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1. Introduction

A material when subjected to tensile stresses far exceeding its bond strength, tends to
form cracks to relieve the high stresses. Cracks or crack patterns can be of various types
such as, cleavage cracks [1], mud cracks [2, 3], wavy cracks [4, 5, 6, 7], spiral cracks [8, 9, 10]
to name a few. It is postulated that the occurrence of the type of crack pattern is governed
by the amount of strain energy that the material can release [11, 12]. In other words, crack
pattern that releases the maximum strain energy for the given loading state is the one that
will occur. For instance, a typical failure mechanism in brittle materials such as, glass, when
under tensile loads is cleavage however, these materials are also observed to form spiral
cracks as seen in Fig. 1(a). The modes of fracture such as spirals dissipate more energy
as compared to a cleavage crack and present an effective way of converting strain energy to
surface energy. Therefore, in certain loading conditions they are energetically favorable as
compared to cleavage cracking or fragmentation.

John hopfield [11] proposed a methodology to create spiral cracks by conducting exper-
iments on hollow Pyrex glass tubes. One end of the glass tube is brought into contact with
a hot plate at 500-600◦C and held briefly before suddenly cooling it in cold water. The sud-
den quenching of the glass tube leads to state of tensile stress on the outer surface of the
glass while the inner surface is under compressive stress. Contrary to the expectation that
glass being a brittle material will shatter to relieve the tensile stress on the outer surface, it
forms a spiral pattern to relieve the tensile stress (see Fig. 1(a)). It is believed that formation
of spiral cracks is an efficient mechanism to release the excess strain energy as compared
to fragmentation. Gillham et al. [12] proposed a systematic set of experiments to produce
helical and spiral fractures. It was shown that helical and spiral fractures could be produced
in a brittle glass yarn cured in a polymeric resin by quenching it after cure. One such image
of the formation of a helical fracture pattern is shown in Fig. 1(b). Such patterns have also
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been observed in Monorhaphis chuni (M.chuni), which is a biological composite material. The
microstructure of M.chuni resembles that of a lamellar structure, where a brittle mineral phase
is arranged concentrically and is separated by a nanometer-thin layer (≈ 35nm [13]) of a soft
organic phase. Fracture morphology of Monorhaphis chuni samples subjected to three point
bending test reveal failure by crack deflection. However, in some samples of M.chuni, instead
of crack deflection at the organic interlayers, helical fracture is seen as a preferred failure
mode. The helical fracture pattern observed in Monorhaphis chuni sample, reported by [14],
is shown in Fig. 1(c).

Predicting and quantifying the nature of such complex crack patterns is a challenge. Fre-
und and Kim [15], studied failure in brittle substrates due to residual stresses produced by
cooling of molten metal in the substrate cavities. They predicted the formation of spiral frac-
ture emanating from the substrate-metal interface using the crack growth criterion KII = 0. Xia
and Hutchinson [16], studied the formation of spiral patterns in thin films bonded to substrates
to gain insights into the experimental observations of spiral cracks in thin films (see [17, 18]).
They adopted the distributed dislocation approach to model the spiral cracks and found that
spiral cracks form only in the presence of spiral shaped flaws.

2. Linear thermo-elasticity in helical coordinates

As mentioned in the introduction, we are studying the occurrence of helical cracks in ther-
mally heated cylinders. The main objective of this work is to be able to predict the pitch of
the helix that will occur given a temperature distribution (i.e., ∆T (ρ, ζ)) and surface energy.
A continuum mechanics based linear thermo-elasticity theory is formulated terms of helical
coordinates. The advantages of such a formulation is as follows:

1. A 3D elasticity problem would involve development of series of meshes of a cylinder with
a helical crack for different pitches. The problem needs to be solved for a given temper-
ature distribution to obtain the strain energy for different pitches. However, mesh devel-
opment is a cumbersome process and prescribing boundary conditions is not straight
forward.

2. On choosing the temperature to depend on (ρ, ζ), the boundary value problem is sym-
metric along the pitch of the helix. A boundary value problem is helically symmetric
if none of the fields change for a fixed (ρ, ζ), for any change in φ. Imposing helical
symmetry can simplify the problem for 3D to 2D problem in just (ρ, ζ) analogous to the
axis-symmetric problems in cylindrical coordinates. However, if 3D elasticity is employed
then imposing this symmetry is not possible.

2.1. General linear thermo-elastic constitutive equations
In this section, a continuum mechanics based linear thermo-elastic theory will be detailed.

Some of the important concepts of continuum mechanics theory in the following sections
is reviewed from Gurtin [19] and Jog [20]. A brief review of curvilinear coordinates is also
provided from Green and Zerna [21] in order to facilitate the derivation of the linear thermo-
elastic theory in helical coordinates.
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Figure 1: In this figure, spiral and helical crack patterns are shown. In subfigure(a){intro}
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2.1.1. Mathematical preliminaries
Some of the fundamental concepts of continuum mechanics are briefly reviewed here

from Gurtin [19] and Jog [20]. The following sets will be referred to in the formulation of linear
thermo-elastic continuum mechanics theory.

• Lin = the set of all tensors;

• Lin+ = the set of all tensors S with det S > 0;

• Sym = the set of all symmetric tensors;

• Skw = the set of all skew-symmetric tensors;

• Psym = the set of all symmetric, positive definite tensors;

• R is the space of reals;

• R+ is the space of positive reals.

Let E be a three dimensional euclidean point space and V be a vector space such that
V ⊂ E . The inner product of two vectors u and v is denoted as u · v for u, v ∈ V . The
magnitude of v denoted by |v| : V → R+ is defined as,

|v| = (v · v)1/2 . (1){magnitude}

A second order tensor S : V → V , such that

u = Sv,

for all u, v ∈ V . The identity tensor I : V → V is defined as,

I v = v,

for all v ∈ V . The transpose of tensor S denoted by ST and can be defined as a unique tensor
which satisfies

Su · v = u · STv,

for all u, v ∈ V and S ∈ Lin. Further, the transpose operator (·)T : Lin → Lin. The tensor S is
symmetric, i.e., S ∈ Sym, if

S = ST,

and the tensor S ∈ Skw, if

S = −ST.
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The determinant of tensor S is an operator denoted by det (·) : Lin→ R and is given as,

det S = det [S] ,

where, [·] is the symbol for a matrix. The tensor product of two vectors u, v ∈ V denoted by
(u ⊗ v) is second order tensor. Therefore, for all a ∈ V , (u ⊗ v) : V → V such that,

(u ⊗ v) a = (v · a) u.

