Mechanics of Continua and Structures
The equations derived by Wenqiang are as follows: \(\begin{align} \gamma &= \theta-\psi, \label{eq:def:gamma} \tag{1.1} \\ M &= \mathsf{E} \mathsf{I} \left(\psi'+\sec^2(\gamma)\gamma'\right), \tag{1.2} \label{eq:GEBM} \\ V&=-\mathsf{A} \mathsf{G}\tan(\gamma), \tag{1.3} \label{eq:1.3} \\ M'&=-V, \tag{1.4} \label{eq:1.4} \\ V&=-P_0\sin(\psi) \tag{1.5} \label{eq:1.5} \end{align}\)
From $\eqref{eq:1.3}$ and $\eqref{eq:1.5}$ we get that
\[\begin{align} \mathsf{A}\mathsf{G}\tan(\gamma)&=P_{0}\sin(\psi) \tag{2.1} \\ \tan(\gamma)&=\frac{P_0}{\mathsf{A}\mathsf{G}}\sin(\psi) \tag{2.2} \label{eq:Gamma_Psi} \end{align}\]Differentiating $\ref{eq:Gamma_Psi}$ we get
\[\begin{align} \sec^2(\gamma)\gamma'&=\frac{P_0}{\mathsf{A}\mathsf{G}}\cos(\psi)\psi' \tag{3.0} \label{eq:Gamma_Psi_Der} \end{align}\]Replacing the term $\sec^2(\gamma)\gamma’$ that appears in $\eqref{eq:GEBM}$ with the right hand side of $\eqref{eq:Gamma_Psi_Der}$, we get
\(\begin{align} M &= \mathsf{E} \mathsf{I} \left(\psi'+\frac{P_0}{\mathsf{A}\mathsf{G}}\cos(\psi)\psi'\right), \tag{1.2b} \label{eq:1.2b} \\ &=\mathsf{E} \mathsf{I} \left(1+\frac{P_0}{\mathsf{A}\mathsf{G}}\cos(\psi)\right)\psi', \tag{1.2c} \label{eq:1.2c}\\ \end{align}\) Differentiating $\eqref{eq:1.2c}$ we get \(\begin{align} M'&=\mathsf{E}\mathsf{I} \left(\left(1+\frac{P_0}{\mathsf{A}\mathsf{G}}\cos(\psi)\right)\psi'\right)' \tag{4.0} \label{eq:4.0} \end{align}\)
Substituting $V$ in $\eqref{eq:1.4}$ with the right hand side of $\eqref{eq:1.5}$ and $M’$ in $\eqref{eq:4.0}$ with the right hand side of $\eqref{eq:4.0}$ we get
\[\begin{align} \mathsf{E}\mathsf{I} \left(\left(1+\frac{P_0}{\mathsf{A}\mathsf{G}}\cos(\psi)\right)\psi'\right)' &=P_0 \sin(\psi) \label{eq:5.0} \tag{5.0} \end{align}\]Introducting the non-dimensional variable $\hat{s}=s/\ell$, where $\ell$ is an arbitrary unit of length
\[\begin{equation*} \frac{d(\cdot)}{ds}\to\frac{1}{\ell}\frac{d(\cdot)}{d\xi} \end{equation*}\]in $\eqref{eq:5.0}$ we get
\[\begin{align} \left(\left(1+\frac{P_0}{\mathsf{A}\mathsf{G}}\cos(\psi)\right)\psi'\right)' &=\frac{P_0 \ell^2}{\mathsf{E} \mathsf{I}} \sin(\psi) \label{eq:6.1} \tag{6.1} \end{align}\]Defining
\[\begin{align} \hat{P}_0&:=\frac{P_0 \ell^2}{\mathsf{E} \mathsf{I}}\\ \hat{\mu}&:=\frac{G A\ell^2}{\mathsf{E} \mathsf{I}} \end{align} \label{def.2} \tag{def.2}\]Equation $\eqref{eq:6.1}$ can be written as
\[\begin{align} \left(\left(1+\frac{\hat{P}_0}{\hat{\mu}}\cos(\psi)\right)\psi'\right)' &=\hat{P}_0\sin(\psi) \end{align}\]we get
\[\begin{align} \left(\left(1+\hat{P}_{0}\cos(\psi)\right)\psi'\right)' &=\hat{P}_0\hat{\mu} \sin(\psi) \label{eq:7.0} \tag{7.0} \end{align}\]The nonlinear differential equation $\eqref{eq:7.0}$ is subject to the boundary conditions
\(\begin{align} \psi(0)&=0, \label{eq:7.1a} \tag{7.1} \\ \psi'(\hat{L})&=0, \label{eq:7.1b} \tag{7.2} \end{align}\) where
\[\begin{align} \hat{L}&:=\frac{L}{\ell} \tag{def.3} \label{def.3} \end{align}\]The energies of the red, blue, and green deformed configuration are, respectively, -5.39304, -11.0318, -4.91333. The relatively straight shape has the lowest energy.
See this mathematics code for a sample numerical solution of the equation $\eqref{eq:7.0}$, subject to the boundary conditions $\eqref{eq:7.1a}$ and $\eqref{eq:7.1b}$.
Some sample results from this mathematics code.
Remark: For a given set of boundary conditions, there are several solutions to the nonlinear differential equation. We need to slightly perturb the boundary conditions or guide the solution through the initial guess to numerically arrive at the solution that has the physical characteristics (e.g., containing a loop) that we are most interested.