SystemFiles/FrontEnd/StyleSheets
StyleSheets>ls -l
total 1176
-rw-r--r--@ 1 Haneesh staff 1.4K Dec 27 23:08 BlueSection.nb
-rwxr-xr-x@ 1 Haneesh staff 4.1K Nov 26 20:09 MaTeXmaticaPlus.nb*
-rw-r--r-- 1 Haneesh staff 8.9K Dec 27 21:07 Slender.nb
-rw-r--r--@ 1 Haneesh staff 1.1K Dec 27 23:00 StyleGreen.nb
-rw-r--r--@ 1 Haneesh staff 1.2K Dec 27 21:15 StyleSlender.nb
-rw-r--r-- 1 Haneesh staff 553K Feb 2 2017 Tensorial.nb
StyleSheets>