Trace of tensor S denoted by tr S is a linear operation such that tr (·) : Lin→ R and satisfies,

tr S = tr (u ⊗ v) = u · v,

for all u, v ∈ V and S ∈ Lin. A tensor S ∈ Psym, if S ∈ Sym and it satisfies,

v · Sv > 0,

for v , 0. The symbol 0 is a zero vector that maps every vector to a zero vector. The shorthand
notation for a vector or a tensor using components will be employed in the rest of the work. A
vector u ∈ V in cartesian basis vectors, e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) can be
expressed as

u =

3∑
i=1

ui ei,

and a second order tensor S ∈ Lin is expressed as,

S =

3∑
i, j=1

S i j ei ⊗ e j.

The symbols ui and S i j are the components of a vector and tensor, respectively. We can also
define the summation rules as follows, let v = Su, then the components vi are given as,

vi =

3∑
j=1

S i j u j,

where i is the free index and j is the dummy index which is summed because it is repeated
twice. For brevity in the rest of the work, we will avoid the summation symbol.

To introduce differentiation of scalars, vectors and tensors, it is assumed that these math-
ematical quantities belong normed vector spaces wherever necessary (see [19]). Let U ⊂ E
and W ⊂ E be finite dimensional normed vector spaces, such that D ⊂ U . Let g : D → W
be any tensor valued function. If there exists a derivative of g at x ∈ D then there exists a
linear transformation Dg(x) : U → W which satisfies,

g (x + u) = g (x) + Dg (x) [u] + o (u) ,
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as u → 0 for all u ∈ D and the operator Dg(x) is called the derivative of g at x. Further,
the symbol o is called the little-o notation (see [19] for details). Therefore, we can define the
gradient of a scalar field φ ∈ R ⊂ E and for each x ∈ R as follows,

Dφ (x) [u] = ∇φ (x) · u,

where, ∇ is the gradient symbol and ∇φ(x) : R → V is the gradient of φ at x. Similarly, the
gradient of vector v ∈ V is,

Dv (x) u = ∇v (x) [u] ,

where ∇v(x) : V → V is the gradient of v at x. We can also define divergence of a vector
field v which is a scalar,

div v = tr ∇v,

The divergence of a second order tensor S is an operation that satisfies,

(div S) · a = div
(
STa

)
.

2.1.2. Kinematics
Let B be a bounded domain in E and can be referred to as the reference configuration.

For each point p ∈ B has an associated vector R, denoted as the position vector of the point
p, such that 0 + R = p. The symbol 0 is the origin and the point p is commonly called as
the material point. To understand the deformation of the reference configuration B mathe-
matically, a deformation mapping f : B → E maps the material point p to a spatial point in a
deformed configuration. Further, let r be the position vector of this spatial point from 0. The
deformation mapping maps the quantities R and r referred as material and spatial position
vectors, respectively, as follows,

r = f(R).

To prevent interpenetration of the body B onto itself the mapping f is a one-to-one mapping
and the mapping should be invertible. The restrictions on f will be discussed later on. The
displacement field u is given as,

u = r − R = f(R) − R. (2){disp}

The second order tensor F ∈ Lin+, referred to as the deformation gradient, is given as,

F(R) = ∇f(R), (3){deformation_grad}

where ∇ is the symbol for gradient in material coordinates. The quantity det F represents the
deformed volume element and has to satisfy det F > 0, so that a reference volume element
is not mapped to a zero volume element. This condition imposes a restriction on f, i.e.,
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det ∇f > 0. The deformation gradient can also be expressed in terms of displacement using
eqns. (2) and (3) as,

F = I + ∇u.

The left and right Cauchy-Green strain tensors, C and B are,

C = FTF = I + ∇u + ∇uT + ∇uT
∇u,

B = FFT = I + ∇u + ∇uT + ∇u∇uT.

The Green-Lagrange strain tensor E, is given by

E =
1
2

(C − I) =
1
2

(
∇u + ∇uT + ∇uT

∇u
)
.

Note that no approximations have been introduced in the kinematics as of yet and all the
above equations are valid for non-linear elasticity.

2.1.3. Constitutive equations
In the previous section kinematics is briefly described. For brevity, the derivation of ma-

terial and spatial, velocity and acceleration fields are omitted. The derivation of mass, linear
momentum and angular momentum balance laws are also omitted. The reader is asked to
refer Gurtin [19] for details on the same. In this work, we focus on static fields which basically
means that all the fields are independent of time. Let us consider a body that occupies a
region B ⊂ E and has a motion subjected to an applied traction s. Cauchy’s theorem states
that in such a scenario there exists a spatial second order tensor T called the Cauchy stress
such that, for each unit vector n, the following relation is satisfied,

s(n) = Tn,

and Cauchy stress T ∈ Sym. Further, T satisfies the equations of motion, which in the absence
of body forces, for a static field is given as,

div T = 0,

which in the component form can be given as,

(div T)i =
∂Ti j

∂r j
,

where Ti j are the components of the T and r j are the components of the spatial position vector
r with respect to cartesian basis vectors. In finite elasticity, Cauchy stress tensor T(r) can be
expressed in terms of deformation gradient F as follows,

T(r) = T̂ (F(R),R) , (4) {T(F)}
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where T̂ : Lin+
× B → Sym. Cauchy stress measures the surface force per unit area in

the spatial configuration of the body. The first Piola-Kirchoff stress tensor is denoted by P :
B × R → Lin is the measure of surface force per unit are in the reference configuration. The
relation between T and P is

P = (det F) TF−T.

Therefore, using the representation for T as a function of F, we can conclude that P = P̂(F).
The elasticity tensor C : Lin→ Lin is defined as,

C := DP̂ (I) = DT̂ (I) ,

on the assumption,

P̂(I) = T̂(I) = 0 (5){res_stress}

Additonally, C ∈ PSym. The linearized version of elasticity is obtained by linearizing Ŝ(F) about
I as ∇u→ 0. On substituting F from eq. (3) we get,

P = P̂ (I + ∇u) .

On expanding P̂ about I, using the assumption given in eq. (5) and using the symmetric
properties of C we get,

P̂ = C[ε] + o (∇u) , (6)

where ε is the linearized or infinitesimal strain tensor,

ε =
1
2

(
∇u + ∇uT

)
, (7){strain}

In the limit∇u→ 0, the deformed and reference configurations can be considered to be almost
identical and therefore, T̂ = P̂. Hence, the Cauchy stress tensor is,

T = C[ε] = 2µε + λ(tr ε)I,

as ∇u → 0. The symbols µ and λ are material parameters commonly referred to as Lame’s
parameters. Since, we are considering the linearized version of elasticity the Cauchy stress
will be denoted by τ in the rest of the work. In the presence of thermo-elastic strain (residual
strain) ε0, the constitutive equations are expressed as,

τ = C[ε − ε0] = 2µ (ε − ε0) + λ(tr (ε − ε0)) I, (8){Cauchy1}

and ε − ε0 is commonly referred to as elastic strain, (see xyz for details).
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3. Helical coordinate system

As mentioned in the introduction, we formulate the linear thermo-elastic boundary value
problem in curvilinear coordinates. Therefore, we introduce curvilinear coordinate theory from
Green and Zerna (see [21]) that is necessary to express linear thermo-elasticity in helical co-
ordinates. Let {x1, x2, x3} ∈ E be the regular right-handed orthogonal cartesian co-ordinate
system and can be seen in Fig. 2. Curvilinear coordinates θi can be introduced by a transfor-
mation as given in [21], as follows,

θi = θi(x1, x2, x3). (9){thetatox}

It is assumed that this transformation is invertible as long as the constraint det [∂xi/∂θ j] , 0
holds .i.e., xi can be expressed in terms of θi. Therefore, we get

xi = xi(θ1, θ2, θ3). (10) {xtotheta}

A schematic of the transformation is shown in Fig. 2, where a position vector R of a point
P ∈ E is expressed in curvilinear coordinates {θ1, θ2, θ3}. The equation θi(x1, x2, x3) equal to
a constant represents three surfaces corresponding i = 1, 2, 3. For example, in Fig. 2, θ3 =
constant is a surface with θ1, θ2 varying spatially. Further, intersection of these surfaces at the
point P gives us three curves called the coordinate curves.

To understand helical symmetry, we introduce a specific curvilinear coordinate system
identical to the one introduced by Overfelt (see [22]) for helical harmonics. Let {θ1, θ2, θ3}, be
given as,

θ1 = ρ, θ2 = φ and θ3 = ζ, (11) {thetadef}

then the transformation between cartesian and helical coordinate system can be defined as
follows, {helical_coord1}

x1 := ρ cos(φ), (12a)

x2 := ρ sin(φ), (12b)

x3 := L̄ φ + ζ, (12c)

where, L̄ = L/2π, and L̄ is the pitch of the helix. The coordinate system is illustrated in Fig. 3,
where the helix are plotted using the above mentioned transformation between cartesian and
helical coordinates. The coordinate curve ρ varies from a to b, where a, b ∈ R+ and a and
b are called as the inner and outer radius of the helix, respectively. The coordinate φ varies
along the helix as seen and zeta varies along the pitch of the helix. On comparing the helical
coordinates to the cylindrical coordinates {r, θ, z}, we see that θ ∈ [0, 2π) and z ∈ (−∞,∞)
whereas φ ∈ (−∞,∞) and ζ ∈ [−L/2, L/2). Further, r ∈ (0,∞) and ρ ∈ (0,∞) and the mapping
between cylindrical and helical coordinates is one-to-one except at ρ = r = 0. Similarly, the
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e1

e2

e3

x 1

x 2

x 3

θ3  = const

θ3  - curve

θ1  - curve

θ2  - curve

R

g2

g1

g3
P

Figure 2: In this figure, the transformation between the cartesian coordinate system {x1, x2, x3} and a curvilinear
coordinate system {θ1, θ2, θ3}. The position vector of point P is denoted by R. The cartesian basis vectors are
given as {e1, e2, e3}, while the covariant basis vectors are given as {g1, g2, g3}.{coor}

helical coordinates {ρ, φ, ζ} can be expressed in terms of {x1, x2, x3} as follows, {helical_coord2}

ρ =

√(
x1)2

+
(
x2)2, (13a)

φ = arctan
(

x2

x1

)
, (13b)

ζ = x3 − L̄ arctan
(

x2

x1

)
. (13c)

3.1. Covariant and Contravariant basis vectors
To derive the basis vectors for the helical coordinate system let us define the position

vector R to be,

R := x1 e1 + x2 e2 + x3 e3,
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L̄pitch = 

g1

g2 g3

g3
g2

g1

φ

ρ = b

ρ = a

ρ

ζ

Figure 3: In this figure a schematic of the helix is shown where the helical coordinates {ρ, φ, ζ} are shown. The
coordinate ρ varies from a to b, where ρ = a and ρ = b are marked in the figure. The pitch of the helix L̄ is
also indicated in the figure. The covariant basis vectors, i.e., {g1, g2, g3} are shown using red, blue and green
arrows. Similarly, the contravariant basis vectors, i.e., {g1, g2, g3} are shown using red, orange and magenta
arrows. Since g1 = g1, red color arrows are used to indicate that they are identical.{basis_vec}
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where, e1, e2 and e3 = (0, 0, 1) are linearly independent orthogonal unit basis vectors in R3

mentioned in section 1.1.1 which are commonly known as the cartesian basis vectors. Further,
{x1, x2, x3} are the components of the position vector R in {e1, e2, e3} basis. We can express R
in terms of {ρ, φ, ζ} on substituting {x1, x2, x3} from eq. (12) and we obtain,

R = ρ cos(φ) e1 + ρ sin(φ) e2 + (L̄ φ + ζ) e3. (14){pos_vec}

The covariant basis vectors {g1, g2, g3} are tangent vectors to the coordinate curves {ρ, φ, ζ} at
R, respectively, and are illustrated in Fig. 3. They are defined as given in [21] as,{covar_vec_cart}

g1 :=
∂x j

∂ρ
e j = cos(φ) e1 + sin(φ) e2, (15a)

g2 :=
∂x j

∂φ
e j = −ρ sin(φ) e1 + ρ cos(φ) e2 + L̄ e3, (15b)

g3 :=
∂x j

∂ζ
e j = e3. (15c)

The short hand or indicial notation reads as gi := ∂x j/∂θi e j. Similarly, the contravariant basis
vectors are denoted using superscripts and are defined as gi := ∂θi/∂x j e j. We can express
{θ1, θ2, θ3} in terms of {x1, x2, x3} from eq. (13) and compute the contravariant basis vectors as,

{contravar_vec_cart}

g1 :=
∂ρ

∂x j e j = cos(φ) e1 + sin(φ) e2 (16a)

g2 :=
∂φ

∂x j e j =
1
ρ

(− sin(φ) e1 + cos(φ) e2) , (16b)

g3 :=
∂ζ

∂x j e j =
−L̄
ρ

(− sin(φ) e1 + cos(φ) e2) + e3. (16c)

The contravariant vectors are {g1, g2, g3} are orthogonal to {ρ, φ, ζ} coordinate planes, respec-
tively. For example, g1 is normal to the plane ρ = constant. The covariant basis vectors can be
expressed in cylindrical basis vectors as follows:{covar_vec_cyl}

g1 = er, (17a)
g2 = ρ eθ + L̄ ez, (17b)
g3 = ez, (17c)

where er, eθ, ez are the cylindrical basis vectors (see [21] for details). Similarly, the contravari-
ant basis vectors in cylindrical basis vectors are,{contravar_vec_cyl}

g1 = er (18a)

g2 =
1
ρ

eθ (18b)

g3 = −
L̄
ρ

eθ + ez. (18c)
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3.2. Metric tensors
The covariant and contravariant metric tensors in the component for are defined as,{metric_tensor}

gi j =
∂xm

∂θi

∂xm

∂θ j , (19a)

gi j =
∂θi

∂xm

∂θ j

∂xm , (19b)

respectively. Therefore, on substituting the xi in terms of θi from eq. 12 we can evaluate the
covariant metric tensor gi j. Similarly, on substituting the θi in terms of xi from eq. 13 we can
evaluate the contravariant metric tensor gi j. The metric tensors for the helical coordinates are,

gi j =

 1 0 0
0 ρ2 + L̄2 L̄
0 L̄ 1

 . (20) {covar_metric}

Similarly, the contravariant metric tensor can be evaluated to be,

gi j =


1 0 0
0 1

ρ2 − L̄
ρ2

0 − L̄
ρ2

L̄2+ρ2

ρ2

 . (21) {contravar_metric}

3.3. Surface area and volume
The infinitesimal line elements along coordinate curves {θ1, θ2, θ3} can be represented by

vectors as, {line_element}

ds1 = g1 dθ1, (22a)

ds2 = g2 dθ2, (22b)

ds3 = g3 dθ3. (22c)

The infinitesimal volume element dV enclosed by these line elements can be defined and
simplified using the line element equations as,

dV := ds1 · (ds2 × ds3) ,

= g1 · (g2 × g3) dθ1 dθ2 dθ3,

where (·) indicates the scalar dot product and (×) the cross product (not defined). The scalar
g1 · (g2 × g3) can be expressed as [g1 g2 g3] which is the scalar dot product of three vectors. It
has been shown in Green and Zerna [21], that [g1 g2 g3] =

√
det[gi j]

dV =

√
det

[
gi j

]
dθ1 dθ2 dθ3.

The determinant of gi j from eq. (20) is evaluated to be ρ2 and substituting it in the above
equation we get dV to be,

dV = ρ dρ dφ dζ. (23) {Dvolume}
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It is a mere coincidence that the differential volume in this case is identical to the one in
cylindrical co-ordinate system. In order to compute the total volume of the helix, the domain
of the helix is defined in terms of dimensionless variables as,

B :=
{
(ρ̂, φ, ζ̂) : ρ̂ ∈ [1, b̂], φ ∈ [0, 2π), ζ̂ ∈ (−πL̂, πL̂)

}
, (24) {Omega}

where ρ̂ = ρ/a, ζ̂ = ζ/a. The inner radius a ∈ R+ and outer radius b ∈ R+ of the helix should
satisfy the constraint that the dimensionless outer radius b̂ = b/a > 1. The symbol L̂ ∈ R+ is
related to the pitch of the helix L̄ as L̄ = aL̂. We introduce the non-dimensional total volume
V̂ = V/a3, which can be computed as follows,

V̂ =

∫
B

ρ̂ dρ̂ dφ dζ̂ =

∫ πL̂

−πL̂

∫ 2π

0

∫ b̂

1
ρ̂ dρ̂ dφ dζ̂,

= 2π2
(
b̂2 − 1

)
L̂.

(25){volume}

Similarly, the infinitesimal helicoidal surface area element denoted by dA is defined as,

dA := (ds1 × ds2) dθ1 dθ2.

Using the definition for the line elements given in eq. (22) and expressing g1, g2 in terms of the
cylindrical basis vectors given in eq. (17) we get infinitesimal area vector to be,

dA = (g1 × g2) dρ dφ,

=
(
−L̄ eθ + ρ ez

)
dρ dφ.

Using the definition of magnitude of a vector given in eq. (1), the magnitude of the area element
can be evaluated to be

|dA| =
√

L̄2 + ρ2 dρ dφ, (26){surface_area}

where, | · | denotes the magnitude of a vector given in eq. (1). The total surface area is given
as,

A =

∫ 2π

0

∫ b

a
|dA|, (27)

We introduce Â = A/πa2. Thus, in dimensionless form,

Â = b̂
√

b̂2 + L̂2 −

√
1 + L̂2 + L̂2 log

 b̂ +
√

b̂2 + L̂2

1 +
√

1 + L̂2

 (28){helicoid_area}

Further, the non-dimensional helicoidal surface area Â in the limit of L̂ → 0, gives the
non-dimensional area of the circular annulus, i.e., b̂2 − 1, which is consistent with the theory
that as L̂→ 0, the helical coordinates reduce to cylindrical coordinates.
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3.4. Christoffel symbols of the second kind
Gradient and divergence of a tensor are expressed in terms of Christoffel symbols. The

Christoffel symbols of the second kind in the component form is,

Γk
i j = gks ∂2xr

∂θi∂θ j

∂xr

∂θs ,

respectively. Therefore, on substituting θi from eq. (11) and xi from eq. (12), we obtain Christof-
fel symbols of the second kind for the helical coordinates to be,

Γ1
22 = ρ,

Γ2
12 = Γ2

21 =
1
ρ
,

Γ3
12 = Γ3

21 =
−L̄
ρ
,

(29) {Christoffel_symbols}

and all other components of Γk
i j = 0.

3.5. Scalar product and cross product of vectors
Let us define some preliminary mathematical operators in cruvilinear coordinates that

would be used extensively in the later sections. The kronecker delta in curvilinear coordinates
is defined as, {kronecker delta}

δi j = δi j = δi
j = δ

j
i = 0 (i , j), (30a)

δi j = δi j = δi
j = δ

j
i = 0 (i = j, j not summed). (30b)

From the definition of metric tensors given in eq. 19, we can see that

gim gm j = δ
j
i , (31)

A vector u can be expressed using the covariant {g1, g2, g3} and contravariant basis vectors
{g1, g2, g3} as follows,

u = ui gi = ui gi, (32) {vector}

where ui and ui are the covariant and contravariant components, respectively. The relation
between the respective components can be expressed as follows, {covar_contravar}

ui = gik uk, (33a)

ui = gik uk. (33b)

A second order tensor A can be represented as, {tensor}

A = Ai j gi ⊗ g j, (34a)

= Ai j gi ⊗ g j, (34b)

= Ai
· j gi ⊗ g j, (34c)

= A· ji gi ⊗ g j, (34d)
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where Ai j, Ai j are the covariant and contravariant components of A. Further, if A ∈ Sym
then the components satisfy, Ai j = A ji and Ai j = A ji. The symbols Ai

· j and A· ji are the mixed
components of A and satisfy the relation Ai

· j = A·ij if A ∈ Sym. The scalar product for two
vectors u and v is denoted by u · v and is defined as,

u · v = ui vi = ui vi. (35){dot_product}

The inner product of a vector u denoted by |u| is,

|u| = (u · u)1/2 =
(
ui ui

)1/2
. (36)

The tensor product of two vectors u and v denoted by u ⊗ v is given as,

u ⊗ v = ui v j gi ⊗ g j, (37a)

= ui v j gi ⊗ g j, (37b)

= ui v j gi ⊗ g j, (37c)

= ui v j gi ⊗ g j. (37d)

Further, some of the other important identities are{misc}

gi j = gi · g j, (38a)

gi j = gi · g j, (38b)

gi · g j = δi
j. (38c)

Finally, the scalar triple product is given as,{vector_cross} √
det

[
gi j

]
= g1 · (g2 × g3) , (39a)√

det
[
gi j]−1

= g1 ·
(
g2 × g3

)
. (39b)

3.6. Gradient and divergence in curvilinear coordinates
Let us consider a vector v = vi gi, where vi are the covariant components of the vector.

The gradient of vector v can be defined as follows,{grad}

∇v = vi| j gi ⊗ g j, (40a)

where,

vi| j =
∂vi

∂θ j − Γk
i j vk. (40b)

Let us consider a second order tensor A = Ai j gi ⊗ g j, where Ai j are the contravariant compo-
nents of A, the divergence of A can be expressed as,{div}

div A = Ai j| j gi, (41a)

where,

Ai j| j =
∂Ai j

∂θ j + Γi
m j Am j + Γ

j
m j Aim. (41b)
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3.7. Constitutive equations specialized to helical coordinates
The displacement u is expressed in terms of contravariant components u = ui gi. The

covariant components can be simply obtained by using transformation given in eq. (33). The
strain tensor ε defined in eq. (7) can be expressed in helical coordinates on using the definition
of ∇u given in eq. (40),

ε =
1
2

(
ui| j + u j|i

)
gi ⊗ g j. (42) {strain_helical}

Let the strain tensor be ε = εi j gi ⊗ g j, where εi j are the covariant components of the strain
tensor. We can simplify the above equation using eq. (40), and εi j is given as,

εi j =
1
2

(
∂ui

∂θ j +
∂u j

∂θi − Γk
i juk − Γk

jiuk

)
. (43) {strain_covar}

The thermal strain coming from a prescribed temperature distribution ∆T : B → R , is given
as,

ε0 = α ∆T I,

where α ∈ R+ is the thermal expansion coefficient. The Cauchy stress tensor τ given in eq. (8)
is expressed in helical coordinates as,

τ = Ci jrs (εrs − ε0rs) gi ⊗ g j,

τi j = Ci jrs (εrs − ε0rs) ,
(44) {cauchystress_comp}

in tensor and component form, respectively. The elasticity tensor C in component form is,

Ci jrs = µ
(
girg js + gisg jr

)
+ λ gi jgrs. (45) {Cijkl}

The strain energy density is defined as,

W =
1
2
τ : ε.

It can expressed in component form using the definition of strain and stress from eq. (7)
and (44), respectively, and the properties of Kronecker delta given in eq. (30) and (38),

W =
1
2

(
τi j gi ⊗ g j

)
:
(
εkl gk ⊗ gl

)
,

=
1
2
τi j εkl

(
gi · gk

) (
g j · gl

)
=

1
2
τi j εkl

(
gi · gk

) (
g j · gl

)
=

1
2
τi j εkl δ

k
i δ

l
j

=
1
2
τi j εi j.

(46) {enden}
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Similarly, the elastic strain energy density is given as,

We =
1
2
τi j

(
εi j − ε0i j

)
. (47) {elastic_enden}

The total elastic strain energy Πe and strain energy Π is defined as
∫
B

WedV and
∫
B

WdV, re-
spectively, where B is the periodic segment of the helicoid given in eq. (24). The expressions
for Πe and Π can simplified using the definition of dV from eq. (23), and are given as,

Π =

∫ L/2

−L/2

∫ 2π

0

∫ b

a
W ρ dρ dφ dζ, (48a){pi}

Πe =

∫ L/2

−L/2

∫ 2π

0

∫ b

a
We ρ dρ dφ dζ. (48b){pie}

Finally, we can express the equilibrium equations in helical coordinates using eq. (41),

div τ = τi j| j gi, (49){equilibrium}

where,

τi j| j =
∂τi j

∂θ j + Γi
m j τ

m j + Γ
j
m j τ

im.

3.8. Traction vector
We can denote the work done by applied traction as Pext on boundary ∂B and can be

simplified as follows,

Pext =

∫
∂B

t · u dA,

=

∫
∂B

ti gi · uk gk dA,

=

∫
∂B

ti uk δi
k dA,

=

∫
∂B

ti ui dA.

The traction vector is defined as t = τ · n, where n is unit normal vector to the boundary. By
definition of contravariant vectors, gi the normal vector n = ±gi/|gi|. A schematic of the domain
in {ρ, ζ} coordinate system is shown in Fig. 4. The boundaries can be defined as,{zetaboun}

∂B1 =
{
(ρ̂, φ, ζ̂) : ρ̂ ∈ [1, b̂], φ ∈ [0, 2π), ζ̂ = πL̂

}
, (50a)

∂B2 =
{
(ρ̂, φ, ζ̂) : ρ̂ ∈ [1, b̂], φ ∈ [0, 2π), ζ̂ = −πL̂

}
. (50b)
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From the schematic in Fig. 4, it can be seen that the unit normal vectors to ∂B1 and ∂B2, are
g3/|g3| and −g3/|g3|, respectively. Similarly, the other two boundaries can identified as,{rhoboun}

∂B3 =
{
(ρ̂, φ, ζ̂) : ρ̂ = 1, φ ∈ [0, 2π), ζ̂ ∈ (−πL̂, πL̂)

}
, (51a)

∂B4 =
{
(ρ̂, φ, ζ̂) : ρ̂ = b̂, φ ∈ [0, 2π), ζ̂ ∈ (−πL̂, πL̂)

}
, (51b)

where the normal to the boundary at ∂B3 is −g1/|g1| and at ∂B4 is g1/|g1|. The traction
components ti in terms of components of τ is given as,

t = τ · n,

ti gi = τ
· j
i

(
gi ⊗ g j

)
·
±gk

|gk|
,

= ±τ
· j
i

(
g j ·

gk

|gk|

)
gi,

= ±τ
· j
i δ

k
j

gi

|gk|
,

= ±τ·ki
gi

|gk|
,

ti = ±
τ·ki
|gk|

.

(52){traction}

Therefore, the traction vectors at the different boundaries are, {trac_comp}

t =
1
|g3|

(
τ·31 g1 + τ·32 g2 + τ·33 g3

)
on ∂B1, (53a)

= −
1
|g3|

(
τ·31 g1 + τ·32 g2 + τ·33 g3

)
on ∂B2, (53b)

= −
1
|g1|

(
τ·11 g1 + τ·12 g2 + τ·13 g3

)
on ∂B3, (53c)

=
1
|g1|

(
τ·11 g1 + τ·12 g2 + τ·13 g3

)
on ∂B4. (53d)

3.9. Helical symmetry {helical_symmetry}
Helical symmetry is present, if none of the fields change as we move along a helical

material fiber of pitch L̂. If we hold ζ̂ and ρ̂ and vary φ, we move along a helical material fiber of
pitch L; each pair of co-ordinates (ρ̂, ζ̂) define a helical material fiber in the cylinder. Therefore,
in our current problem all the fields should depend only on (ρ̂, ζ̂). Therefore, helical symmetry
indicates that the linear elastic equilibrium equations do not depend on the helical coordinate
φ. This can be understood by considering the analogy of the axisymmetric case in cylindrical
coordinates, where the equilibrium equations in cylindrical coordinates do not depend on θ.
Therefore, we can expand the equilibrium equations in eq. (49) using the assumption that
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∂B 3 ∂B 4

g1

|g1|- g1

|g1|

g3

|g3|-

g3

|g3|

Figure 4: This schematic shows the geometry being modeled in (ρ, ζ). The contravariant vectors −g1/|g1| and
g1|g1| are the normal vectors to the boundaries ρ = a and ρ = b, respectively. Similarly, −g3/|g3| and g3/|g3| are
normal vectors to the boundaries ζ = 0 and ζ = L/2, respectively. {fig_norm}

τi j = τi j (ρ, ζ), so that ∂τi j/∂φ = 0. On simplifying the equilibrium equations using the definition
of the Christoffel symbols of the second kind given in eq. (29) we get, {equilibrium_helical_symmetry}

τ11

ρ
− ρ τ22 +

∂τ13

∂ζ
+
∂τ11

∂ρ
= 0, (54a)

3
τ12

ρ
+
∂τ23

∂ζ
+
∂τ12

∂ρ
= 0, (54b)

τ13 − 2 L̄ τ12 + ρ

(
∂τ33

∂ζ
+
∂τ13

∂ρ

)
= 0. (54c)

We need to note that Christoffel symbols are function of ρ only. We will proceed in the next
section to solve the equilibrium equations numerically using finite element method.

4. Variational formulation and finite element method in helical coordinates

In the previous sections, we have detailed the linear thermo-elastic formulation in helical
coordinates. The strong form or the equilibrium equations in the absence of body force are
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given as,{strong_form}

∂τi j

∂θ j + Γi
m j τ

m j + Γ
j
m j τ

im = 0, in B, (55a)

u2 = u3 = 0, on ∂B2, (55b)
ti = 0, on ∂B1 ∪ ∂B3 ∪ ∂B4, (55c)
t1 = 0, on ∂B2. (55d)

It is important to note here that symmetry conditions are imposed on u2 and u3 at ζ = 0,
so that only half the geometry needs to be modeled. Therefore, the boundary ∂B2 can be
considered to be at ζ = 0 instead of ζ = −L/2. We propose to solve the strong form using
finite element method (FEM) invoking the variational or weak form of the equilibrium equations
as given in Hughes [23]. Let ui be the trial solution such that ui ∈ Si, where Si for i = 1, 2, 3 is
the collection of trial solutions given by,

Si = {ui
∣∣∣ ui ∈ H1(B), u2 (ρ, 0) , u3 (ρ, 0) = 0}. (56) {trial_sol}

The symbol H1(·) is the Hilbert space (see [24, 23] for more details). We also define the
collection of all admissible variations or test functions denoted byVi, which is give as,

Vi = {wi
∣∣∣ wi ∈ H1(B), w2 (ρ, 0) ,w3 (ρ, 0) = 0}. (57) {test_sol}

The weak formulation can be given as follows, let S = {u | ui ∈ Si}, V = {w | wi ∈ Vi} and
given `, find u ∈ S such that for all w ∈ V

a (w,u) = (w, `) , (58) {weak_form}

where a(·, ·) and (·, ·) is symmetric, bilinear forms (see [23] for details). The symbol ` is like a
body force term. The explicit forms of a(w,u) and (w, `) are given as, {bilinear_forms}

a (w,u) =

∫
B

1
4

Ci jkl
(
(uk|l + ul|k)

(
wi| j + w j|i

))
dV, (59a)

(w, `) =

∫
B

1
2

Ci jkl α ∆T gkl

(
wi| j + w j|i

)
dV, (59b)

where dV is volume element in helical coordinates given by eq. (23).

4.1. Finite element formulation
We solve for the minimizer and the minima from the weak form given in bilinear and linear

forms from eq. (59) using FEM. Consider Sh andVh be the finite dimensional approximations
of S and V, respectively. Let wh ∈ Vh such that (wh)2, (wh)3 = 0 on ∂B2 , so that the
boundary conditions on u are satisfied. Assuming that the members of Sh admit an additive
decomposition,

uh = vh + gh,
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where vh ∈ Vh and gh approximately satisfies u2 = u3 = 0 on ∂B2. Therefore, the Galerkin
formulation in finite dimensional space can be expressed as, find uh = vh + gh ∈ Sh such that
for all wh ∈ Vh, we have

a
(
wh, vh

)
=

(
wh, `

)
. (60) {galerkin}

Before, we descretize the domain, we define the nomenclature that will be used in the rest of
the discussion as follows,

• ndof is the number of degrees of freedom per node,

• nnp is the total number of nodes,

• η is the set of all nodes,

• ηg is the set of nodes on the boundary where (uh)i is prescribed,

• nel is the total number of elements in the domain,

• nen is the total number of nodes in an element.

Let us discretize the domain using global basis functions denoted by NA that satisfy partition
of unity, i.e.,

∑nnp

A=1 NA = 1 (see [23]). Further, NA are spatial functions of (ρ, ζ). The nodal
coefficients to be determined are denoted as diA and the arbitrary constants as ciA. The trial
and test functions can be expressed as,{vw_comp} (

vh
)i

=

nnp∑
A∈η−ηg

NA diA, (61a)

(
gh

)i
=

nnp∑
A∈ηg

NA giA, (61b)

(
wh

)i
=

nnp∑
A∈η−ηg

NA ciA. (61c)

The vector version of the above equations in the helical basis is,{finite_vw}

vh =
(
vh

)i
gi, (62a)

gh =
(
gh

)i
gi, (62b)

wh =
(
wh

)i
gi. (62c)

We can substitute the above equations into the Galerkin form given in eq. (60) and simplify it
using bilinearity properties we get,

ndof∑
j=1

 ∑
B ∈ η−ηg

a
(
NA gi,NB g j

)
d jB

 = (NA gi, `) , (63){desc_galerkin}
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where A ∈ η − ηg and 1 ≤ i ≤ 3. This above equation can be expressed in matrix form as,

Kd = F,

where K = [KPQ] is the global stiffness matrix, d = {dQ} is the nodal displacement vector and
F = {FP} is global force vector. The global stiffness matrix and force vector in component
forms are,

KPQ = a
(
NP gi,NQ g j

)
,

FP = (NP gi, `) .

4.2. Local description FEA
The Galerkin form given in eq. (63) is in global description i.e., the shape functions NA

are spatial functions of (ρ, ζ). However, a serious drawback of using these shape functions
is that they would have to be derived every time the number of elements are modified (see
[25] for additional details on the disadvantages). It is more straight forward to solve the set
of equations using local description of shape functions i.e., Na which are functions of local
coordinate system (ξ1, ξ2) (see [23, 25]). The global domain and local domain are related by
an affine transformation T : [ρ, ζ]→ [ξ1, ξ2] such that T (ρ, ζ) = (ξ1, ξ2). The global domain is
illustrated by Fig. 5(a), where the red circles denote the global node number A and the shape
functions NA are global shape functions which are spatial functions of (ρ, ζ). In order to do
calculations in the local coordinates system, the domain is divided into elements e = {1, nel}

given by the solid black lines. Once such element occupying a volume Ωe is highlighted using
the dashed grey box as shown in the figure. 5(a). A magnified version of the element is shown
in Fig. 5(b), in the local coordinates system (ξ1, ξ2), where {(ξ1, ξ2) : ξ1, ξ2 ∈ [−1, 1]}. The
element has 8 nodes, 4 corner (solid black circles) and 4 mid-side (black hollow circles) and
the coordinates at a node a are denoted as (ξa

1, ξ
a
2). The local node numbers a are given in

magenta color. The element is commonly called the 8 noded serendipity element (see [25]
for details). The local shapes functions are denoted by Na, where a = {1, nen} and in this case
nen = 8. The general expression for the shape functions for the eight-noded element are taken
from [25] and at the corner nodes, i.e., a = {1, 2, 3, 4}, are,

Na (ξ1, ξ2) =
1
4

(
1 + ξa

1 ξ1
) (

1 + ξa
2 ξ2

) (
−1 + ξa

1 ξ1 + ξa
2 ξ2

)
, (64)

where ξa
1, ξ

a
2 can be obtained from the Fig. 5, specifically to be {ξ1

1, ξ
2
1, ξ

3
1, ξ

4
1} = {−1, 1, 1,−1}

and {ξ1
2, ξ

2
2, ξ

3
2, ξ

4
2} = {−1,−1, 1, 1}, respectively. The general expression for the shape func-

tions at mid-side nodes, i.e., a = {5, 6, 7, 8},
if ξa

1 = 0,

Na (ξ1, ξ2) =
1
2

(
1 − (ξ1)2

) (
1 + ξa

2 ξ2)
)
, (65)

if ξa
2 = 0,

Na (ξ1, ξ2) =
1
2

(
1 + ξa

1 ξ1
) (

1 − (ξ2)2)
)
. (66)
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Further, for the local basis (ξ1, ξ2) we adopt the convention given in [23] and replace sub-
scripts A, B, ... with a, b, ..., and a superscript e is introduced to make it clear that element level
computations are being performed. The global stiffness matrix and global force vector can be
expressed as summations from the elemental counterparts as follows,

[KAB] =

nel∑
e=1

[ke
ab],

{FA} =

nel∑
e=1

{ f e
a },

(67)

where ke
ab and f e

a are the elemental stiffness matrix and force vector, respectively and are
defined as follows,

ke
ab = a (Na,Nb)e ,

f e
a = (`,Na)e .

(68)

ρ

ζ

a b

(0,1) (1,1)

(-1,-1)

(-1,1)

(1,-1)

(-1,0)
(1,0)

(0,-1)

ξ
1

ξ
2

(a,0) (b,0)

(a,L/2) (b,L/2)

Ωe

1 2

34

5

6

7

8

Figure 5: The domain with the global coordinate system (ρ, ζ) is shown in subfigure (a). Further, only half the
domain is shown i.e., (ρ, ζ) : ρ ∈ [a, b], ζ ∈ [0, L/2]). The domain as can be seen is made of elements where the
red circles are the global nodes. Subfigure (b) shows the dashed region from subfigure (a), with an element in
its local coordinate system (ξ1, ξ2), where the dark black circles are local corner nodes and the hollow circles are
mid-side nodes.{fig:1}

5. Results and discussion

In this section, we solve the boundary value problem numerically, specifically by choosing
the temperature distribution ∆T = ∆T0 ρ, where ∆T0 is a scaling constant. We compute the
the non-dimensionlized strain energy Π/E(α∆T0)2V by varying L̄/a and b/a. Further, we also
investigate the dependence of the strain energy on the Poissons ratio of the material. We also
derive an approximate analytical solution which is an upper bound to the non-dimensionalized
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strain energy using the Ritz’s method. We make an educated guess for the displacement field
such that the boundary conditions are satisfied and solve for the coefficients of the the guess
functions by minimizing the strain energy.

5.1. Numerical solution
The boundary value problem described in section using finite element method described

in section 3. Symmetry conditions are imposed on the displacement components u2, u3 = 0 on
the boundary ∂B2 (i.e., ζ = 0) and an illustration of the boundary value problem (bvp) is shown
in Fig. 6(a). The scaling constant ∆T0 = 1 and the coefficient of thermal expansion α = 1 in
all computations. The computations are performed for b/a = {2, 3, 4, 5} and L/a = (0.02, 200).
Representative contour plots of the displacement field u1, u2, u3 is shown in Fig. 6 (b), (c),
(d), respectively for the case of a = 0.5, b = 1.0 and L = 1.0. Similarly, the contravariant
components of the Cauchy stress tensor τi j is shown in Fig. 7 .

5.1.1. Verification of the numerical solution
5.1.2. Traction boundary conditions

We compute the traction on the boundaries of the domain ∂B to check if the traction is
zero on the boundaries where neither traction nor displacement is prescribed. The traction
vector on the boundaries is given in eq. (53). Displacement boundary conditions u2 = u3 = 0
are imposed on the boundary ∂B2, therefore, the obtained solution to displacement fields from
the finite element computation should satisfy, {traction_components}

τ·31 = τ·32 = τ·33 = 0 at ζ = L/2, (69a)

τ·11 = τ·12 = τ·13 = 0 at ρ = a, b, (69b)

τ·31 = 0 at ζ = 0. (69c)

We can verify whether the traction vector obtained from the FEA solution satisfies traction free
boundary condition. Let us consider the boundaries ρ = a, b, and for the boundaries to be
traction free, Cauchy stress components τ·11 , τ·12 and τ·13 have to be zero as given eq. (69). On
plotting these components along ρ ∈ [a, b], where a = 0.5 and b = 1.0 as shown in Fig. 8(a),
(b) and (c). In each subfigure, each of the traction vectors is plotted at ζ = 0.1, 0.25, 0.41 in
red, blue and black solid lines, respectively. It is evident that the traction vector components
are almost zero at the boundaries ρ = a and ρ = b, respectively. Similarly, we consider the
traction vector components on ζ = 0 and ζ = L/2 boundaries. From the Fig. 8(d), (e) and
(f), it can be seen that Cauchy stress component τ·31 is almost zero at ζ = 0, L/2. Further,
components τ·32 and τ·33 are almost zero at ζ = L/2 which is consistent with what is given in
eq. (69).

5.1.3. Nodal forces
In the section, to verify whether equilibrium is indeed satisfied, we compute the nodal

forces to verify that they are indeed almost zero everywhere. Let us consider the strong form
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Figure 6: In this figure, a schematic of the boundary value problem is shown in subfigure (a), where u2 = u3 = 0
at ζ = 0 and ∆T = ρ is the prescribed temperature distribution. The contour plots for the case of a = 0.5, b = 1.0
and L = 1.0 for the computed displacement components u1, u2 and u3 are presented in the subfigures (b), (c)
and (d), respectively. {fig_disp}

eq. 55, where the equilibrium equations are expressed using the mixed form of Cauchy stress
tensor τ· ji . The divergence of τ in helical coordinates is given as,

div τ = τ
· j
i

∣∣∣
j

gi,
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Figure 7: In this figure the contour plots for the Cauchy stress components τ11, τ12, τ13, τ22, τ23 and τ33 are
presented in the subfigures (a), (b), (c), (d), (e) and (f), respectively. {fig_stress}
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Figure 8: In subfigure (a), (b) and (c) Cauchy stress components τ1
·1, τ2

·1, τ3
·1 are plotted along ρ ∈ [a, b], where

a = 0.5 and b = 1.0, respectively. Further, the components are plotted at ζ = 0.1, 0.25 and 0.41, denoted by red,
blue and black solid lines, respectively. Similarly, subfigure (d), (e) and (f) Cauchy stress components τ1

·3, τ2
·3, τ3

·3
are plotted along ζ ∈ [0, L/2], where L = 1.0, respectively. Further, the components are plotted at ρ = 0.6, 0.75
and 0.9, denoted by red, blue and black solid lines, respectively {fig_trac}

28



where,

τ
· j
i

∣∣∣
j
=

∂τ· ji

∂θ j + Γ
j
m j τ

·m
i − Γm

i j τ
· j
m

 .
Consider a test function wi ∈ Vi as before, we get the weak form to be,

R =

∫
B

τ
· j
i

∣∣∣
j

wi dV,

R =

∫
B

∂τ· ji

∂θ j + Γ
j
m j τ

·m
i − Γm

i j τ
· j
m

 wi ρ dρ dφ dζ,

on using the divergence theorem (see [19] for more details), we get

R = −

∫
B

τ
· j
i

∂
(
wi ρ

)
∂θ j dρ dφ dζ +

∫
∂B

ti wi dS +

∫
B

(
Γ

j
m j τ

·m
i − Γm

i j τ
· j
m

)
wi ρ dρ dφ dζ,

where ti are the components of the traction vector on the boundary ∂B and dS is the area
element. The test function can be expressed using shape functions NA and arbitrary coeffi-
cients ciA as before in eq. (61) and the stress components τ· ji and the traction components ti

can computed using the displacement field obtained from the numerical solution, i.e., uh and
then the nodal forces Ri for i = 1, 2, 3 can be expressed as,

Ri = −

∫
B

τ
· j
i

((
ui
)h
) ∂

(
NA ρ

)
∂θ j dρ dφ dζ +

∫
∂B

ti

((
ui
)h
)

NA dS +

∫
B

(
Γ

j
m j τ

·m
i − Γm

i j τ
· j
m

)
NA ρ dρ dφ dζ,

(70) {nodal_vec}

For equilibrium to hold the nodal forces Ri has to be almost zero at every node in the domain.
The nodal force vector is computed and assembled using the local FEA description given in
section 3. The components R1, R2 and R3 are plotted over the domain B in Fig. 9 and it can
be seen that the nodal forces are of the order 1e − 5. Thus, we can conclude that the solution
is accurate and satisfies equilibrium within a numerical tolerance of 1e − 5.

5.2. Elastic strain energy variation
We compute elastic strain energy Π given by eq. (48b) from numerically obtained dis-

placement fields. The non-dimensionlized form of elastic strain energy Π/E(α∆T0)2V per unit
volume V is plotted against L̄/a as shown in figure. The energy curve for various b/a approach
a limit, respectively for large L̄/a and the limit is higher as the ratio of b/a increases. Further,
as L̄/a is small, the energy approaches 0. Therefore, we have asymptotic limits for L̄/a → 0
and L̄/a→ ∞. We also study the dependence of Poisson’s ratio on energy curve as shown in
the figure for b/a = 2 and ν = {0.1, 0.25, 0.4}. It can be seen that that there is almost no ap-
preciable difference in the different curves. Further, the asymptotic limits for the all the curves
are identical.
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Figure 9: In this figure the nodal forces are computed as given in eq. (70) using FEA and plotted over domain
ρ ∈ [0.5, 1] and ζ ∈ [0, 0.5]. The nodal force components R1, R2 and R3 are plotted in subfigures (a), (b) and (c),
respectively. {fig:nodal_forces}

5.3. Analytical solution
In this section, we propose an analytical solution for the energy curve shown in Figure . To

derive the analytical solution we propose to employ Ritz’s method. We guess the displacement
field as follows:

u1
g = C1 + C2 ρ

2, (71)

u2
g = C3 ζ + C4 ρ ζ, (72)

u3
g = C5 ζ, (73)

where, C1, C2, C3, C4, C5 are arbitrary constants which need to be solved for by minimizing
the energy computed from these fields. It is important to note that the above mentioned
displacement fields satisfy the bcs i.e., u2

g, u3
g = 0 at ζ = 0. The energy computed from the the
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guess displacement field should form an enevelope over the numerical solution because the
guess displacement field are not the actual minimizers to the BVP, therefore, the computed
energy should be greater than the FEA solution. We employ the eq. (48b) to compute the
energy over the domain Ω = {(ρ, ζ) : ρ ∈ [a, b], ζ ∈ (−L/2, L/2)}. Let the computed energy
be denoted by Πg, we solve for the constants C1,C2,C3,C4,C5 by setting ∂Πg/∂Ci = 0 for
i = 1, 2, 3, 4, 5 solving for the constants simultaneously. Once we do that we get Ci to be. We
can plot the analytical solution for b/a = 2 and compare against the numerical solution for
energy as shown in Figure . It can be clearly seen that the analytical solution (given by the
solid line) is approximately close to the numerical data and is an upper bound the numerical
solution obtained from FEA as we had expected.
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Figure 10: The variation of non-dimensionalized energy Πe/E(α∆T0)2V with L̄/a for various ratios of b/a is shown.
The subfigure (b), is an enlarged view of the energy curves for small L̄/a. {fig:2}
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